O'REILLY"

Head First %

Ja

A Learner's Guide
to Real-World
Programming

Kathy Sierrq,
Bert Bates &
Trisha Gee

......

......

A Brain-Friendly Guide

Head First
Java

What will you learn from this book?

Head First Java is a complete learning experience in Java and
object-oriented programming. With this book, you'll learn the Java
language with a unique method that goes beyond how-to manuals and
helps you become a great programmer. Through puzzles, mysteries,
and soul-searching interviews with famous Java objects, you'll quickly
get up to speed on Java's fundamentals and advanced topics including
lombdas, streams, generics, threading, networking, and the dreaded
desktop GULI. If you have experience with another programming language,
Head First Java will engage your brain with more modern approaches to
coding—the sleeker, faster, and easier to read, write, and maintain

Java of today.

) Use your Java skills to build
= a Battleship-style game.

Get in PN
+outh with
Your innex objcth

The objects go IN @ 5
as SoccerBall,

Fish, Guitar, and

Objects come out of

acting like they're

But they come
OUT as though that comes out is of

they were of type any type other than
Object. Object.

What's so special about this book?

L assume the object

of type Objects
has a price...

an ArrayList<Object> DiSCOVCV‘ Wh\/ uSihS

=
Car. generic instances l h ‘p
ArrayList<Object> of class Object. The pol \/mory 1 rexeventes
Compiler cannot

"What a fun and quirky
book! I've taught Java
for many years and
can honestly say this
is the most engaging
resource |'ve ever
seen for learning to
program. It makes
me want to learn
Java all over again.”

—Angie Jones
Java Champion

“The only way to
decide the worth of
a tutorial is to decide
how well it teaches.
Head First Java
excels at teaching.”

—slashdot.org

“It's definitely time to
dive in—Head First."
—Scott McNealy

former Sun Microsystems
Chairman, President, and CEO

If you've read a Head First book, you know what to expect—a visually rich
format designed for the way your brain works. If you haven't, you're in for
a treat. With Head First Java, you'll learn Java through a multisensory
experience that engages your mind, rather than by means of a text-heavy
approach that puts you to sleep.

JAVA

US $69.99 CAN $87.99
ISBN: 978-1-491-91077-1

9 “781491“9107?1’

OREILLY"

Other books in O’Reilly’s Head First series

Head First Android Development
Head First C#

Head First Design Patterns

Head First Git

Head First Go

Head First HTML and CSS

Head First JavaScript Programming
Head First Kotlin

Head First Learn to Code

Head First Object-Oriented Analysis and Design
Head First PMP

Head First Programming

Head First Python

Head First Software Development
Head First SQL

Head First Swift

Head First Web Design

Praise for Head First Java, 3rd Edition

“What a fun and quirky book! I've taught Java for many years and can honestly say this is the most engag-
ing resource I've ever seen for learning to program. It makes me want to learn Java all over again!”

— Angie Jones, Java Champion

“HFJ has the clearest explanation of Java Streams and Lambdas I have ever read—without the hype! It
teaches important functional programming concepts with humor and style. And it was so fun I wanted to
learn Java all over again. If only everyone programmed Java like they teach in this book.”

— Eric Normand, Clojure instructor and author of Grokking Simplicity

“Oh how I wish I had had this book when I was learning Java! It is such fun to read, one forgets thatitis a
serious Java learning book. The third edition is a great step forward. It covers everything that a Java pro-
grammer needs to know in 2022+ to become proficient in the Java language. To me the best though are
the illustrations, which made me chuckle quite a few times. Very well done to the Java Champion authors:
Kathy, Bert, and Trisha!”

— Dr. Heinz M. Kabutz (The Java Specialists’ Newsletter, www.javaspecialists.eu)

“I'love Head First Java’s style of teaching It is a ‘technical’ book but feels like fiction—hard to stop read-
ing once you start with any chapter. It has fun and unconventional images, great analogies, fireside chats
between a developer and compiler/runtime and so many more such features. It has a completely different
and great way of teaching concepts that makes readers question their assumptions and beliefs, which I
believe 1s crucial to letting any learner realize the power of their own curiosity. The authors of this book
are no less than magicians. This is a must-read book for all Java developers to get started learning Java or
to level up their existing skills in a fun way.”

— Mala Gupta, Developer Advocate @ JetBrains, Author and Java Champion

“I often get asked by folks new to the Java programming ecosystem, “What book should I start with?’ I
always tell them Head First Java! The original editions by Kathy Sierra and Bert Bates flipped the old way
of learning a programming language on its head, with a learner-centric way of teaching. It was simply
revolutionary. Trisha Gee 1s one of the finest Java engineers and educators on the planet, and my go
to person when I need something gnarly about the language explained in clear detail! The third edi-
tion brought a huge smile to my face, not only for the trip down memory lane but because once more 1
learned new things about Java despite having spent over 20 years with it :-).”

— Maritjn Verburg aka “The Diabolical Developer”; Java Champion and Principal
Group Manager for Java @ Microsoft

“The Head First fava book 1is legendary, and I can’t think of a better person than Trisha Gee to update
it. I already knew Trisha was awesome, but I didn’t know she was funny. Now I do! The third edition is
authoritative, entertaining, clear, and current. If there’s a better way to learn Java, I don’t know it.”

— Holly Cummins, Senior Principal Quarkus Software Engineer, Red Hat

“This book 1s a riot! It’s got curly braces, humor, objects, metaphors, syntax, fun, code, and a proper
acknowledgment that the reader is human. It takes the process of learning seriously, but does so playfully
and memorably. I love the metacognitive tips, the invitations to play the role of compiler, the stories, the
visuals, and the sense that learning a programming language— like any learning—is something that is
open to anyone.”

— Kevlin Henney, co-editor of 97 Things Every Java Programmer Should Know

“I wish I'd known about this book when I'd been learning Java! For those looking to learn Java in a fun, hu-
morous and captivating way (who knew that was possible?), and especially those who have not come from
a traditional computer science background like myself, this is definitely the book for you. Never before
have I laughed out loud at a programming book. It’s brilliantly written, witty, engaging, interactive, easy to
follow and highly educational.”

— Grace Jansen, Developer Advocate, IBM

“If you’re just starting your journey learning how to program in Java, youre faced with an overwhelm-
ing choice of books and courses ready to get you to your destination. The problem is most focus purely
on the technical information, making you frequently ask, “are we there yet?” Head Furst fava takes an
altogether different approach making the adventure of learning both entertaining and educational. Using
arrays of dogs, pool puzzles, five-minute mysteries and sharpen your pencil (who’d have thought you need
a pencil to program?), this book makes learning fun, yet making sure you absorb all the essential details
you’ll need. I wish this had been available when I started learning Javal”
— Simon Ritter, Deputy CTO at Azul and Java Champion

“This book never disappoints. I still remember it from my early days at university and I am quite pleased to
see this new improved version. Head First fava is very well put together with simple to understand English
and coding examples. I highly recommend it to every Java developer.”

— Nelson Djalo, Tech Entrepreneur, founder of Amigoscode.com learning platform
and Amigoscode YouTube channel

“Head First Java was the first book I had my son read when he wanted to learn Java. And there’s a reason:
I knew the fun cartoons would captivate his attention like no other Java book I have seen before. Reading
Head First Java was more like being on the playground than stuck in the classroom.”
— Kevin Nilson, Google Software Engineer and Leader of the Silicon Valley Java User

“I can only envy programmers who want to learn Java today, as they have this great book. I learned Java
twenty years ago, and it was quite boring. But you’ll never be bored with this book. I've never seen a Java
book that has a battle between Java compiler and virtual machine. This is mind-blowing!”

— Tagir Valeev, Java Champion and Technical Lead in Intelli] IDEA, JetBrains

“Nearly 20 years ago after I read Head First fava, 1st edition, as a junior developer entering the Java world,
the third edition still amazes me. Much has changed since then, including how people present tutorials.
Head First Java, 3rd edition, is a valid alternative to today’s excellent video materials: It allows learners—ju-
nior and senior alike—to quickly grasp concepts without losing them in details, but also without dumbing
down the material, and with enough of the correct references for further reading. I especially enjoyed the
material on Java streams, concurrency and NIO.”

— Michael Simons, Java Champion and engineer at Neo4j, author of the German
Spring Boot Buch reference

“If you want to develop software using Java, this book is for you. Head First Jfava designs lots of straightfor-
ward and elegant examples to help the readers understand and learn how to use Java to create software.
This is a great first book for anyone who wants to be a Java programmer.”

— Sanhong Li, Alibaba Cloud

More praise for Head First Java, 3rd Edition

“Head First Java is a technical book that doesn’t feel like a technical book: it’s fun, casual, and full of worldly analo-
gies that introduce complex concepts in a very smooth way:. It’s the perfect introduction to the rich and vast Java

ecosystem.”
— Abraham Marin-Perez, Principal Consultant, Cosota Team

“Tor those who like a little whimsy and humor with their “work”, I can think of no better book for learning Java
than Head First fava, 3rd edition. Practical and playful, educational and engaging, it’s the perfect guide for new

developers looking to hit the ground running,”
— Marc Loy, trainer, author of Smaller C, and co-author of Learning Java and Java Swing

Praise for earlier editions of Head First Java,
and for other books coauthored by Kathy and Bert

“Kathy and Bert’s Head First fava transforms the printed page into the closest thing to a GUI you've ever seen. In a
wry, hip manner, the authors make learning Java an engaging ‘what’re they gonna do next?’ experience.”
— Warren Keuffel, Software Development Magazine

“...the only way to decide the worth of a tutorial is to decide how well it teaches. Head First fava excels at teaching.
OK, I thought it was silly...then I realized that I was thoroughly learning the topics as I went through the book....

The style of Head First fava made learning, well, easier.”
— slashdot (honestpuck’s review)

“Beyond the engaging style that drags you forward from know-nothing into exalted Java warrior status, Head First
Java covers a huge amount of practical matters that other texts leave as the dreaded “exercise for the reader...” It’s
clever, wry, hip and practical-—there aren’t a lot of textbooks that can make that claim and live up to it while also

teaching you about object serialization and network launch protocols.”
—Dr. Dan Russell, Director of User Sciences and Experience Research IBM Almaden

Research Center (and teaches Artificial Intelligence at Stanford University)

“It’s fast, irreverent, fun, and engaging. Be careful—you might actually learn something!”
—Ken Arnold, former Senior Engineer at Sun Microsystems and coauthor (with James

Gosling, creator of Java) of The Java Programming Language

“Java technology is everywhere. If you develop software and haven’t learned Java, it’s definitely time to dive in—

Head First.”
—Scott McNealy, former Sun Microsystems Chairman, President, and CEO

“Head First fava is like Monty Python meets the gang of four...the text is broken up so well by puzzles and stories,
quizzes and examples, that you cover ground like no computer book before.”
—Douglas Rowe, Columbia Java Users Group

“Read Head First fava and you will once again experience fun in learning...For people who like to learn new
programming languages, and do not come from a computer science or programming background, this
book is a gem... This is one book that makes learning a complex computer language fun.”

— Judith Taylor, Southeast Ohio Macromedia User Group

“If you want to learn Java, look no further: welcome to the first GUI-based technical book! This perfectly-
executed, ground-breaking format delivers benefits other Java texts simply can’t...Prepare yourself for a
truly remarkable ride through Java land.”

— Neil R. Bauman, Captain and CEO, Geek Cruises

“I was ADDICTED to the book’s short stories, annotated code, mock interviews, and brain exercises.”
— Michael Yuan, author of Enterprise J2ME

“Head First Java gives new meaning to their marketing phrase “There’s an OReilly for that.” I picked this
up because several others I respect had described it in terms like ‘revolutionary’ and described a radically
different approach to the textbook. They were (are) right...In typical O’Reilly fashion, they’ve taken a
scientific and well considered approach. The result is funny, irreverent, topical, interactive, and brilliant...
Reading this book 1s like sitting in the speakers lounge at a conference, learning from—and laughing
with—peers...If you want to UNDERSTAND Java, go buy this book.”

—Andrew Pollack, www.thenorth.com

“This stuff is so fricking good it makes me wanna WEEP! I'm stunned.”
— Floyd Jones, Senior Technical Writer/Poolboy, BEA

“I feel like a thousand pounds of books have just been lifted off of my head.”
— Ward Cunningham, inventor of the Wiki and founder of the Hillside Group

“I laughed, I cried, it moved me.”
— Dan Steinberg, Editor-in-Chief, java.net

“My first reaction was to roll on the floor laughing. After I picked myself up, I realized that not only is
the book technically accurate, it is the easiest to understand introduction to design patterns that I have
seen.”

— Dr. Timothy A. Budd, Associate Professor of Computer Science at Oregon State
University; author of more than a dozen books including C++ for Java Programmers

“Just the right tone for the gecked-out, casual-cool guru coder in all of us. The right reference for practi-
cal development strategies—gets my brain going without having to slog through a bunch of tired stale
professor-speak.”

— Travis Kalanick, founder of Scour and Red Swoosh, member of the MIT TR100

Head First Java:

Third Edition
Wouldn't it be dreamy
if there was a Java book
that was more stimulating
than waiting in line at the
DMV to renew your driver's
license? It's probably just a
fantasy...
Kathy Sierra
Bert Bates
Trisha Gee

Beijing + Boston + Farnham - Sebastopol + Tokyo [K@AR{=1IMAE

Head First Java™
Third Edition

by Kathy Sierra, Bert Bates, and Trisha Gee

Copyright © 2022 by Kathy Sierra and Bert Bates. All rights reserved.
Printed in the United States of America.
Published by O’Reilly Media, Inc., 1005 Gravenstein Highway North, Sebastopol, CA 95472.

O’Reilly Media books may be purchased for educational, business, or sales promotional use. Online
editions are also available for most titles (oreilly.com). For more information, contact our corporate/
institutional sales department: (800) 998-9938 or corporate@oreilly.com.

Editor for 1st and 2nd Editions: Mike Loukides

Editors for 3rd Edition: Suzanne McQuade, Nicole Taché

Cover Design: Susan Thompson, based on a series design by Ellie Volckhausen
Cover lllustration: Jos¢ Marzan, Jr.

Production Editor: Kristen Brown

Original Interior Designers: Kathy Sierra and Bert Bates

3rd Edition Design Support: Ron Bilodeau

Java Whisperer: Trisha Gee

Series Advisors: Eric Freeman, Elizabeth Robson

Printing History:

May 2003: First Edition.
February 2005: Second Edition.
May 2022: Third Edition

(You might want to pick up a copy of all the editions...for your kids. Think eBay™)

The O’Reilly logo is a registered trademark of O’Reilly Media, Inc. Java and all Java-based trademarks
and logos are trademarks or registered trademarks of Sun Microsystems, Inc., in the United States and
other countries. O’Reilly Media, Inc. is independent of Sun Microsystems.

Many of the designations used by manufacturers and sellers to distinguish their products are claimed as
trademarks.

Where those designations appear in this book, and O’Reilly Media, Inc. was aware of a trademark claim,
the designations have been printed in caps or initial caps.

While every precaution has been taken in the preparation of this book, the publisher and the authors
assume no responsibility for errors or omissions, or for damages resulting from the use of the information
contained herein.

In other words, if you use anything in Head First Java™ to, say, run a nuclear power plant or air traffic
control system, you’re on your own.

978-149-191077-1
(LST] [2022-05-11]

From Kathy and Bert:

To our brains, for always being there

(despite shaky evidence)

From Trisha:

To Isra, for always being there

(with a surfeit of evidence)

the authors

Auvthors of Head First Java and Creators of the Head First series

Kathy Sierva

Kathy has been interested in learning theory since her
days as a game designer for Virgin, MGM, and Amblin’,
and a teacher of New Media Authoring at UCLA. She

was a master Java trainer for Sun Microsystems, and she
founded JavaRanch.com (now CodeRanch.com), which won
Jolt Cola Productivity awards in 2003 and 2004.

In 2015, she won the Electronic Frontier Foundation’s
Pioneer Award for her work creating skillful users and
building sustainable communities.

Kathy’s recent focus has been on cutting-edge, movement
science and skill acquisition coaching, known as ecological
dynamics or “Eco-D.” Her work using Eco-D for training
horses is ushering in a far, far more humane approach

to horsemanship, causing delight for some (and sadly,
consternation for others). Those fortunate (autonomous!)
horses whose owners are using Kathy’s approach are
happier, healthier; and more athletic than their fellows who
are traditionally trained.

You can follow Kathy on Instagram:
@pantherflows.

BCV"{: Ba-{:cs

i 1

Before Bert was an author, he was a developer,
specializing in old-school Al (mostly expert systems),
real-time OSs, and complex scheduling systems.

In 2003, Bert and Kathy wrote Head First fava and
launched the Head First series. Since then, he’s
written more Java books and consulted with Sun
Microsystems and Oracle on many of their Java
certifications. These days, he works with coaches,
teachers, professors, authors, and editors, helping
them create more bad-ass training for their students.

Bert’s a Go player, and in 2016 he watched in horror
and fascination as AlphaGo trounced Lee Sedol.
Recently he’s been using Eco-D (ecological dynamics)
to improve his golf game and to train his parrotlet
Bokeh.

Bert has been privileged to know Trisha Gee for
more than eight years now, and the Head First series
is extremely fortunate to count Trisha as one of its
authors.

You can email Bert at bertbates.hf@gmail.com.

the authors

Co-author of Head First Java, 3rd Edition

Trisha Qee

Trisha has been working with Java since 1997, when her university was forward-
looking enough to adopt this “shiny new” language to teach computer science. Since
then, she’s worked as a developer and consultant, creating Java applications in a
range of industries including banking, manufacturing, nonprofit, and low-latency
financial trading.

Trisha is super passionate about sharing all the stuff she learned the hard way
during those years as a developer, so she became a Developer Advocate to give

her an excuse to write blog posts, speak at conferences, and create videos to pass
on some of her knowledge. She spent five years as a Java Developer Advocate at
JetBrains, and another two years leading the JetBrains Java Advocacy team. During
this time she learned a lot about the kinds of problems real Java developers face.

Trisha has been talking to Bert (on and off) about updating Head First fava for the
last eight years! She remembers those weekly phone calls with Bert with great
affection; regular contact with a knowledgable and warm human being like Bert
helped keep her sane. Bert and Kathy’s approach to encouraging learning has
formed the core of what she’s been trying to do for nearly 10 years.

You can follow Trisha on Twitter: @trisha_gee.

Xi

table of contents Table 0[' Contents (SummaPY)

Xii

Intro xxi

1 Breaking the Surface: diwe in: a quick dip 1
2 A Trip to Objectville: classes and objects 27
3 Know Your Variables: primitives and references 49
4 How Objects Behave: methods use instance variables 71
5 Extra-Strength Methods: writing a program 95
6 Using the Java Library: get to know the Java API 125
7 Better Living in Objectville: inkeritance and polymorphism 167
8 Serious Polymorphism: wnterfaces and abstract classes 199
9 Life and Death of an Object: constructors and garbage collection 237
10 Numbers Matter: numbers and statics 275
11 Data Structures: collections and generics 309
12 What, Not How: lambdas and streams 369
13 Risky Behavior: exception handling 421
14 A Very Graphic Story: intro to GUI, event handling, and inner classes 461
15 Work on Your Swing: using swing 509
16 Saving Objects (and Text): serialization and file 1/0 539
17 Make a Connection: networking and threads 587
18 Dealing with Concurrency Issues: race conditions and immutable data 639
A Appendix A: final code kitchen 673
B Appendix B: the top ten-ish topics that didn’t make it into the rest of the book 683

Index 701

Table of Contents (the rea] thing)

@® Intro

Your brain on Java. Here you are trying to learn something, while here your brain
is doing you a favor by making sure the learning doesn’t stick. Your brain’s thinking, “Better
leave room for more important things, like which wild animals to avoid and whether naked
snowboarding is a bad idea.” So how do you trick your brain into thinking that your life
depends on knowing Java?

Who is this book for? XXV
We know what you're thinking. XXVl
Metacognition: thinking about thinking XXIX
Heres what WE did XXX
Here’s what YOU can do to bend your brain into submission Xxxi
What you need for this book XXXIl
Last-minute things you need to know Xxxill

table of contents
Breaking the Surface

Java takes you to new places. From its humble release to the public as the
(wimpy) version 1.02, Java seduced programmers with its friendly syntax, object-oriented fea-
tures, memory management, and best of all—the promise of portability. We'll take a quick dip
and write some code, compile it, and run it. We're talking syntax, loops, branching, and what
makes Java so cool. Dive in.

. The Way Java Works 2
Max;)li:gz' What you'll do in Java 3
A Very Brief History of Java 4
Code structure in Java 7
Method Party() Writing a class with a main() 9
0 ?Ioad_o) Simple boolean tests 13
1 invokespecial # f
<Method java.lang. Conditional branching 15
Object()> . . .
Coding a Serious Business 16
4 return
. Phrase-O-Matic 19
gommlzd Exercises 20
yfeco e Exercise Solutions 25
A Trip to Objectville
| was told there would be objects. In Chapter 1, we put all of our code in
the main() method. That's not exactly object-oriented. So now we've got to leave that
procedural world behind and start making some objects of our own. We'll look at what
makes object-oriented (OO) development in Java so much fun. We'll look at the difference
between a class and an object. We'll look at how objects can improve your life.
DOG Chair Wars 28
size one class Making your first object 36
Making and testing Movie objects 37
Quick! Get out of main! 38
Running the Guessing Game 40
Exercises 42
Exercise Solutions 47

wmany object

Xiii

table of contents

Know Your Variables

Variables come in two flavors: primitive and reference.

There's gotta be more to life than integers, Strings, and arrays. What if you have a PetOwner
object with a Dog instance variable? Or a Car with an Engine? In this chapter we'll unwrap
the mysteries of Java types and look at what you can declare as a variable, what you can put
in a variable, and what you can do with a variable. And we'll finally see what life is truly like
on the garbage-collectible heap.

Declaring a variable 50
“I’d like a double mocha, no, make it an int.” 51
Back away from that keyword! 53
Controlling your Dog object 54
An object reference is just another variable value. 55
Life on the garbage-collectible heap 57
An array is like a tray of cups 39
A Dog example 62
Dog reference Exercises 63
Exercise Solutions 68

How Objects Behave

State affects behavior, behavior affects state. we know that objects
have state and behavior, represented by instance variables and methods. Now we'll look
at how state and behavior are related. An object’s behavior uses an object’s unique state.

In other words, methods use instance variable values. Like,“if dog weight is less than 14
pounds, make yippy sound, else..” Let’s go change some state!

Remember: a class describes what an object knows and

pass-by-value means what an object does 72

—_—— .
pass-by-copy The size affects the bark 73
—_— You can send things to a method 74
. You can get things back from a method. 75

O
Py of — You can send more than one thing to a method 76
——_ ' q © AN

00'\\\’ 00()0\’\’ o Cool things you can do with parameters and return types 79
© Encapsulation 80
How do objects in an array behave? 83
int int Declaring and initializing instance variables 84
foo.go (x); void go(int z){ } Comparing variables (primitives or references) 86
Exercises 88
Exercise Solutions 93

Xiv

table of contents
Extra-Strength Methods

Let’s put some muscle in our methods. You dabbled with variables,
played with a few objects, and wrote a little code. But you need more tools. Like
operators. And loops. Might be useful to generate random numbers. And turn
a String into an int, yeah, that would be cool. And why don't we learn it all by building
something real, to see what it’s like to write (and test) a program from scratch. Maybe a
game, like Sink a Startup (similar to Battleship).

. e
We've (_s,ov\"a ::sd?::c Let’s build a Battleship-style game: “Sink a Startup” 96
Sirk 2 st Developing a Class 99
Writing the method implementations 101
A Writing test code for the SimpleStartup class 102
® 2 The checkYourself() method 104
; :g Lomdz Prep code for the SimpleStartupGame class 108
. The game’s main() method 110
. Let’s play 113
6 — More about for loops 114
e 1 - The enhanced for loop 116
Casting primitives 117
Exercises 118
Exercise Solutions 122
Using the Java Library
Java ships with hundreds of prebuilt classes. You don't have to
reinvent the wheel if you know how to find what you need from the Java library, commonly
known as the Java API. You've got better things to do. If you're going to write code, you
might as well write only the parts that are custom for your application. The core Java library
is a giant pile of classes just waiting for you to use like building blocks.
In our last chapter, we left you with the cliff-hanger. A bug. 126
“Good to know there’s an ArrayList in the java. Wake up and smell the library 132
Juftllir!; chzgf'ozzi@) myself; how would T have Some things you can do with ArrayList 133
¢ . Comparing ArrayList to a regular array 137
- Julia, 31, hand model Let’ build the REAL game: “Sink a Startup” 140
Prep code for the real StartupBust class 144
The final version of the Startup class 150
Super Powerful Boolean Expressions 151
Using the Library (the Java API) 154
Exercises 163
Exercise Solutions 165

XV

table of contents
Better Living in Objectville

Plan your programs with the future in mind. what if you could write
code that someone else could extend, easily? What if you could write code that was flexible, for
those pesky last-minute spec changes? When you get on the Polymorphism Plan, you'll learn the
5 steps to better class design, the 3 tricks to polymorphism, the 8 ways to make flexible code,
and if you act now—a bonus lesson on the 4 tips for exploiting inheritance.

1 Java is &
bP JSSI Chair Wars Revisited... 168
Y value
W Understanding inheritance 170
ash, |
Makc l‘é g-é| é k {:}::ii?; Cat ’ Let’s design the inheritance tree for an Animal simulation program 172
notify() Looking for more inheritance opportunities 175
;?oses are red, violets gre blue Using IS-A and HAS-A 179
u . -
quare /s-4 Shape, the reverse jspys 4 How do you know if you’ve got your inheritance right? 181
R . rue.
B:::S/ gf: red, violets gre e When designing with inheritance, are you using or abusing? 183
-ADri g
ink, but not gy drinks are pe - Keeping the contract: rules for overriding 192
OK, your turn, Make ' .
one th Overloading a method 193

er, if X extends Y, X nship. Ang remem- Exercises 194

Exercise Solutions 197

Serious Polymorphism

Inheritance is just the beginning. To exploit polymorphism, we need
interfaces. We need to go beyond simple inheritance to flexibility you can get only by
designing and coding to interfaces. What's an interface? A 100% abstract class. What's an
abstract class? A class that can’t be instantiated. What's that good for? Read the chapter...

Did we forget about something when we designed this? 200
Object o = al.get(id); The compiler won’t let you instantiate an abstract class 203
Dog d = (Dog) o; Abstract vs. Concrete 204
d.bark();) You MUST implement all abstract methods 206
Polymorphism in action 208
Why not make a class generic enough to take anything? 210
When a Dog won’t act like a Dog 214
Let’s explore some design options 221
Making and Implementing the Pet interface 227
Invoking the superclass version of a method ‘ 230
Exercises 232
Exercise Solutions 235

XVi

table of contents
Life and Death of an Object

Objects are born and objects die. You're in charge. You decide when and
how to construct them. You decide when to abandon them. The Garbage Collector (gc)
reclaims the memory. We'll look at how objects are created, where they live, and how to
keep or abandon them efficiently. That means we’'ll talk about the heap, the stack, scope,
constructors, super constructors, null references, and gc eligibility.

When someon calls The Stack and the Heap: where things live 238

the 500 md’,\\Od' H\{: Methods are stacked 239

Dvﬁk s abandonCd-b \s“ What about local variables that are objects? 240

ov\\\[rcgcrcncc has :‘ The miracle of object creation 242

rc\”“’%"a"med kor Construct a Duck 244

0\630('\ d"ﬂ:cvcn‘h Duek Doesn’t the compiler always make a no-arg constructor for you? 248

Nanoreview: four things to remember about constructors 251

. Weat The role of superclass constructors in an object’s life 253

O‘/Ck o‘d\e'b Can the child exist before the parents? 256

‘d is assigned a new Dutk ob\')cd‘,, leaving the What) al?out referenc.e .Vanables? 262
o\ris'mal (Fiest) Duek ob\')cc{‘, abandoned. That Idon.t like where this is headed. 263
Liest Duek is toast. Exercises 268
Exercise Solutions 272

Numbers Matter
Do the Math. The Java API has methods for absolute value, rounding, min/max, etc.

Static variables But what about formatting? You might want numbers to print exactly two decimal points,

are shared by or with commas in all the right places. And you might want to print and manipulate dates,
all instances of too. And what about parsing a String into a number? Or turning a number into a String?
a class. We'll start by learning what it means for a variable or method to be static.
statie variable:
iceCream
" . kid instance two MATH methods: as close as you’ll ever get to a global method 276
4 te on
kid instan The difference between regular (non-static) and static methods 277
instante vaviables: Initializing a static variable 283
one per m Math methods 288
statie vaviables: Wrapping a primitive 290
one per ¢tlass i
P Autoboxing works almost everywhere 292
Turning a primitive number into a String 295
Number formatting 296
The format specifier 300
Exercise 306
Exercise Solutions 308

XVii

table of contents

Output vesults
—

as a List

xviii

Data Structures

Sorting isasnapin Java. You have all the tools for collecting and manipulating

your data without having to write your own sort algorithms. The Java Collections

Framework has a data structure that should work for virtually anything you'll ever need

to do. Want to keep a list that you can easily keep adding to? Want to find something

by

name? Want to create a list that automatically takes out all the duplicates? Sort your co-

workers by the number of times they’ve stabbed you in the back?

.collect (toLE;_L’;ﬁ . .

Exploring the java.util API, List and Collections 314
Generics means more type-safety 320
Revisiting the sort() method 327
The new, improved, comparable Song class 330
Sorting using only Comparators 336
Updating the Jukebox code with Lambdas 342
Using a HashSet instead of ArrayList 347
What you MUST know about TreeSet... 353
We've seen Lists and Sets, now we’ll use a Map 355
Finally, back to generics 358
Exercise Solutions 364
Lambdas and Streams: What, Not How
What if...you didn’t need to tell the computer HOW to do
something? In this chapter we'll look at the Streams API. You'll see how helpful
lambda expressions can be when you're using streams, and you'll learn how to use the
Streams API to query and transform the data in a collection.
Tell the computer WHAT you want 370
.stream() When for loops go wrong 372
R Introducing the Streams API 375
Getting a result from a Stream 378
@ Guidelines for working with streams 384
Hello Lambda, my (not so) old friend 368
Spotting Functional Interfaces 396
Dlter (.j Lou’s Challenge #1: Find all the “rock” songs 400
Lou’s Challenge #2: List all the genres 404
Exercises 415
Exercise Solutions 417

table of contents
Risky Behavior

Stuff happens. The file isn't there. The server is down. No matter how good a

programmer you are, you can’t control everything. When you write a risky method, you

need code to handle the bad things that might happen. But how do you know when a

method is risky? Where do you put the code to handle the exceptional situation? In this

chapter, we're going to build a MIDI Music Player that uses the risky JavaSound API, so we

better find out.

Let’s make a Music Machine 422

First we need a Sequencer 424

&X\QO\NS e exce,bh'o,’ An exception is anqobjcct...of type Exception 428
Flow control in try/catch blocks 432

Did we mention that a method can throw more than one exception? 435

Multiple catch blocks must be ordered from smallest to biggest 438

Ducking (by declaring) only delays the inevitable 442

your code closewime Code Kitchen 445
r-isky method Version 1: Your very first sound player app 448

Version 2: Using command-line args to experiment with sounds 452

Exercises 454

Exercise Solutions 457

A Very Graphic Story

Face it, you need to make GUIs. Evenif you believe that for the rest of your
life you'll write only server-side code, sooner or later you'll need to write tools, and you'll

want a graphical interface. We'll spend two chapters on GUIs and learn more language

features including Event Handling and Inner Classes. We'll put a button on the screen,

class MyOuter { we'll paint on the screen, we'll display a JPEG image, and we'll even do some animation.
cla‘srz il;y;gr(n)ar { { It all starts with a window 462
} } Getting a user event 465
Listeners, Sources, and Events 469
! Make your own drawing widget 472
. . @ Fun thi 1 1 4
The outer and inner objects un things to do in paintComponent() 73
are now intimately linked. . GUI layouts: putting more than one widget on a frame 478
o Inner class to the rescue! 484
b ob\')cd'/s on the . lambdas to the rescue! (again) 490
e two : . inne' . . .
1\—:; have 3 5\"{;‘:\{_;:“0“&“’5 Using an inner class for animation 492
The '\g\\ncv(f;a‘; ‘;_‘u vevsa): An easier way to make messages/events 498
. es n
vaxia Exercises 502
Exercise Solutions 507

Xix

table of contents
Work on Your Swing

Swing is €asy. Unless you actually care where everything goes. Swing code /ooks
easy, but then compile it, run it, look at it, and think, “hey, that’s not supposed to go there.”
The thing that makes it easy to code is the thing that makes it hard to control—the Layout
Manager. But with a little work, you can get layout managers to submit to your will. In
this chapter, we'll work on our Swing and learn more about widgets.

C omYOV\C"{-'S n [oee) Swing components 510
fhe east 3'\d. (North) Layout Managers 511
west, get thelr The Big Three | border, flow; and b 513
- 4khe e Big Three layout managers: border, flow, and box.
chdcc'fvcd w‘d
Playing with Swing components 523
Thinss in 'HIC West Center East Code Kitchen 526
north and Th Making the BeatBox 529
south get their hcttcrr(-;ﬂ- 56{5 .

£ i Whatever’s |ef{ Exercises 534

preterved height. . .
‘ South Exercise Solutions 537

Saving Objects (and Text)

Objects can be flattened and inflated. objects have state and behavior.
Behavior lives in the class, but state lives within each individual object. If your program
needs to save state, you can do it the hard way, interrogating each object, painstakingly
writing the value of each instance variable. Or, you can do it the easy 00 way—you simply
freeze-dry the object (serialize it) and reconstitute (deserialize) it to get it back.

SCVializcd Writing a serialized object to a file 542

If you want your class to be serializable, implement Serializable 547

Deserialization: restoring an object 551

X S’Z Version ID: A Big Serialization Gotcha 556
CS*I‘O“ ’ . . .

P‘“\, b\ Writing a String to a Text File 559

. Reading from a Text File 566
desevialized , .

Quiz Card Player (code outline) 567

E < Path, Paths, and Files (messing with directories) 573

Finally, a closer look at finally 574

Saving a BeatBox pattern 579

Exercises 580

Exercise Solutions 584

XX

table of contents
Make a Connection

Connect with the outside world. it's easy. All the low-level networking
details are taken care of by classes in the java.net library. One of Java's best features is

that sending and receiving data over a network is really just I/O with a slightly different
connection stream at the end of the chain. In this chapter we'll make client sockets. We'll
make server sockets. We'll make clients and servers. Before the chapter’s done, you'll have a
fully functional, multithreaded chat client. Did we just say multithreaded?

Com,ed:'o"
Connecting, Sending, and Receiving 590
The DailyAdviceClient 598
Writing a simple server application 601
Java has multiple threads but only one Thread class 610
The three states of a new thread 616
Putting a thread to sleep 622
. Server Making and starting two threads (or more!) 626
Co“gik:\?:x: Closing time at the thread pool 629
*\%b‘\ b 1100 Y°Y£ New and improved SimpleChatClient 632
D()A’ 1 Exercises 631
Exercise Solutions 636

Dealing with Concurrency Issues

Doing two or more things at once is hard. writing multithreaded code is

easy. Writing multithreaded code that works the way you expect can be much harder. In this final
chapter, we're going to show you some of the things that can go wrong when two or more threads
are working at the same time. You'll learn about some of the tools in java.util.concurrent that can help
you to write multithreaded code that works correctly. You'll learn how to create immutable objects
(objects that don't change) that are safe for multiple threads to use. By the end of the chapter, you'll

have a lot of different tools in your toolkit for working with concurrency.

ABET

= The Ryan and Monica problem, in code 642

Using an object’s lock 647

. . The dreaded “Lost Update” problem 650

— Itﬂ.a{mﬁ i Make the increment() method atomic. Synchronize it! 652

m 935 \ 34 ’7?\ Deadlock, a deadly side of synchronization 654
or Vcadi"ﬂ Compare-and-swap with atomic variables 656
W”fing Iy \"35\ 34 \,73 \ 5 @ Using immutable .objects 659
COP), o PS&\ More problems with shared data 662
Copyoo‘“(\ Use a thread-safe data structure 664

Exercises 668

Exercise Solutions 670

XXi

table of contents

Appendix A

Final Code Kitchen. All the code for the full client-server chat beat box. Your

chance to be a rock star.

e e e

Final BeatBox client program

Final BeatBox server program

674
681

Appendix B

The top ten-ish topics that didn’t make it into the rest of the

book. we can't send you out into the world just yet. We have a few more things for you,

but this is the end of the book. And this time we really mean it.

#11 JShell (Java REPL)

#10 Packages

#9 Immutability in Strings and Wrappers

#8 Access levels and access modifiers (who sees what)
#7 Varargs

#6 Annotations

#5 Lambdas and Maps

#4 Parallel Streams

#3 Enumerations (also called enumerated types or enums)
#2 Local Variable Type Inference (var)

#1 Records

684
685
683
689
691
692
693
695
696
698
699

Index

701

how to use this book

Intro

I can't believe they
put thatin a Java
programming book!

Is this book for you?

This book s for anyone
With the money to pay
for it. And it makes a
great gift for that
Special Someone

in o\ucSJC\OV‘:
Lion, we answer the burning
3 cton)
ly\ {',\\\S se

! Y 5 5 .
) ‘D 1 Y“ wm g\ mmin 00

xxiii

how to use this book

Who is this book for?

If you can answer “yes” to all of these:

@ Have you done some programming?
@ Do you want to learn Java?

Do you prefer stimulating dinner party
conversation to dry, dull, technical
lectures?

this book is for you.

Who should probably back away from this book?

XXiv

If you can answer “yes” to any one of these:

@ Is your programming background limited
to HTML only, with no scripting language
experience?
(If you’ve done anything with looping or if/then logic,
you’ll do fine with this book, but HTML tagging
alone might not be enough.)

@ Are you a kick-butt C++ programmer
looking for a reference book?

@ Are you afraid to try something different?
Would you rather have a root canal than
mix stripes with plaid? Do you believe
that a technical book can’t be serious if
there’s a picture of a duck in the memory
management section?

this book 1s not for you.

[note from ma\rkc{ingr who took out the Part about how

this book is for anyone with a valid evedit ¢ard? And what

abou‘l‘, fha{; “ i i » .
discussed... —?::idghc Gift of Java holnda\/ Promotion we

intro

This is NOT a reference
book. Head First Java is a
book designed for learning,

not an encyclopedia of
Java facts.

the intro

We know what youre thinking

“How can thus be a serious Java programming book?”

“What’s with all the graphics?”

“Can I actually learn it this way?”

“Do I smell pizza?”

And we know what your brainis thinking

Your brain craves novelty. It’s always searching, scanning, waiting for
something unusual. It was built that way, and it helps you stay alive.

Today, you’re less likely to be a tiger snack. But your brain’s still looking. You
just never know.

So what does your brain do with all the routine, ordinary, normal things
you encounter? Everything it can to stop them from interfering with the
brain’s real job—recording things that matter. It doesn’t bother saving the
boring things; they never make it past the “this is obviously not important”
filter.

How does your brain know what’s important? Suppose you’re out for a day
hike and a tiger jumps in front of you, what happens inside your head?

Neurons fire. Emotions crank up. Chemicals surge. Great. Only
. 72 dull, dry,
And that’s how your brain knows... 1::3:; P: ges Y

This must be important! Don’t forget it! .
P N am ‘h\‘“"\“ O

. . . . , . v
But imagine you’re at home, or in a library. It’s a safe, warm, tiger-free zone. Yo*¢ b L wo‘rh\\

L)
You're studying. Getting ready for an exam. Or trying to learn some tough T“\}%\ ;“
technical topic your boss thinks will take a week, ten days at the most. s3 \

Just one problem. Your brain’s trying to do you a big favor. It’s trying to

make sure that this obviwusly non-important content doesn’t clutter up
scarce resources. Resources that are better spent storing the really
big things. Like tigers. Like the danger of fire. Like how you should

never again snowboard in shorts.

And there’s no simple way to tell your brain, “Hey, brain, thank you
very much, but no matter how dull this book is, and how little I'm
registering on the emotional richter scale right now, I really do want
you to keep this stuff’ around.”

you are here » XXv

XXVi

how to use this book

e thirk of a Head First Java reader as a Jearner.

So what does it take to learn something? First, you have to getit, then make sure
you don’t forgetit. It's not about pushing facts into your head. Based on the
|atest research in cognitive science, neurobiology, and educational psychology,
learning takes a lot more than texton a page. We know what turns your brain on.

some of the Head First learning principles:

needs £ ¢all 5

meth
Make it visual.Imagesare far more memorable than words sm,c:d on the RM| vemote

sevvite

alone, and make learning much more effective (up to 89%

improvement in recall and transfer studies). It also makes
things more understandable. Put the words within

doCalc()

or near the graphics they relate to, rather than on the retarmvalie

bottom or on another page, and learners will be up to twice

as likely to solve problems related to the content. ﬁ

Use a conversational and personalized style. In recent studies,

students performed up to 40% better on post-learning tests if the content spoke

T+t really sucks fo be an
abstract method. You
don't have a body.

directly to the reader, using a first-person, conversational style rather than taking

a formal tone. Tell stories instead of lecturing. Use casual language. Don't take

yourself too seriously. Which would you pay more attention to:a stimulating

o dinner party companion, ora lecture?

Get the learner to think more deeply. In other words, unless
you actively flex your neurons, nothing much happens in your head.

Does it make sense o
say Tub IS-A Bathroom?
Rathroom IS-A Tub? Oris
it a HAS-A relationship?

A reader has to be motivated, engaged, curious, and inspired to

l \ solve problems, draw conclusions, and generate new knowledge.
‘ And for that, you need challenges, exercises, thought-
abstract v

bid roam() ; provoking questions, and activities that involve both sides

I \ of the brain and multiple senses.
o0y e AN
(oL)
Y Get—and keep—the reader’s attention. we've all -
had the "I really want to learn this but | cant stay awake past ’ Y
page one” experience. Your brain pays attention to things that are out A /

of the ordinary, interesting, strange, eye-catching, unexpected. Learning a new,

tough, technical topic doesn’t have to be boring. Your brain will learn much more quickly if it's not.

Touch their emotions. We now Kknow that your ability to remember something is largely

dependent on its emotional content. You remember what you care about. You remember when

you feel something. No we're not talking heart-wrenching stories about a boy and his dog.

We're talking emotions like surprise, curiosity, fun, “what the..2", and the feeling of "I Rule!”

that comes when you solve a puzzle, learn something everybody else thinks is hard, or realize

you know something that“I'm more technical than thou” Bob from engineering doesn't.

intro

the intro

Metacognition: thinking about thinking

T wonder how I

can trick my brain
into remembering this
stuff...

If you really want to learn, and you want to learn more quickly and more deeply, pay
attention to how you pay attention. Think about how you think. Learn how you learn.

Most of us did not take courses on metacognition or learning theory when we were
growing up. We were expected to learn, but rarely taught to learn. o

But we assume that if you’re holding this book, you want to learn Java. And you probably
don’t want to spend a lot of time.

To get the most from this book, or any book or learning experience, take responsibility for
your brain. Your brain on #at content.

The trick is to get your brain to see the new material you’re learning as
Really Important. Crucial to your well-being. As important as a tiger.

Otherwise, you're in for a constant battle, with your brain doing its best to
keep the new content from sticking.

So just how DO you get your brain to treat Java like
it was a hungry tiger?

There’s the slow, tedious way, or the faster, more effective way. The slow way 1s about
sheer repetition. You obviously know that you are able to learn and remember even the
dullest of topics, if you keep pounding on the same thing. With enough repetition, your
brain says, “This doesn’t fee/ important to him, but he keeps looking at the same thing over
and over and over, so I suppose it must be.”

The faster way is to do anything that increases brain activity, cspecially different
types of brain activity. The things on the previous page are a big part of the solution,
and they’re all things that have been proven to help your brain work in your favor. For
example, studies show that putting words within the pictures they describe (as opposed to
somewhere else in the page, like a caption or in the body text) causes your brain to try to
makes sense of how the words and picture relate, and this causes more neurons to fire.
More neurons firing = more chances for your brain to get that this is something worth
paying attention to, and possibly recording;

A conversational style helps because people tend to pay more attention when they
perceive that they’re in a conversation, since they’re expected to follow along and hold up
their end. The amazing thing is, your brain doesn’t necessarily care that the “conversation”
is between you and a book! On the other hand, if the writing style is formal and dry, your
brain perceives it the same way you experience being lectured to while sitting in a roomful
of passive attendees. No need to stay awake.

But pictures and conversational style are just the beginning

you are here » Xxvii

how to use this book

Here’s what WE did:

We used pictures, because your brain is tuned for visuals, not text. As far as your brain’s
concerned, a picture really & worth 1024 words. And when text and pictures work together,
we embedded the text i the pictures because your brain works more effectively when the
text 1s within the thing the text refers to, as opposed to in a caption or buried in the text
somewhere.

We used repetition, saying the same thing in different ways and with different media
types, and multiple senses, to increase the chance that the content gets coded into more than
one area of your brain.

We used concepts and pictures in unexpected ways because your brain is tuned for
novelty, and we used pictures and ideas with at least some emotional conlent, because your
brain is tuned to pay attention to the biochemistry of emotions. That which causes you to
_Jeel something is more likely to be remembered, even if that feeling is nothing more than a
little Aumor, surprise, or interest.

We used a personalized, conversational style, because your brain is tuned to pay more
attention when it believes you’re in a conversation than if it thinks you’re passively listening
to a presentation. Your brain does this even when you’re reading.

We included more than 50 exercises because your brain is tuned to learn and remember
more when you do things than when you 7ead about things. And we made the exercises
challenging-yet-do-able, because that’s what most people prefer.

We used multiple learning styles, because you might prefer step-by-step procedures,
while someone else wants to understand the big picture first, while someone else just wants
to see a code example. But regardless of your own learning preference, everyone benefits
from seeing the same content represented in multiple ways.

We include content for both sides of your brain, because the more of your brain

you engage, the more likely you are to learn and remember, and the longer you can stay
focused. Since working one side of the brain often means giving the other side a chance to
rest, you can be more productive at learning for a longer period of time.

And we included stories and exercises that present more than one point of view,
because your brain is tuned to learn more deeply when it’s forced to make evaluations and
judgments.

We included challenges, with exercises, and by asking questions that don’t always have
a straight answer, because your brain is tuned to learn and remember when it has to work
at something (just as you can’t get your body in shape by watching people at the gym). But
we did our best to make sure that when you’re working hard, it’s on the rght things. That
you’re not spending one extra dendrite processing a hard-to-understand example, or
parsing difficult, jargon-laden, or extremely terse text.

We used an 80/20 approach. We assume that if you’re going for a PhD in Java, this won’t
be your only book. So we don’t talk about everything. Just the stuff you’ll actually use.

XXviii intro

BULLET POINTS

Cut this out and stiek it

on Your rc‘c"'iﬂcra‘lioh

Slow down. The more you understand,
the less you have to memorize.

Don’t just read. Stop and think. When the
book asks you a question, don’t just skip to the
answer. Imagine that someone really is asking
the question. The more deeply you force your
brain to think, the better chance you have of
learning and remembering;

Do the exercises. Write your own notes.

We put them in, but if we did them for you,
that would be like having someone else do
your workouts for you. And don’t just look at
the exercises. Use a pencil. There’s plenty of
evidence that physical activity while learning
can increase the learning.

Read the “There are No Dumb Questions”
That means all of them. They’re not optional
sidebars—they’re part of the core content!
Sometimes the questions are more useful than

the answers.

Don’t do all your reading in one place.
Stand up, stretch, move around, change chairs,
change rooms. It'll help your brain fee/ something,
and it keeps your learning from being too
connected to a particular place.

Make this the last thing you read before

bed. Or at least the last challenging thing.

Part of the learning (especially the transfer to
long-term memory) happens after you put the
book down. Your brain needs time on its own, to
do more processing. If you put in something new
during that processing time, some of what you
just learned will be lost.

what doesn’t. Try new things.

®

@

the intro

Here’s what YOU can do to bend your
brain into subwission

So, we did our part. The rest is up to you. These tips are a starting
point; Listen to your brain and figure out what works for you and

Drink water. Lots of it.

Your brain works best in a nice bath of fluid.
Dehydration (which can happen before you ever
feel thirsty) decreases cognitive function.

Talk about it. Out loud.

Speaking activates a different part of the brain.
If you’re trying to understand something or
increase your chance of remembering it later, say
it out loud. Better still, try to explain it out loud
to someone else. You'll learn more quickly, and
you might uncover ideas you hadn’t known were
there when you were reading about it.

Listen to your brain.

Pay attention to whether your brain is getting
overloaded. If you find yourself starting to skim the
surface or forget what you just read, it’s time for a
break. Once you go past a certain point, you won’t
learn faster by trying to shove more in, and you
might even hurt the process.

Feel something!

Your brain needs to know that this matters. Get
involved with the stories. Make up your own
captions for the photos. Groaning over a bad joke is
still better than feeling nothing at all.

Type and run the code.

Type and run the code examples. Then you can
experiment with changing and improving the code
(or breaking it, which is sometimes the best way to
figure out what’s really happening). Most of the
code, expecially long examples and Ready-Bake
Code, are at htlps://oreil.ly/hf fava_3e_examples.

you are here » xXix

https://oreil.ly/hfJava_3e_examples

how to use this book

What you need for this book:

You do not need any other development tool, such as an Integrated
Development Environment (IDE). We strongly recommend that you
not use anything but a basic text editor until you complete this book.
An IDE can protect you from some of the details that really matter, so
you’re much better off learning from the command line and then, once
you really understand what’s happening, move to a tool that automates
some of the process.

—— SETTING UP JAVA

This book assumes you’re
using Java 11 (with the
exception of Appendix B).
However, if you’re using
Java 8, you will find most
of the code still works.

If there’s discussion of a
feature from a version of
Java higher than Java 8,
the required version will
be mentioned.

https://oreil.ly/hfJava_install
This is a simplified version.

= Because versions are moving quickly and advice on the right JDK to use may change, we've
put detailed instructions on how to install Java into the code samples project online:

= |f you don’t know which version of Java to download, we recommend using Java 17.

= There are many free builds of OpenJDK available (the open source version of Java). We
suggest the community-supported Eclipse Adoptium JDK at https:/adoptium.net.

The JDK includes everything you need to compile and run Java. The JDK does not include the
API documentation, and you need that! Download the Java SE API documentation. You can
also access the API docs online without downloading them, but trust us, it's worth the download.

You need a text editor. Virtually any text editor will do (vi, emacs), including the GUI ones that
come with most operating systems. Notepad, Wordpad, TextEdit, etc., all work, as long as
you're using plain text (not rich text) and make sure they don't append a “.txt" on to the end of
your source code (“,java”) file.

Once you've downloaded and unpacked/installed/whatever (depends on which version and for
which OS), you need to add an entry to your PATH environment variable that points to the bin
directory inside the main Java directory. The bin directory is the one you need a PATH to, so
that when you type:

% Jjavac

at the command line, your terminal will know how to find the javac compiler.

Note: if you have trouble with your installation, we recommend you go to javaranch.com and
join the Java-Beginning forum! Actually, you should do that whether you have trouble or not.

The code from this book is available at Attps://oreil. ly /i fava_Se_examples.

XXX

intro

https://adoptium.net/
https://oreil.ly/hfJava_3e_examples

Last-minute things you need to know:

This 1s a learning experience, not a reference book. We deliberately stripped out
everything that might get in the way of learning whatever it is we’re working on
at that point in the book. And the first time through, you need to begin at the
beginning, because the book makes assumptions about what you've already seen
and learned.

We use simple UML-like diagrams.

If we’d used pure UML, you’d be seeing something that looks like Java, but with
syntax that’s just plain wrong. So we use a simplified version of UML that doesn’t
conflict with Java syntax. If you don’t already know UML, you won’t have to
worry about learning Java and UML at the same time.

We don’t worry about organizing and packaging your own
code.

In this book, you can get on with the business of learning Java, without stressing
over some of the organizational or administrative details of developing Java
programs. You will, in the real world, need to know—and use—these details, but
since building and deploying Java applications generally relies on third-party build
tools like Maven and Gradle, we have assumed you’ll learn those tools separately.

The end-of-chapter exercises are mandatory; puzzles are
optional. Answers for both are at the end of each chapter.

One thing you need to know about the puzzles—they’re puzzles. As in logic puzzles,
brain teasers, crossword puzzles, etc. The exercises are here to help you practice
what you’ve learned, and you should do them all. The puzzles are a different story,
and some of them are quite challenging in a puzzle way. These puzzles are meant
for puzzlers, and you probably already know if you are one. If you’re not sure, we
suggest you give some of them a try, but whatever happens, don’t be discouraged
if you can’t solve a puzzle or if you simply can’t be bothered to take the time to
work them out.

The “Sharpen Your Pencil” exercises don’t all have
answers.

Not printed in the book, anyway. For some of them, there is no right answer, and
for the others, part of the learning experience for the Sharpen activities is for you
to decide if and when your answers are right.

The code examples are as lean as possible.

It’s frustrating to wade through 200 lines of code looking for the two lines you
need to understand. Most examples in this book are shown within the smallest
possible context, so that the part you're trying to learn is clear and simple. So
don’t expect the code to be robust, or even complete. That’s your assignment for
after you finish the book. The book examples are written specifically for learning
and aren’t always fully functional.

the intro

\C")
<e d smY
Weo; fied Faun UM Q

Dog

size

bark()
eat()
chaseCat()

\{ou shou\d dO ALL
of the “Shargen your

vcnc\\ al',‘b\l\{:\cs

@ harpen Your pencil

you are here »

XXXi

how to use this book

Technical Reviewers for the 3rd Edition

Abraham Mavin—Perez

Marc started with Java training at Sun Microsystems Abraham is a Java programmer, consultant, author,
in the early days (shout-out to HotJava!) and never and public speaker with more than ten years of experience
looked back. He authored a number of early Java books in a variety of industries. Originally from Valencia,

and training courses, working with a wide variety of Spain, Abraham has built most of his career in London,
companies across the US, Europe, and Asia along the UK, working with entities like JP Morgan or the United

way. Most recently for O’Reilly, Marc authored Smaller K.ingdom’s Home Ofﬁc.e, f.reque:ntly n f:ollabor ation
C and co-authored the fifth edition of Learning Java. with Equal Experts. Thinking his experiences could be
Currently in Ohio, Marc is a software developer and useful to others, Abraham became a Java news editor at

InfoQ, authored Real-World Maintainable Sofiware, and co-
authored Continuous Delivery in Java. He also helps run the
London Java Community. Always the learner, Abraham is
pursuing a degree in physics.

maker specializing in microcontrollers.

xxxii intro

the intro

Other people to acknowledge for the 3rd Edition

At O’Reilly:
Huge thanks to Zan McQuade and Nicole Taché for enabling us to finally get this edition out! Zan, thanks
for connecting Trisha back up to the Head First world, and Nicole, fantastic work driving us to get this done.

Thanks to Meghan Blanchette, who left O’Reilly a hundred years ago, but it was she who introduced Bert
and Trisha back in 2014.

Helen Seott
Trisha would like to thank:

Helen Scott, for providing frequent feedback on the new topics covered. She consistently stopped me
from going too deep or assuming too much knowledge, and is a true champion of the learner. I can’t wait
to start working even more closely with her on our next project.

My team at JetBrains for their patience and encouragement: Dalia Abo Sheasha, for test-driving the
lambdas and streams chapter; and Mala Gupta, for giving me exactly the information I needed about
modern Java certifications. Extra special thanks to Hadi Hariri for all his support, always.

The Iriday Pub Lunch nformaticos, for tolerating lunchtime conversations on whatever aspect of Java I was
trying to explain that day or week, and Alys, Jen, and Clare for helping me to figure out when to prioritize
this book over family. Thanks to Holly Cummins for finding a last minute bug,

Evie and Amy for the suggestions on how to improve the ice cream examples for Java’s Optional type.
Thank you both for being genuinely mnterested in my progress, and for the spontaneous high-fives when you
heard I'd finished.

None of this would have been possible without Israel Boza Rodriguez. You put up with me derailing
important conversations like “what should we have for dinner?” with questions like “do you think
CountDownlLatch is too niche to teach beginner developers?” Crucially; you helped me to create space and
time to work on the book, and regularly reminded me why I wanted to take on the project in the first place.

Thank you to Bert and Kathy for bringing me on this journey. It was an honor to learn how to be a Head
First author from the horse’s mouth, so to speak.

Bert and Kathy would like to thank:

Beth Robson and Eric Freeman, for their overall, ongoing, badass support of the Head First series. A
special thanks to Beth for the many conversations we had discussing what new Java topics to teach and how
to teach them.

Paul Wheaton and the amazing moderators at CodeRanch.com (a.k.a. JavaRanch), for keeping CodeRanch
a friendly place for Java beginners. A special thanks to Campbell Ritchie, Jeanne Boyarsky, Stephan
van Hulst, Rob Spoor, Tim Cooke, Fred Rosenberger, and Frits Walraven for their invaluable input
concerning what have been the truly important additions to Java since the 2nd edition.

Dave Gustafson, for teaching me so much about software development and rock climbing, AND for great
discussions concerning the state of programming. Eric Normand, for teaching us a little FP, and helping
us figure out how to slip a few of the best ideas from FP into an OO book. Simon Roberts, for his ongoing
and passionate teaching of Java to students all over the world. Thanks to Heinz Kabutz and Venkat
Subramaniam for helping us explore the nooks and crannies of Java Streams.

Laura Baldwin and Mike Loukides, for their tireless support of Head First for all these years.
Ron Bilodeau and Kristen Brown, for their outstanding, always patient and friendly support.

you are here » xxxiii

tech editing: Jessica and Valentin

Technical Editors for the 2nd Edition

Endless thanks to Jessica and Val for their hard work editing the 2nd
edition.

Jess works at Hewlett-Packard on the Self-
Healing Services Team. She has a bachelor’s in
computer engineering from Villanova University,
has her SCJP 1.4 and SCWCD certifications,
and is literally months away from receiving
her master’s in software engineering at Drexel
University (whew!).

When she’s not working, studying, or motoring
in her MINI Cooper S, Jess can be found
fighting her cat for yarn as she completes her
latest knitting or crochet project (anybody want a
hat?). She is originally from Salt Lake City, Utah
(no, she’s not Mormon...yes, you were too going
to ask) and is currently living near Philadelphia
with her husband, Mendra, and two cats: Chai
and Sake.

You can catch her moderating technical forums
at javaranch.com.

XXXV intro

Valentin Crettaz
L

Valentin's tie

Valentin has a master’s degree in information
and computer science from the Swiss Federal
Institute of Technology in Lausanne (EPFL).

He has worked as a software engineer with SRI
International (Menlo Park, CA) and as a principal
engineer in the Software Engineering Laboratory of
EPFL.

Valentin is the cofounder and CTO of Condris
Technologies, a company specializing in the
development of software architecture solutions.

His research and development interests include
aspect-oriented technologies, design and
architectural patterns, web services, and software
architecture. Besides taking care of his wife,
gardening, reading, and doing some sport, Valentin
moderates the SCBCD and SCDJWS forums at
Javaranch.com. He holds the SCJP, SCJD, SCBCD,
SCWCD, and SCDJWS certifications. He has also
had the opportunity to serve as a co-author for
Whizlabs SCBCD Exam Simulator.

(We’re still in shock from seeing him in a te.)

gty for the ¢
Other people to biygre:

At OReilly:

Our biggest thanks to Mike Loukides at O’Reilly, for taking a chance
on this, and helping to shape the Head First concept into a book (and
series). As this second edition goes to print there are now five Head First
books, and he’s been with us all the way. To Tim O’Reilly, for his
willingness to launch into something completely new and different. Thanks
to the clever Kyle Hart for figuring out how Head First fits into the
world and for launching the series. Finally, to Edie Freedman for
designing the Head First “emphasize the fead” cover.

Our intrepid beta testers and reviewer team:

Our top honors and thanks go to the director of our javaranch tech
review tcam, Johannes de Jong. This is your fifth time around with us
on a Head First book, and we’re thrilled you're still speaking to us. Jeff
Cumps is on his third book with us now and relentless about finding
areas where we needed to be more clear or correct.

Corey McGlone, you rock. And we think you give the clearest
explanations on JavaRanch. You’ll probably notice we stole one or two
of them. Jason Menard saved our technical butts on more than a
few details, and Thomas Paul, as always, gave us expert feedback and
found the subtle Java issues the rest of us missed. Jane Griscti has her
Java chops (and knows a thing or two about writing), and it was great to
have her helping on the new edition along with long-time javarancher
Barry Gaunt.

Marilyn de Queiroz gave us excellent help on both editions of the
book. Chris Jones, John Nyquist, James Cubeta, Terri
Cubeta, and Ira Becker gave us a ton of help on the first edition.

Special thanks to a few of the Head Firsters who’ve been helping us
from the beginning: Angelo Celeste, Mikalai Zaikin, and
Thomas Duff (twduff.com). And thanks to our terrific agent, David
Rogelberg of StudioB (but seriously, what about the movie rights?)

Rodnc\/ "
Woodvuff

the intro

Come of our Java

C%YCY"t vreviewevs...

Covey MeGlone

\)C‘F CumPs

Marilym de

Queivoz

Jamcs CubC‘ta Tc\rri CMbC{a Jo\'\h N\/T“S{-‘
lra BCCkcr

Chris Jones

you are here »

XXXV

still more acknowledgments

Just when you thought there wouldnt be any
wmore acknowledgments*

More_Java technical experts who helped out on the first edition (in pseudo-random
order):

Emiko Hori, Michael Taupitz, Mike Gallihugh, Manish Hatwalne, James Chegwidden, Shweta
Mathur, Mohamed Mazahim, John Paverd, Joseph Bih, Skulrat Patanavanich, Sunil Palicha,
Suddhasatwa Ghosh, Ramki Srinivasan, Alfred Raouf, Angelo Celeste, Mikalai Zaikin, John
Zoetebier, Jim Pleger, Barry Gaunt, and Mark Dielen.

The first edition puzzle team:

Dirk Schreckmann, Mary “JavaCross Champion” Leners, Rodney J. Woodruff, Gavin Bong, and
Jason Menard. Javaranch is lucky to have you all helping out.

Other co-conspirators to thank:

Paul Wheaton, the javaranch Trail Boss for supporting thousands of Java learners.
Solveig Haugland, mistress of J2EE and author of Dating Design Patterns.

Authors Dori Smith and Tom Negrino (backupbrain.com), for helping us navigate the tech
book world.

Our Head First partners in crime, Eric Freeman and Beth Freeman (authors of Head First
Design Patterns), for giving us the Bawls™ to finish this on time.

Sherry Dorris, for the things that really matter.

Brave early adopters of the Head First series:

Joe Litton, Ross P. Goldberg, Dominic Da Silva, honestpuck, Danny Bromberg, Stephen Lepp,
Elton Hughes, Eric Christensen, Vulinh Nguyen, Mark Rau, Abdulhaf, Nathan Oliphant,
Michael Bradly, Alex Darrow, Michael Fischer, Sarah Nottingham, Tim Allen, Bob Thomas, and
Mike Bibby (the first).

*The large number of acknowledgments is because we’re testing the theory that everyone mentioned in
a book acknowledgment will buy at least one copy, probably more, what with relatives and everything. If
you'd like to be in the acknowledgment of our next book, and you have a large family, write to us.

XXXVi intro

1 dive in: a quick dip

Breaking the syrface

Come on, the
water’'s great! We'll
dive right in and write some code,
then compile and run it. We're

talking syntax, looping and branching,
and a look at what makes Java so
cool. You'll be coding in no
time.

Java takes you to new places. From its humble release to the public as the (wimpy)
version 1.02, Java seduced programmers with its friendly syntax, object-oriented features, memory
management, and best of all—the promise of portability. The lure of write-once/run-anywhere
is just too strong. A devoted following exploded, as programmers fought against bugs, limita-

tions, and, oh yeah, the fact that it was dog slow. But that was ages ago. If you're just starting in

Java, you’re lucky. Some of us had to walk five miles in the snow, uphill both ways (barefoot), to
get even the most trivial application to work. But you, why, you get to ride the sleeker, faster,
easier-to-read-and-write Java of today.

this is a new chapter 1

the way Java works

The way Java works

The goal is to write one application (in this
example, an interactive party invitation) and have
it work on whatever device your friends have.

source code for

the interactive

party invitation.

Source

L

Create a source
document. Use an
established protocol
(in this case, the Java
language).

2 chapter 1

0aload_0
1 invokespedial
#1 <Method jaVe-
Jang Object)”

Cowmpiler

12

Run your document
through a source code
compiler. The compiler
checks for errors and
won't let you compile
until it's satisfied that
everything will run
correctly.

Method Party()

0 aload_0

1 invokespecial #
<Method java.lang.
Object()>

4 return

Output
(code)

o

The compiler creates a
new document, coded
into Java bytecode.

Any device capable of
running Java will be able
to interpret/translate
this file into something
it can run. The compiled
bytecode is platform-
independent.

Virtual
Machines

o

Your friends all have a
Java virtual machine
(JVM), implemented in
software, running inside
their electronic gadgets.
When your friends run
your program, the virtual
machine reads and runs
the bytecode.

dive in: a quick dip

What you'll do in Java

You’ll type a source code file, compile it using
the javac compiler, and then run the compiled

bytecode on a Java virtual machine.

File Edit Window Help File Edit Window Help Swear
import java.awt.*; . . Method Part .
import}ava.awt.event.*; %javac Party.java Y %$java Party
0 aload_0 000
class Party { 1 invokespecial #1 <Method g)
public void buildinvite() { java.lang.Object()> P&Pt}’ at Tim’s!
Frame f = new Frame(); Youber) oot Me
Label | = new Label("Party at Tim's"); 4 retum - S
gugon b=new gu:ttonél"'\s(ﬁu btet");") Method void buildInvite()
utton ¢ = new Button("Shoot me"); :
Panel p = new Panel(); cOWlPl'e" 0 new #2 <Class java.awt.Frame> Virtual
}p'/fdd(l); de h 3dup Machi
more code here... achines
} e 4 invokespecial #3 <Method
Compile the Party.java fava awt Frame()> e
Source file by running javac

(the compiler application).
If you don't have errors,

Run the program by

starting the Java Virtual
you'll get a second docu- OUprf Machine (JVM) with the
ment named Party.class. (code) Party.class file. The JVYM

Type your source code.

The compiler-generated
Party.class file is made up
of bytecodes.

Save as: Party.java

(No‘{:c this is NO'T mcan‘(: to be a

il

| be ww‘(:mgca t,odc in a momc |
Nnow, We \ust wan gc d cc
how it all f %s 5c£ C\r

[n oth ds, the tode on thi 't
{:uic ::ar‘:ironslc {::\/ 'Eoccz:\yl c|sl‘[:‘>a5c o

translates the bytecode
into something the
underlying platform
understands, and runs
your program.

o

Compiled code: Party.class

i anal

you are here »

3

history of

A very brief history of Java

Java was initially released (some would say “escaped”), on January 23, 1996. It’s over 25 years old! In
the first 25 years, Java as a language evolved, and the Java API grew enormously. The best estimate we
have is that over 17 gazillion lines of Java code have been written in the last 25 years. As you spend time
programming in Java, you will most certainly come across Java code that’s quite old, and some that’s
much newer. Java is famous for its backward compatibility, so old code can run quite happily on new
JVMs.

In this book we’ll generally start off by using older coding styles (remember, you're likely to encounter
such code in the “real world”), and then we’ll introduce newer-style code.

In a similar fashion, we will sometimes show you older classes in the Java API, and then show you
newer alternatives.

T've heard that
Java isn't very fast
compared to compiled
languages like C and

Rust.

Speed and wmewory usage

When Java was first released, it was slow. But soon after, the
HotSpot VM was created, as were other performance enhanc-
ers. While it’s true that Java isn’t the fastest language out there,
it’s considered to be a very fast language—almost as fast as
languages like C and Rust, and much faster than most other
languages out there.

Java has a magic super-power—the JVM. The Java Virtual
Machine can optimize your code while it’s running, so it’s possible
to create very fast applications without having to write special-
ized high-performance code.

But—full disclosure—compared to C and Rust, Java uses a lot
of memory.

4 chapter 1

Look how easy it
is to write Java

@ harpen our pencil
S y

Try to guess what each line of code is doing...
(answers are on the next page).

dive in: a quick dip

—> Answers on page 6.

int size = 27;

declare an integer variable named ‘size’ and give it the value 27

String name = "Fido";

Dog myDog = new Dog(name, size);

X = size - 5;

if (x < 15) myDog.bark(8);

while (x > 3) {

if x (value of 22) is less than I5, tell the dog to bark 8 times

myDog.play();

?rin‘[: out “Hello”... WrobaHy at the tommand line

}

int[] numList = {2, 4, 6, 8};
System.out.print("Hello");
System.out.print("Dog: " + name);
String num = "8";

int z = Integer.parselnt(num);

try {

readTheFile("myFile.txt");

}

catch (FileNotFoundException ex) {

System.out.print("File not found.");

Q; The naming conventions for Java’s versions are
confusing. There was JDK 1.0, and 1.2, 1.3, 1.4, then a jump
to J2SE 5.0, then it changed to Java 6, Java 7, and last time
| checked, Java was up to Java 18. What’s going on?

A: The version numbers have varied a lot over the last
25+ years! We can ignore the letters (J2SE/SE) since these
are not really used now. The numbers are a little more
involved.

Technically Java SE 5.0 was actually Java 1.5. Same for 6
(1.6), 7 (1.7), and 8 (1.8). In theory, Java is still on version

1.x because new versions are backward compatible, all the
way back to 1.0.
However, it was a bit confusing having a version number
that was different to the name everyone used, so the
official version number from Java 9 onward is just the
number, without the “1” prefix; i.e., Java 9 really is version
9, not version 1.9.
In this book we'll use the common convention of 1.0-1.4,
then from 5 onward we'll drop the “1” prefix.
Also, since Java 9 was released in September 2017, there’s
been a release of Java every six months, each with a new
“major” version number, so we moved very quickly from 9
to 18!

you are here » 5

why Java is cool

wdharpen your pencil ansyyers
2N

Look how easy it
is to write Java

int size = 27;

String name = "Fido";

Dog myDog = new Dog(name, size);
x = size - 5;

if (x < 15) myDog.bark(8);

while (x > 3) {

myDog.play();

int[] numList = {2, 4, 6, 8};
System.out.print("Hello");

System.out.print("Dog: + name);
String num = "8";

int z = Integer.parseInt(num);

try {
readTheFile("myFile.txt");

}

catch (FileNotFoundException ex) {

System.out.print("File not found.");

Don’t worry about whether you understand any of this yet!
Everything here is explained in great detail in the book (most
within the first 40 pages). If Java resembles a language you've
used in the past, some of this will be simple. If not, don't worry
about it. We'll get there...

detlare an integer variable named ‘size’ and give it the value 27

detlave a string of tharacters variable named ‘name’ and give it the value “Fido”

declare a new Dog variable ‘myDog’ and make the new Doy using ‘name’ and ‘size’
subtract 5 feom 27 (value of ‘size’) and assign it to a variable named '
if x (alue of 22) is less than 15, tell the dog 1o bark 8 times

keep looping as long as x is greater than 3..

tell the dog to play (whatever THAT means to a dog..)
this looks like the end of the loop —- everything in { 1is done in the loop

detlave a list of integers variable ‘numList’, and put 2,4,6,8 into the list
print out “Hello”... probably at the command line

print out “Dog Fido” (the value of ‘name’ is “Fido") at the command line
detlave a tharaeter string variable ‘num’ and give it the value of ‘8"

tonvert the string of tharatters “8” into an attual numeric value 8

try to do something..maybe the thing we've trying isn't quaranteed to work...
vead a text file named “myFiletxt” (or at least TRY to vead the file..)
must be the end of the “things to try", so | quess you eould try many things...
this must. be wheve You find out if the thing You tried didn't work...

if the thing we tried failed, print “File not found” out at the command line
looks like everything in the { } is what to do if the ‘try didn't work..

chapter 1

Code structure in Java

method 1

statement

e'rho 2

statement
statement

In a source file, put a class.

In a class, put methods.

In a method, put statements.

What goes in a
source file?

A source code file (with the java
extension) typically holds one class
definition. The class represents a
prece of your program, although a
very tiny application might need
just a single class. The class must go
within a pair of curly braces.

What goes in a
class?

A class has one or more methods.
In the Dog class, the bark method
will hold instructions for how the
Dog should bark. Your methods
must be declared nside a class (in
other words, within the curly braces
of the class).

What goes in a
method?

Within the curly braces of a
method, write your instructions for
how that method should be per-
formed. Method code is basically a
set of statements, and for now you
can think of a method kind of like a
function or procedure.

dive in: a quick dip

public class Dog {

public class Dog {

void bark() {

wmethod

public class Dog {
void bark() {
statementl;
statement2;

}

'statements

you are here » 7

a Java class

Anatowmy of a class

When the JVM starts running; it looks for the class you give it at the command
line. Then it starts looking for a specially written method that looks exactly like:

public static void main (String[] args) {
// your code goes here
}

Next, the JVM runs everything between the curly braces { } of your main
method. Every Java application has to have at least one class, and at least one
main method (not one main per class; just one main per application).

This is a The name of OPcn’ms (.wl\/
Publie so CV.“\IO“C ¢lass (duh) this ¢lass brace of the ¢lass
tan attess b

public||class|MyFirstApp ﬁvaumenfs to the method.
his method must be given

The veturn type. an arvay of Strings, and
(We'll cover this yoid means there's The name of arvay will be calleg ar;s e

one later.) no vetuen value. this method i €hing brae,

the
\ / methog
public|[static|void|main| [(String[] args)

s‘ta‘hcmc“‘t MMST

na sc"\\f,o\o“

System.out.print|("I Rule!")|; Em

This says yrm‘{; to s{:anldard ou{:?u‘l:
(defaults to command line)

I\Closing brate of the main method

The S‘{'xing You
want to ?vih‘t

I\Closing brace of the M\/Firs{:Aw elass

Don't worry about memorizing an\/'{;hing \rigH: now...
this chapter is \)us{ to 5c{‘, You stavrted.

8 chapter 1

Writing a class with a main()

dive in: a quick dip

In Java, everything goes in a class. You’ll type your source code file (with a java

extension), then compile it into a new class file (with a .class extension). When

you run your program, you're really running a class.

Running a program means telling the Java Virtual Machine (JVM) to “Load the
MyFirstApp class, then start executing its main () method. Keep running

’til all the code in main is finished.”

In Chapter 2, A Trip to Objectville, we go deeper into the whole class thing, but for
now, the only question you need to ask is, how do I write_Java code so that

it will run? And it all begins with main().

The main() method is where your program starts running.

No matter how big your program is (in other words, no matter how many classes

your program uses), there’s got to be a main() method to get the ball rolling.

public class MyFirstipp {
public static void main (String[] args) {
System.out.print ("I R
Systen.out.println("The Rorld");

1

€ Save

MyFirstApp.java

MyFirstApp.java

(2) Compile

javac MyFirstApp.java

return
public static void ain(java.lang.
string(]);

MyFirstApp.class
v © Run

java MyFirstApp

File Edit Window Help Scream
%java MyFirstApp

I Rule!

The World

public class MyFirstApp {

public static void main (String[] args) {
System.out.println("I Rule!");
System.out.println("The World");

}

you are here »

9

the compiler and the JVM

Fireside Chats

&

The Java Virtual Machine

What, are you kidding? HELLO. I am Java. I'm
the one who actually makes a program run. The
compiler just gives you a file. That’s it. Just a file.
You can print it out and use it for wallpaper, kin-
dling, lining the bird cage, whatever, but the file
doesn’t do anything unless I'm there to run it.

And that’s another thing, the compiler has no
sense of humor. Then again, if you had to spend
all day checking nitpicky little syntax violations...

I'm not saying you're, like, completely useless. But
really, what is it that you do? Seriously. I have no
idea. A programmer could just write bytecode by
hand, and I'd take it. You might be out of a job
soon, buddy.

(I rest my case on the humor thing.) But you still
didn’t answer my question, what do you actually

do?

Tonight’s Talk: The compiler and
the JVM battle over the question,
“Who’s more important?”

The Compiler

I don’t appreciate that tone.

Excuse me, but without me, what exactly would
you run? There’s a reason Java was designed to use
a bytecode compiler, for your information. If Java
were a purely interpreted language, where—at
runtime—the virtual machine had to translate
straight-from-a-text-editor source code, a Java
program would run at a ludicrously glacial pace.

Excuse me, but that’s quite an ignorant (not to
mention arrogant) perspective. While it zs true
that—theoretically—you can run any properly
formatted bytecode even if it didn’t come out of

a Java compiler, in practice that’s absurd. A pro-
grammer writing bytecode by hand is like paint-
ing pictures of your vacation instead of taking
photos—sure, it’s an art, but most people prefer to
use their time differently. And I would appreciate
it if you would 7ot refer to me as “buddy.”

Remember that Java is a strongly typed language,
and that means I can’t allow variables to hold data
of the wrong type. This is a crucial safety feature,
and I’'m able to stop the vast majority of viola-
tions before they ever get to you. And I also—

The Java Virtual Machine

But some still get through! I can throw ClassCast-
Exceptions and sometimes I get people trying to
put the wrong type of thing in an array that was
declared to hold something else, and—

OK. Sure. But what about security? Look at all the
security stuff I do, and you're like, what, checking
for semicolons? Oooohhh big security risk! Thank
goodness for you!

Whatever. I have to do that same stuft /0, though,
just to make sure nobody snuck in after you and
changed the bytecode before running it.

Oh, you can count on it. Buddy.

dive in: a quick dip

The Compiler

Excuse me, but I wasn’t done. And yes, there are
some datatype exceptions that can emerge at
runtime, but some of those have to be allowed to
support one of Java’s other important features—
dynamic binding. At runtime, a Java program can
include new objects that weren’t even known to the
original programmer, so I have to allow a certain
amount of flexibility. But my job is to stop any-
thing that would never—could never—succeed at
runtime. Usually I can tell when something won’t
work, for example, if a programmer accidentally
tried to use a Button object as a Socket connec-
tion, I would detect that and thus protect them
from causing harm at runtime.

Excuse me, but I am the first line of defense, as
they say. The datatype violations I previously
described could wreak havoc in a program if they
were allowed to manifest. I am also the one who
prevents access violations, such as code trying to
invoke a private method, or change a method
that—for security reasons—must never be
changed. I stop people from touching code they’re
not meant to see, including code trying to access
another class’ critical data. It would take hours,
perhaps days even, to describe the significance of
my work.

Of course, but as I indicated previously, if I didn’t
prevent what amounts to perhaps 99% of the po-
tential problems, you would grind to a halt. And it
looks like we’re out of time, so we’ll have to revisit
this in a later chat.

you are here » 11

statements, looping, branching

What can you say in the main method?

Once you're inside main (or any method), the fun begins.
You can say all the normal things that you say in most
programming languages to make the computer do
something.

Your code can tell the JVM to:

0 do something

Statements: declarations, assignments,
method calls, etc.
int x = 3;
String name
X x * 17;
System.out.print ("x is " + x);
double d Math.random () ;

// this is a comment

"Dirk";

S

e do something again and again

Loops: for and while

(x > 12) {
x - 1;

while
X

}

for (int 1 = 0; 1 < 10; i =

System.out.print ("i is now " + i);

}

9 do something under this condition

Branching: if/else tests

if (x == 10) {
System.out.print ("x must be 10");

} else {
System.out.print ("x isn't 10");

}

if ((x < 3) && (name.equals ("Dirk")))
System.out.println ("Gently");

}

System.out.print ("this line runs no matter what");

12 chapter1

i+ 1)

{

k}y

o

% Each statement mustend in a
semicolon.

X x + 17

{

® Asingle-line comment begins
with two forward slashes.

22;

X

// this line disturbs me

% Most white space doesn't matter.
b4 = 3

¥ Variables are declared with a
name and a type (you'll learn about
all the Java types in Chapter 3).

int weight;

//type: int, name: weight

% Classes and methods must be

defined within a pair of curly braces.

public void go() {
// amazing code here

}

dive in: a quick dip

while (moreBalls == true) {

} keepJuggling();

_®
Looping and looping and...

Java has a lot of looping constructs: while, do-while,
and for, being the oldest. You’ll get the full loop scoop
later in the book, but not right now. Let’s start with
while.

The syntax (not to mention logic) is so simple you’re
probably asleep already. As long as some condition is
true, you do everything inside the loop block. The loop
block 1s bounded by a pair of curly braces, so whatever
you want to repeat needs to be inside that block.

The key to a loop is the conditional test. In Java, a
conditional test is an expression that results in a boolean
value—1in other words, something that is cither true
or false.

If you say something like, “While iceCreamInThe Tub

is true, keep scooping,” you have a clear boolean test.
There either is ice cream in the tub or there wn’t. But

if you were to say, “While Bob keep scooping,” you
don’t have a real test. To make that work, you’d have to
change it to something like, “While Bob is snoring...”
or “While Bob is not wearing plaid...”

Simple boolean tests

You can do a simple boolean test by checking the value
of a variable, using a comparison operator like:

< (less than)
> (greater than)
== (equality) (yes, that’s fwo equals signs)

Notice the difference between the assignment operator
(a single equals sign) and the equals operator (fwo equals
signs). Lots of programmers accidentally type = when
they want ==. (But not you.)
int x = 4; // assign 4 to x
while (x > 3) {

// loop code will run because

// x is greater than 3

x =x - 1; // or we'd loop forever
}
int z = 27; //
while (z == 17) {

// loop code will not run because

// z is not equal to 17

you are here » 13

Java basics

thereyare no

Dumb Questions

: Why does everything have
to bein aclass?

A: Java is an object-oriented
(O0) language. It’s not like the
old days when you had steam-
driven compilers and wrote one
monolithic source file with a pile
of procedures. In Chapter 2, A Trip
to Objectville, you'll learn that a
class is a blueprint for an object,
and that nearly everything in Java
is an object.

. Dol have to put a mainin
every class | write?

A- Nope. A Java program
might use dozens of classes (even
hundreds), but you might only
have one with a main method—
the one that starts the program
running.

Q- In my other language | can
do a boolean test on an integer.

In Java, can | say something like:
int x = 1;

while (x){ }

A' No. A boolean and an
integer are not compatible types in
Java. Since the result of a condi-
tional test must be a boolean, the
only variable you can directly test
(without using a comparison op-
erator) is a boolean. For example,
you can say:

boolean isHot = true;

while(isHot) { }

chapter 1

Example of a while loop

public class Loopy {

public static void main(Stringl]

args) {

int x = 1;

System.out.println ("Before the Loop");

while

}

System.out.println ("This is after the loop");

}

% java Loopy
Before the Loop

(x < 4) |
System.out.println("In the loop");
System.out.println ("Value of x is " + x);

X = x + 1;

This is the

&

output

In the loop

Value of x is 1

In the loop

Value of x is 2

In the loop

Value of x is 3

This is after the loop

BULLET POINTS

Statements end in a semicolon ;

Code blocks are defined by a pair of curly braces { }
Declare an int variable with a name and a type: int x;
The assignment operator is one equals sign =

The equals operator uses two equals signs ==

A while loop runs everything within its block (defined by curly
braces) as long as the conditional test is true.

If the conditional test is false, the while loop code block won't
run, and execution will move down to the code immediately
after the loop block.

Put a boolean test inside parentheses:
while (x == 4) { }

Conditional branching

In Java, an if test is basically the same as the boolean test in a while
loop—except instead of saying, “while there’s still chocolate,”
you'll say, “zf there’s still chocolate...”

class IfTest {

public static void main (String[] args) {
int x = 3;
if (x == 3) {

System.out.println ("x must be 3");

}

System.out.println ("This runs no matter what");

C
% java IfTest ode outpyt
x must be 3

This runs no matter what

The preceding code executes the line that prints “x must be 3” only if
the condition (x is equal to 3) is true. Regardless of whether it’s true,
though, the line that prints “This runs no matter what” will run. So
depending on the value of x, either one statement or two will print
out.

But we can add an ¢lse to the condition so that we can say something
like, “If there’s still chocolate, keep coding, else (otherwise) get more
chocolate, and then continue on...”

class IfTest2 {

public static void main(String[] args) {
int x = 2;
if (x == 3) |

System.out.println ("x must be 3");
} else {

System.out.println("x is NOT 3");
}

System.out.println ("This runs no matter what");

New ou‘t\’v{
% java IfTest2

x is NOT 3 /

This runs no matter what

dive in: a quick dip

System.outpl'i"f V8.
SVstem.outprin’rl"

If you've been paying attention (of
course you have), then you've noticed us
switching between print and printin.

Did you spot the difference?

System.out.printin inserts a newline
(think of println as printnewline), while
System.out.print keeps printing to

the same line. If you want each thing
you print out to be on its own line, use
println. If you want everything to stick
together on one line, use print.

I harpen our pencil ——
S Y

Given the output:

% java DooBee
DooBeeDooBeeDo

Fill in the missing code:

public class DooBee {
public static void main (Stringl[]
int x = 1;

args) {

while (x <)y {
System.out. ("Doo") ;
System.out. ("Bee") ;
X =x + 1;

}

if (x ==) |

System.out.print ("Do") ;
}

—> Answers on page 25.

you are here » 15

serious Java app

Coding a serious business
application

Let’s put all your new Java skills to good use with something
practical. We need a class with a main(), an int and a String
variable, a while loop, and an #f test. A little more polish, and
you’ll be building that business back-end in no time. But before
you look at the code on this page, think for a moment about
how you would code that classic children’s favorite, “10 green

bottles.”

public class BottleSong {
public static void main(String[] args) {
int bottlesNum = 10;
String word = "bottles";

while (bottlesNum > 0) {

if (bottlesNum == 1) {
word = "bottle"; // singular, as in ONE bottle.

}
System.out.println(bottlesNum + " green " + word + ", hanging on the wall");
System.out.println(bottlesNum + " green " + word + ", hanging on the wall");

System.out.println("And if one green bottle should accidentally fall,");
bottlesNum = bottlesNum - 1;

if (bottlesNum > 0) {
System.out.println("There'll be " + bottlesNum +
" green " + word + ", hanging on the wall");
} else {
System.out.println("There'll be no green bottles, hanging on the wall");
} // end else

} // end while loop
} // end main method

} // end class

thereyare no

There’s still one little flaw in our Dlﬂn QHGSﬁQHS

code. It. compiles and runs, buF the Q: Didn't this use to be "99 Bottles of Beer"?
output isn't 100% perfect. See if

you can spot the flaw and fix it.

A: Yes, but Trisha wanted us to use the UK version of
the song. If you'd prefer the 99 bottles version, take that as
a fun exercise.

16 chapter1

dive in: a quick dip

Monday morning at Bob’s Java-enabled house

Bob’s alarm clock rings at 8:30 Monday morning, just like every
other weekday. But Bob had a wild weekend and reaches for the
SNOOZE button. And that’s when the action starts, and the
Java-enabled appliances come to life...

Java inside

First, the alarm clock sends a message to the coffee maker .%? </

“Hey, the geek’s sleeping in again, delay the coffee 12 minutes.”

The coffee maker sends a message to the Motorola™ toaster,
“Hold the toast, Bob’s snoozing.”

The alarm clock then sends a message to Bob’s
%} Android, “Call Bob’s 9 o’clock and tell him we’re
M- running a litte late.”

Java here too
H—

Finally, the alarm clock sends a message to Sam’s

(Sam is the dog) wireless collar, with the too-
/ familiar signal that means, “Get the paper, but

{ don’t expect a walk.”

/4

\)ava 2 Java

I’Joasfe,, A few minutes later, the alarm goes off again. And again Bob hits SNOOZE and was V2
the appliances start chattering. Finally, the alarm rings a third
time. But just as Bob reaches for the snooze button, the clock {
sends the “jump and bark” signal to Sam’s collar. Shocked to v
full consciousness, Bob rises, grateful that his Java skills, and
spontaneous internet shopping purchases, have enhanced the daily
routines of his life.

s Lolld

His toast is toasted.

butter here

¢

Just another wonderful morning in The Java-Enabled House.

His coffee steamns.

His paper awaits.

Could this story be true? Mostly, yes! There are versions of Java running in devices
including cell phones (especially cell phones), ATMs, credit cards, home security
systems, parking meters, game consoles and more—but you might not find a Java
dog collar...yet.

Java has multiple ways to use just a tiny part of the Java platform to run on smaller
devices (depending upon the version of Java you're using). It’s very popular for loT
(Internet of Things) development. And, of course, lots of Android development is
done with Java and JVM languages.

you are here » 17

let’s write a program

OK, so the bottle song wasn’t really a
serious business application. Still need
something practical to show the boss?
Check out the Phrase-O-Matic code.

18 chapter 1

Try my new
phrase-o-matic and
you'll be a slick talker

just like the boss or those
hotshots in marketing.

public class PhraseOMatic {
public static void main (String[] args) {

// make three sets of words to choose from. Add your own!

String[] wordListOne = {"agnostic", "opinionated",
"voice activated", "haptically driven", "extensible",
"reactive", "agent based", "functional", "AI enabled",

"strongly typed"};

String[] wordListTwo = {"loosely coupled", "six sigma",

"asynchronous", "event driven", "pub-sub", "IoT", "cloud
native", "service oriented", "containerized", "serverless",
"microservices", "distributed ledger"};

String[] wordListThree = {"framework", "library",

"DSL", "REST API", "repository", "pipeline", "service
mesh", "architecture", "perspective", "design",
"orientation"};

// find out how many words are in each list

e int onelLength = wordListOne.length;

int twolLength = wordListTwo.length;
int threelength = wordListThree.length;

// generate three random numbers

e java.util.Random randomGenerator = new java.util.Random();

int randl = randomGenerator.nextInt (oneLength) ;
int rand2 = randomGenerator.nextInt (twoLength) ;
int rand3 = randomGenerator.nextInt (threelLength) ;

// now huild a phrase
String phrase = wordListOne[randl] + " " +
wordListTwo[rand2] + " " + wordListThree[rand3];

e // print out the phrase

System.out.println("What we need is a " + phrase);
}
}

Phrase-0-Matic

How it works

In a nutshell, the program makes three lists of words, then randomly picks one word from each
of the three lists, and prints out the result. Don’t worry if you don’t understand exactly what’s
happening in each line. For goodness sake, you’ve got the whole book ahead of you, so relax.
This is just a quick look from a 30,000-foot outside-the-box targeted leveraged paradigm.

1. The first step 1s to create three String arrays—the containers that will hold all the words.
Declaring and creating an array is easy; here’s a small one:

String[] pets = {"Fido", "Zeus", "Bin"};

Each word is in quotes (as all good Strings must be) and separated by commas.

2. For each of the three lists (arrays), the goal is to pick a random word, so we have to know
how many words are in each list. If there are 14 words in a list, then we need a random num-
ber between 0 and 13 (Java arrays are zero-based, so the first word is at position 0, the second
word position 1, and the last word is position 13 in a 14-element array). Quite handily, a Java

array is more than happy to tell you its length. You just have to ask. In the pets array, we’d say:

int x = pets.length;

and x would now hold the value 3.

3 « We need three random numbers. Java ships out of the box with several ways to generate
random numbers, including java.util. Random (we will see later why this class name is prefixed
with java.util). The nextInt () method returns a random number between 0 and some-num-
ber-we-give-it, not including the number that we give it. So we’ll give it the number of elements
(the array length) in the list we’re using. Then we assign cach result to a new variable. We could
just as easily have asked for a random number between 0 and 5, not including 5:

int x = randomGenerator.nextInt(5);

4’. Now we get to build the phrase, by picking a word from each of the three lists and
smooshing them together (also inserting spaces between words). We use the “+” operator,
which concatenates (we prefer the more technical smooshes) the String objects together. To get an
element from an array, you give the array the index number (position) of the thing you want by
using:

String s = pets[0]; // s is now the String "Fido"

s=s+ " " + "is a dog"; // s is now "Fido is a dog"

5. Finally, we print the phrase to the command line and...voila! We’re in marketing.

dive in: a quick dip

what we need
here is a...

extensible microser-
vices pipeline

opinionated loosely
coupled REST API

agent-based
microservices library

Al-enabled service
oriented orientation

agnostic pub-sub
DSL

functional loT
perspective

you are here » 19

exercise: Code Magnets

Code Magnets

A working Java program is all scrambled up
on the fridge. Can you rearrange the code
snippets to make a working Java program
that produces the output listed below?
Some of the curly braces fell on the floor
and they were too small to pick up, so fee
free to add as many of those as you need

if (x == 2) {

System.out.print ("b c");

class Shufflel f

{

(na“) H

SYStem.out.Pfint

_n);

File Edit Window Help Sleep

% java Shufflel
a-b c-d

Output:

—> Answers on page 25.

20 chapter1

BE the Compiler

~ Each of the Java files on this page

. represents g complete source file.
. Your job is to play compiler and
L\, determine whether each of these files
will compile. If they won’t
compile, how would you
fix them?

—> Answers on page 25.

A

class Exercisela {
public static void main(String[] args) ({

int x = 1;
while (x < 10) {
if (x > 3) {

System.out.println("big x");
}
}
}
}

dive in: a quick dip

B

public static void main(String [] args) {
int x = 5;
while (x> 1) {
x=x-1;
if (x < 3) {
System.out.println("small x");
}
}
}

C

class Exerciselc {
int x = 5;
while (x > 1) {
x=x-1;
if (x < 3) {
System.out.println("small x");
}
}
}

you are here » 21

puzzle: crossword

JovaCrsss

Let’s give your right brain something to do.

It's your standard crossword, but almost all
of the solution words are from Chapter 1.
Just to keep you awake, we also threw in

a few (non-Java) words from the high-tech
world.

Across

4. Command line invoker

6. Back again?

8. Can't go both ways

9. Acronym for your laptop’s power
12. Number variable type

13. Acronym for a chip

14. Say something

18. Quite a crew of characters

19. Announce a new class or method

21. What's a prompt good for?

—> Answers on page 26.

22 chapter 1

1 2 3
5 6
7
9 10 "
2
13
4 5 6
17
18 9
20
21
Down
1. Not an integer (or your boat)

2. Come back empty-handed

3. Open house

5. ‘Things’ holders

7. Until attitudes improve

10. Source code consumer

11. Can't pin it down

13. Department for programmers and operations
15. Shocking modifier

16. Just gotta have one

17. How to get things done

20. Bytecode consumer

dive in: a quick dip

A short Java program is listed below. One block of the program
is missing. Your challenge is to match the candidate block of
code (on the left) with the output that you'd see if the block
were inserted. Not all the lines of output will be used, and some

Mixed of the lines of output might be used more than once. Draw lines
Messages connecting the candidate blocks of code with their matching
command-line output.
class Test {
public static void main(String [] args) {
int x = 0;
int y = 0; Cs
while (x < 5) { ndidate
3OCS hckc
T
System.out.print(x + "" + y +" ");
X = x + 1;
}
}
}
Candidates: Possible output:
Mateh eath Yy =X - Y 22 46
candidate with
one of the s y =yt X 11 34 59
VQSS\\)\C 0"""\"‘
y =y +2;
if(y > 4) { 02 14 26 38
y=vy-1;
} 02 14 36 48
N 00 11 21 32 42
y =y +t x;

11 21 32 42 53

if (y <5) {

if (y <3) { 00 11 23 36 410
} 02 14 25 36 47

—> Answers on page 26.

you are here »

23

puzzle: Pool Puzzle

00] Puzzle
\ Your job is to take code snippets from the

“ f/ pool and place them into the blank

// lines in the code. You may not use the
same snippet more than once, and
you won't need to use all the snip-
pets. Your goal is to make a class that
will compile and run and produce the
output listed. Don't be fooled—this one’s
harder than it looks.

—> Answers on page 26.

Output

File Edit Window Help Cheat

%java PoolPuzzleOne

a noise
annoys

an oyster

Note: Each snippet
from the pool can be
used only once!

x>3
X< 4

4 System.out.print(" ");
System.out.print("a");
System.out.print("n");
System.out.print("an");

"

24 chapter1

X=X+2;
X=X -2;
xX=x-1;

class PoolPuzzleOne {
public static void main(String [] args) {
int x = 0;

while () |

if (x< 1) {

}

if () A

}
if (x==1) {

if () o

}
System.out.println();

System.out.print("noys ");
System.out.print("oise ");
System.out.print(" oyster");
System.out.print("annoys");
System.out.print("noise");

dive in: a quick dip

23 class Exercisela {
—
;é—-\ public static void main(String [] args) {
Ponnlon O 50 S = int x = 1;
Exencise SoLutions SN il 1o
° & while (x) 1 - 1ie 4o prevent
] =8 x_x+1.<\Add£\us\mc ¥
Sharpen your pencil (from page 14) 3 =X+l L Locever
3 5 if (x> 3) { itveennd
public class DooBee { MnEA syst ¢ orintln("big x')s
public static void main(String[] args) { ystem.out.println(’big x");
int x = 1; }
while (x < 3) { }
System.out.print ("Doo") ; Lo .
System.out print ("Bee") } Th|s will cgmpnle and run (no output), Puf
x=x+1; } without a line added to the program, it
} would run forever in an infinite while loop!
if (x == 3) {
System.out.print ("Do") ;
}
}) ds a tlass detlavation
} class Exerciselb { &~ Needs
CoJe Magnets (from page 20) public static void main(String [] args) {
class Shufflel { int x = 5;
public static void main(String[] args) { while (x> 1) {
X =x-1;
int x = 3; B if (x<3) 4
while (x > 0) { .
System.out.println("small x");
if (x> 2) { }
System.out.print("a"); } This file won't compile without a
} } class declaration, and don't forget
} the matching curly brace!
X =x - 1;
System.out.print("-");
if (x == 2) { . . \[Nccds 3 “main"
System.out.print("b c"); class Exerciselc {
} public static void main(String [] args) {
int x = 5;
i (x==1){ while (x > 1) {
System.out.print("d");
X = x - 1: X =x-1;
) ! C if (x < 3) {
} System.out.println("small x");
} File Edit Window Help Poet }
} % java Shufflel } The while loop code must be inside a

a-b c-d

method. It can't just be hanging out
} inside the class.

you are here » 25

puzzle answers

Pos] Puzz]e (from page 24

class PoolPuzzleOne {

public static void main(String [] args) {

int x 0;

while (x<4) {

System.out.print("a");
if (x<1) {
System.out.print("");

}

System.out.print("n");

if (x>1) {
System.out.print(" oyster");
X=X+2;

}

if (x==1) {
System.out.print("noys");

}

if (x<1) {
System.out.print("oise");

}
System.out.println();
x=x+1;
}
}

File Edit Window Help Cheat

b %$java PoolPuzzleOne
a noise
annoys
an oyster

26 chapter 1

Mixed

J&V&OI’@SS (from page 22)
FL v P
‘salvial Llololr M
R W ol 1 8
B R AINCH A dlc| V| L
A TIN|T O |A I
y L M R Tlc
"sly’s|T EMoluT|P[RIINIT
T A I A
A I L |B M
"sIT RII/N|6| DIElc|L|ARIE
I RIJE] T
c v H
v 0]
"ClO/M M AN|D
class Test {
public static void main(String [] args) {
int x = 0;
int = 0;
8 whilZ(x<5)(
(=71
o]
w0
w0 .
c» System.out.print(x + "" + y +" ");
z x = x + 1;
}
}
}
Candidates: Possible output:
Yy =X - Vi 22 46
Y=y +ox 11 34 59
y y + 2;
if(y > 4) 02 14 26 38
y=y-1;
} 02 14 36 48
=== g 00 11 21 32 42
y =y + x;
if (y<5){ 11 21 32 42 53
X =x + 1;
if (y<3) { 00 11 23 36 410
x =x - 1;
} 02 14 25 36 47
}
y =Y + 2;
(from page 23)

2 classes and objects

A Trip to Objectville

We're going to
Objectvillel We're
leaving this dusty ol'
procedural town for good.
T'll send you a postcard.

| was told there would be objects. in Chapter 1, we put all of our code in

the main() method. That's not exactly object-oriented. In fact, that’s not object-oriented at

all. Well, we did use a few objects, like the String arrays for the Phrase-O-Matic, but we didn't
actually develop any of our own object types. So now we've got to leave that procedural world
behind, get the heck out of main(), and start making some objects of our own. We'll look at
what makes object-oriented (OO) development in Java so much fun. We'll look at the difference
between a class and an object. We'll look at how objects can give you a better life (at least the
programming part of your life. Not much we can do about your fashion sense). Warning: once

you get to Objectville, you might never go back. Send us a postcard.

this is a new chapter 27

once upon a time in Objectville

Chair Wars

(or How Objects Can Change Your Life)

nce upon a time in a software shop, two programmers

were given the same spec and told to “build it.” The

Really Annoying Project Manager forced the two

coders to compete, by promising that

whoever delivers first gets a cool Aeron™

chair and adjustable height standing desk like
all the Silicon Valley techies have. Laura, the
procedural programmer, and Brad, the OO
developer, both knew this would be a piece of
cake.

Laura, sitting at her (non-adjustable) desk,
thought to herself, “What are the things this
program has to do? What procedures do we
need?” And she answered herself, “rotate

and playSound.” So off she went to build the
procedures. After all, what s a program if not a
pile of procedures?

Brad, meanwhile, kicked back at the coffee shop
and thought to himself, “What are the things in
this program...who are the key players?” He first
thought of The Shapes. Of course, there were
other things he thought of like the User, the Sound, and the
Clicking Event. But he already had a library of code for those
pieces, so he focused on building Shapes. Read on to see how
Brad and Laura built their programs, and for the answer to your
burning question, “So, who got the Aeron and the desk?”

At Lavra’s desk

As she had done a gazillion times before, Laura

the spec

set about writing her Important Procedures. Square

She wrote rotate and playSound in no time.

g,

m the chair

At Brad’s laptop at the cafe

Brad wrote a elass for each of the three shapes.

rotate() {

Circle

rotate (shapeNum) {
// make the shape rotate 360°
}
playSound (shapeNum) {
// use shapeNum to lookup which
// AIF sound to play, and play it
}

/I code to rotate a s

}

playSound() {
I code to play the A
/I for a square

rotate() {
/I code to rotate a

}

playSound() {
I code to play the
Il for a circle

Triangle

28 chapter 2

rotate() {
Il code to rotate a triangle

}

playSound() {
I code to play the AlF file
/l for a triangle

Laura thought she’d nailed it. She could almost feel the

rolled steel of the Aeron beneath her...

But wait! There’s been a spec change.

classes and objects

“OK, technically you were first, Laura,” said the Manager, “but we have to add just one tiny

thing to the program. It’ll be no problem for crack programmers like you two.”

“If 1 had a dime_for every time I've heard that one,” thought Laura, knowing that spec-change-no-

problem was a fantasy. And yet Brad looks strangely serene. What's up with that?” Still, Laura held

tight to her core belief that the OO way, while cute, was just slow. And that if you wanted to

change her mind, you’d have to pry it from her cold, dead, carpal-tunnelled hands.

Back at Laura’s desk

The rotate procedure would still work; the code used a
lookup table to match a shapeNum to an actual shape
graphic. But playSound would have to change.

playSound (shapeNum) {
// if the shape is not an amoeba,
// use shapeNum to lookup which
// AIF sound to play, and play it
// else
// play amoeba .mp3 sound
}
It turned out not to be such a big deal, but i still made
her queasy to touch previously tested code. Of all
people, she should know that no matter what the project

manager says, the spec always changes.

— what got added to the spec

At Brad’s laptop at the beach

Brad smiled, sipped his fruit frappe, and wrote one new
class. Sometimes the thing he loved most about OO was
that he didn’t have to touch code he’d already tested
and delivered. “Flexibility, extensibility, ...” he mused,
reflecting on the benefits of OO.

Amoeba

rotate() {
/I code to rotate an amoeba

}

playSound() {
I/ code to play the new
Il .mp3 file for an amoeba

}

you are here » 29

once upon a time in Objectville

Laura delivered just moments ahead of Brad

(Hah! So much for that foofy OO nonsense.) But the smirk on Laura’s face melted when the Really
Annoying Project Manager said (with that tone of disappointment), “Oh, no, that’s not how the amoeba

is supposed to rotate...”

1. determine the rectangle that surrounds the shape.

Turns out, both programmers had written their rotate code like this: /\
0

2. calculate the center of that rectangle, and rotate the shape around that point.

But the amoeba shape was supposed to rotate around a point on one end, like a clock hand.

“I'm toast,” thought Laura, visualizing charred Wonderbread™. “Although, hmmmm. I could just add

another if/else to the rotate procedure and then just hard-code the rotation point code for the amoeba.
That probably won’t break anything.” But the little voice at the back of her head said, “Big Mustake. Do

you honestly think the spec won’t change again?”

Back at Laura’s desk

She figured she better add rotation point arguments
to the rotate procedure. 4 lot of code was affected.

Testing, recompiling, the whole nine yards all over again.

Things that used to work, didn’t.

rotate (shapeNum, xPt, yPt) {

// if the shape is not an amoeba,
// calculate the center point
// based on a rectangle,
// then rotate

// else
// use the xPt and yPt as
// the rotation point offset
// and then rotate

30 chapter 2

What the spec conveniently
forgot to mention

At Brad’s laptop on his lawn
chair at the Telluride Bluegrass Festival

Without missing a beat, Brad modified the rotate

method, but only in the Amoeba class. He never
touched the tested,
working, compiled

Amoeba

code for the other parts of | int xPoint

the program. To give the int yPoint

Amoeba a rotation point, he | rotate() {

added an attribute that all | // code to rotate an amoeba
Amoebas would have. He Il using amoeba’s x and y
modified, tested, and deliv- }
ered (via free festival WiFi) | playSound() {

the revised program during | // code to play the new

a single Bela Fleck set. II'.mp3 file for an amoeba

}

classes and objects

So, Brad the 00 guy got the chair and desk, right?

Not so fast. Laura found a flaw in Brad’s approach. And,
since she was sure that if she got the chair and desk, she’d
also be next in line for a promotion, she had to turn this thing
around.

LAURA: You've got duplicated code! The rotate procedure is
in all four Shape things.

BRAD: It’s a method, not a procedure. And they’re classes,
not things.

LAURA: Whatever. It’s a stupid design. You have to maintain
Jour different rotate “methods.” How can that ever be good?

BRAD: Oh, I guess you didn’t see the final design. Let me
show you how OO inheritance works, Laura.

What Laura really wanted _’

(figured the chair was a step closer
to that promotion and the big bucks)

L

Square Circle Triangle Amoeba
I looked at what all four
rotate() rotate() rotate() rotate() c|as ses have in commwon.
playSound() playSound() playSound() playSound() K
They’re Shapes, and they all rotate and Shape
playSound. So | abstracted out the otatel) e
comwmon features and put thew into a playSound()
new class called Shape. — shape Then | linked the other
superelass | oo four shape classes to
oaysound) | The new Shape class,
in a relationship called
inheritance.
You can read this as, “Square inherits from Shape,” Vﬂ R
“Circle inherits from Shape,” and so on. | removed subelasses
rotate() and playSound() from the other shapes, so now / \
there’s only one copy to maintain.
Square Circle Triangle Amoeba

The Shape class is called the superclass of the other four
classes. The other four are the subclasses of Shape. The
subclasses inherit the methods of the superclass. In other
words, if the Shape class has the functionality, then the
subclasses automatically get that same functionality.

you are here » 31

once upon a time in Objectville

What about the Amoeba rotate()?

LAURA: Wasn’t that the whole problem here—that the amoeba shape had a
completely different rotate and playSound procedure?

BRAD: Method.

LAURA: Whatever. How can Amoeba do something different if it
“inherits” its functionality from the Shape class?

BRAD: That’s the last step. The Amoceba class overrides the methods
of the Shape class. Then at runtime, the JVM knows exactly which rotate()
method to run when someone tells the Amoeba to rotate.

superclass Shape

(more abstract) .
- rotate() I made the Amoeba class override

playSound() the rotate() and playSound()
wmethods of the superclass Shape.

subclasse§ . Overriding just means that a
(more specific) subclass redefines one of its
\ inherited methods when it needs
Square Circle Triangle Amoeba to change or extend the behavior
of that method.

rotate() {
/I amoeba-specific
I/ rotate code }

Overriding methods
playSound) { e e
/I amoeba-specific
/I sound code }

I
can take care of
myself. T know how
an Amoeba is supposed to
rotate and play a
sound.

LAURA: How do you “tell” an Amoeba to do
something? Don’t you have to call the procedure,

sorry—method, and then tell it which thing to

T know how a Shape is
supposed to behave. Your
job is to tell me what to
do, and my job is to make it happen.
Don't you worry your little program-
mer head about how I do it.

rotate?

BRAD: That’s the really cool thing about OO.
When it’s time for, say, the triangle to rotate, the
program code invokes (calls) the rotate() method
on the triangle object. The rest of the program really
doesn’t know or care fow the triangle does it.

And when you need to add something new to the
program, you just write a new class for the new
object type, so the new objects will have their
own behavior.

32 chapter 2

classes and objects

The suspense is killing me.
Who got the chair and desk?

Amy from the second floor.

(Unbeknownst to all, the Project

Manager had given the spec to three

programmers. Amy completed

the project faster since she got on

with OO programming without
arguing with her co-workers).

What do you like about 007

"It helps me design in a more natural way. Things
have a way of evolving.”
-Joy, 27, software architect

“Not messing around with code I've already
tested, just to add a new feature.”
-Brad, 32, programmer

"I like that the data and the methods that oper-
ate on that data are together in one class.”
-Jess, 22, foosball champion

“Reusing code in other applications. When I write
a new class, I can make it flexible enough to be
used in something new, later.”

-Chris, 39, project manager

“T can't believe Chris, who hasn't written a line of
code in 5 years, just said that.”

-Daryl, 44, works for Chris

"Besides the chair?"
-Amy, 34, programmer

@3 RALN
TAWE®R
Time to pump some neurons.

You just read a story about a procedural
programmer going head-to-head with an OO
programmer. You got a quick overview of some
key OO concepts including classes, methods,
and attributes. We'll spend the rest of the
chapter looking at classes and objects (we'll
return to inheritance and overriding in later
chapters).

Based on what you've seen so far (and what you
may know from a previous OO language you've
worked with), take a moment to think about
these questions:

What are the fundamental things you need to
think about when you design a Java class? What
are the questions you need to ask yourself?

If you could design a checklist to use when
you're designing a class, what would be on the
checklist?

metacognitive tip

If you're stuck on an exercise, try talking about

it out loud. Speaking (and hearing) activates

a different part of your brain. Although it

works best if you have another person to

discuss it with, pets work too. That's how
our dog learned polymorphism.

you are here » 33

thinking about objects

When you design a class, think about the objects that
will be created from that class type. Think about:

B things the object knows
B things the object does

ShoppingCart Button Alarm
larmTi
cartContents knows Iablel knows :;::N;Lndee knows
color
{Col setAlarmTime()
addToCartj) does setColor() does getAlarmTime() | d0es
removeFromCart() setLabel() isAlarmSet()
checkOut() push() snooze()
release()
Things an object knows about itself are called Song
B instance variables instance title
variables |artist knows
(state)
. . tTitl
Things an object can do are called methods :t,\',t;:(t)o does
(behavior) play()
B methods
Things an object knows about itself are called instance % harPen your Pencll
variables. They represent an object’s state (the data) and can A
have unique values for each object of that type. Fill in what a television object

. . . . might need to know and do.
Think of instance as another way of saying object.

Things an object can do are called methods. When you
design a class, you think about the data an object will need to Television
know about itself, and you also design the methods that operate
on that data. It’s common for an object to have methods that

. . . instance
read or write the values of the instance variables. For example, :

. . . . variables
Alarm objects have an instance variable to hold the alarmTime,
and two methods for getting and setting the alarmTime.
So objects have instance variables and methods, but those
instance variables and methods are designed as part of the

methods

class.

34 chapter2 — Yours to solve.

classes and objects

What’s the difference between
a class and an object?

A class is not an object
size one class (but it’s used to construct them)

A class is a blueprint for an object. It tells \ VM
the virtual machine fow to make an object of that

particular type. Each object made from that class
can have its own values for the instance

variables of that class. For example,
wany objects You might use the Button class to make
dozens of different buttons, and each
button might have its own color, size, shape,
label, and so on. Each one of these different
buttons would be a button object.

An object is like one entry in your contacts list.

One analogy for classes and objects is your phone’s contact list.
Each contact has the same blank fields (the instance variables).
When you create a new contact, you are creating an instance
(object), and the entries you make for that contact represent its
state.

Name Polly Morfism
Phone 555-03432

eMail Prr@wickedlysmart methods for class Contact.

The methods of the class are the things you do to a particular
contact; getName(), changeName(), setName() could all be

So, each contact can do the same things (getName(),
changeName(), etc.), but each individual contact knows things
unique to that particular contact.

you are here » 35

making objects

Making your first object

So what does it take to create and use an object? You need fwo classes. One class
for the type of object you want to use (Dog, AlarmClock, Television, etc.) and an-
other class to test your new class. The tester class is where you put the main method,
and in that main() method you create and access objects of your new class type.
The tester class has only one job: to #ry out the methods and variables of your new
object.

From this point forward in the book, you’ll see two classes in many of our
examples. One will be the real class—the class whose objects we really want to use,
and the other class will be the fester class, which we call <WhateverYourClassNamels>
TestDrive. lor example, if we make a Bungee class, we’ll need a
BungeeTestDrive class as well. Only the <SomeClassName>TestDrive

class will have a main() method, and its sole purpose is to create objects of your
new class (the not-the-tester class), and then use the dot operator (.) to access the
methods and variables of the new objects. This will all be made stunningly clear by
the following examples. No, really.

The Dot Operator (.)

The dot operator (.) gives
you access to an object’s
state and behavior (instance
variables and methods).

/I make a new object

Dog d = new Dog();

/1 tell it to bark by using the
// dot operator on the
// variable d to call bark()

d.bark();

/I set its size using the
sty Dog // dot operator
class Dog { nte Variab|e : .
int size; sblze | d.size = 40;
String breed; n:::e
String name;
A method bark(
arl
void bark() { &
System.out.println ("Ruff! Ruff!");
}
} e Write a tester (TestDrive) class
. \‘od class DogTestDrive {
J“SJC 3 i ™ N Lode public static void main(String[] args) {
‘et 59\,«\3 ' Y slge,?) // Dog test code goes here
(‘NCY D ke ne }
n o
}

In your tester, make an object and access
the object's variables and methods

class DogTestDrive {
public static void main(String[] args) {
Dog d = new Dog() ; &— Ma
d.size = 40; Use £ ke a D°3 object
Dot A bark() ; K se the dot operator ()
oYda’(P* 5 to set the size of the Do
}

and {5 ¢3]))

its bavk() method

36 chapter2

If you already have some OO savvy,

you'll know we're not using encapsulation.

We'll get there in Chapter 4, How
Objects Behave.

classes and objects

Making and testing Movie objects

class Movie {
String title;
String genre;
int rating;

void playIt() {
System.out.println("Playing the movie") ;

public class MovieTestDrive {
public static void main(String[] args) {

Movie one = new Movie() ;
one.title = "Gone with the Stock";
one.genre = "Tragic";
one.rating = -2;
Movie two = new Movie() ;
two.title = "Lost in Cubicle Space";
two.genre = "Comedy";
two.rating = 5;
two.playIt();
Movie three = new Movie() ;
three.title = "Byte Club";
three.genre = "Tragic but ultimately uplifting";
three.rating = 127;

}
}
@%?rpen encil
v
title N
MOVIE
title object 1 genre
genre rating
rating /
laylt
playlt) (" it N
The MovieTestDrive class creates objects (instances) of object 2 genre
the Movie class and uses the dot operator (.) to set the rating
instance variables to a specific value. The MovieTest- _ J
Drive class also invokes (calls) a method on one of the
objects. Fill in the chart to the right with the values the //tMe I
three objects have at the end of main().
object 3 genre
—> Yours to solve. N rating)

you are here » 37

get the heck out of main

Quick! Get out of main!

As long as you’re in main(), you’re not really in Objectville. It’s fine for a test program
to run within the main method, but in a true OO application, you need objects talk-
ing to other objects, as opposed to a static main() method creating and testing objects.

The two uses of main:
B to test your real class
B to launch/start your Java application

A real Java application is nothing but objects talking to other objects. In this case,
talking means objects calling methods on one another. On the previous page, and in
Chapter 4, How Objects Behave, we look at using a main() method from a separate
TestDrive class to create and test the methods and variables of another class. In
Chapter 6, Using the Java Library, we look at using a class with a main() method to start
the ball rolling on a real Java application (by making objects and then turning those
objects loose to interact with other objects, etc.)

As a “sneak preview,” though, of how a real Java application might behave, here’s a
little example. Because we’re still at the earliest stages of learning Java, we’re work-
ing with a small toolkit, so you’ll find this program a little clunky and inefficient. You
might want to think about what you could do to improve it, and in later chapters
that’s exactly what we’ll do. Don’t worry if some of the code is confusing; the key
point of this example is that objects talk to objects.

The Guessing Game

Summary:

The Guessing Game involves a game object and three player objects. The game gen-
erates a random number between 0 and 9, and the three player objects try to guess
it. (We didn’t say it was a really exciting game.)

Classes:

GuessGame.class Player.class GameLauncher.class

The Logic:
1. The GameLauncher class is where the application starts; it has the main() method.

2. In the main() method, a GuessGame object is created, and its startGame() method
is called.

3.The GuessGame object’s startGame() method is where the entire game plays out. It
creates three players and then “thinks” of a random number (the target for the play-
ers to guess). It then asks each player to guess, checks the result, and either prints
out information about the winning player(s) or asks them to guess again.

38 chapter2

GameLauncher
Makes 5
/ 6‘.‘85368».
main(String[] args)l‘ - é"})ecf ande
C/S ,-é 'éo
kféa..,e
GuessGame
N /"Sfan ‘
Yariab)e
p2 ‘Por >
p3 ™ . P/ayeks Ehree
startGame()
Player fhiscP;:'"be*‘
guexscd y r
number é —
guess() & y
et.
o mak,',,hoj for
3“9&:

classes and objects

public class GuessGame { 6"“563'"8 has three ;
. ee instane,
Player pl; variables ‘FOV‘ th N
Player p2; < Ochcfs. e three P,ayey-
Player p3;
public void startGame () { Crca'l:c th
ree Player ob;
1= Pl ; . objects
E = naw Tiaver1) 355 them b Lhe hvos P
p3 = new Player(); Instance variables.

int guesspl - 0; Declare three variables 4o hold the
int guessp2 = 0; 6’1 three guesses the Players mak
int guessp3 = 0; Yers make.

1 lisRight = false;
3221222 izizRight _ lezz. e— ?Célarc three vaviables 4o hold 3 true or
boolean p3isRight = false; alse based on the F'a‘/ﬂ')s answer-.

ake a !
int targetNumber = (int) (Math.random() * 10); &ﬂ cla target’ number that
System.out.println("I'm thinking of a number between 0 and 9..."); ¢ players have to guess.

while (true) {
System.out.println ("Number to guess is " + targetNumber) ;

pl.guess();)
02 quese () e__ Call each player’s guess() method.
p3.guess () ;

guesspl = pl.number;
System.out.println("Player one guessed " + guesspl);

guessp2 = p2.number; 6&‘ eath Pla\/cr's quess (the vesult of theiv
System.out.println ("Player two guessed " + guessp2); gucsso mc{;hod V‘uhhing) b addcssins the

guessp3 = p3.number; number variable of eath player.
System.out.println ("Player three guessed " + guessp3);

if (guesspl == targetNumber) {
plisRight = true;

} Check each player’s guess 4o see if it

if (guessp2 == targetNumber) { matehes the fargc’c number-. H} 3 P|aycv s

: p2isRight = true; \rigH:,(then set that Pla\/"'s variable 4o be

rue (v i

if (guessp3 == targetNumber) { emember, we set it ‘("alsc b‘/ dcfauH’).
p3isRight = true;

}

if (plisRight || p2isRight || p3isRight) { £ F'arﬂr one OR player two OR player three is vight
System.out.println ("We have a winner!"); ('H‘c l °FCV‘3+.OV‘ means OR)

System.out.println ("Player one got it right? " + plisRight);
System.out.println ("Player two got it right? " + p2isRight);
System.out.println ("Player three got it right? " + p3isRight);
System.out.println ("Game is over.");

break; // game over, so break out of the loop

} else {
// we must keep going because nobody got it right! oﬂ’ﬂ'\visc) stay :
System.out.println("Players will have to try again."); Playﬂ.s For Y in '(th IOoP and

} // end if/else anothey 9uess. ask the

} // end loop
} // end method
} // end class

you are here » 39

Guessing Game

Running the Guessing Game

Output (it will be different each time you run it)

40

i Java takes out the
7 Garbage

i, Each time an object is created
in Java, it goes into an area of
memory known as The Heap. All
objects—no matter when, where, or how
they're created—Ilive on the heap. But it’s
not just any old memory heap; the Java
heap is actually called the Garbage-
Collectible Heap. When you create an
object, Java allocates memory space on
the heap according to how much that
particular object needs. An object with,
say, 15 instance variables, will probably
need more space than an object with
only two instance variables. But what
happens when you need to reclaim
that space? How do you get an object
out of the heap when you're done with
it? Java manages that memory for you!
When the JVM can “see” that an object
can never be used again, that object
becomes eligible for garbage collection.
And if you're running low on memory,
the Garbage Collector will run, throw out
the unreachable objects, and free up the
space so that the space can be reused.
In later chapters you'll learn more about
how this works.

chapter 2

File Edit Window Help Explode

%java GameLauncher

I'm thinking of a number between 0 and 9...

Number to guess is 7

I'm guessing 1

I'm guessing 9

I'm guessing 9

Player one guessed 1

Player two guessed 9

Player three guessed 9

Players will have to try again.
Number to guess is 7

I'm guessing 3

I'm guessing 0

I'm guessing 9

Player one guessed 3

Player two guessed 0

Player three guessed 9

Players will have to try again.
Number to guess is 7

I'm guessing 7

I'm guessing 5

I'm guessing 0

Player one guessed 7

Player two guessed 5

Player three guessed 0

We have a winner!

Player one got it right? true
Player two got it right? false

Player three got it right? false

Game is over.

therejare no

Dumb Questions

* Whatif I need global
variables and methods? How
do | do that if everything has to
goin aclass?

A- There isn't a concept of
“global” variables and methods
in a Java OO program. In
practical use, however, there
are times when you want a
method (or a constant) to be
available to any code running in
any part of your program. Think
of the random () method in
the Phrase-O-Matic app; it's a
method that should be callable
from anywhere. Or what about
a constant like pi? You'll learn

in Chapter 10 that marking
amethod aspublic and
static makes it behave much
like a“global” Any code, in any
class of your application, can
access a public static method.
And if you mark a variable as
public, static,andfinal,
you have essentially made a
globally available constant.

< Then how is this object-
oriented if you can still make
global functions and global
data?

A- First of all, everything

in Java goes in a class. So the
constant for pi and the method
for random (), although both
public and static, are defined
within the Math class. And you
must keep in mind that these
static (global-like) things are the
exception rather than the rule
in Java. They represent a very
special case, where you don't
have multiple instances/objects.

* WhatisaJava program?
What do you actually deliver?

A- A Java program is a pile
of classes (or at least one class).
In a Java application, one of

the classes must have a main
method, used to start up the
program. So as a programmer,
you write one or more classes.
And those classes are what you
deliver. If the end user doesn’t
have a JVM, then you'll also
need to include that with your
application’s classes so that
they can run your program.
There are a number of
programs that let you bundle
your classes with a JVM and
create a folder or file you can
share however you want (e.g., via
the internet). Then the end user
can install the correct version
of the JVM (assuming they don't
already have it on their machine).

. What if | have a hundred
classes? Or a thousand? Isn’t
that a big pain to deliver
all those individual files?

Can | bundle them into one
Application Thing?

A- Yes, it would be a big

pain to deliver a huge bunch of
individual files to your end users,
but you won't have to. You can
put all of your application files
into a Java ARchive—a .jar file—
that's based on the pkzip format.
In the jar file, you can include

a simple text file formatted as
something called a manifest, that
defines which class in that jar
holds the main () method that
should run.

—— BULLET POINTS

classes and objects

Java is
ass

b)’ Va’ue

W,
threads C:i"
wait())
no‘l:i«cy()

A class jg like a recipe

Objects are J;
e lik,
cookﬁes €

Object-oriented programming lets you extend
a program without having to touch previously
tested, working code.

All Java code is defined in a class.

A class describes how to make an object of
that class type. A class is like a blueprint.
An object can take care of itself; you don’t
have to know or care how the object does it.
An object knows things and does things.
Things an object knows about itself are called
instance variables. They represent the state
of an object.

Things an object does are called methods.
They represent the behavior of an object.
When you create a class, you may also want
to create a separate test class that you'll use
to create objects of your new class type.
Aclass can inherit instance variables and
methods from a more abstract superclass.
At runtime, a Java program is nothing more
than objects “talking” to other objects.

you are here »

41

exercise: Be the Compiler

_ BE the Compiler

¢ Each of the Java files on this page
represents a complete source file.

. Your job is to play compiler and
' determine whether each of

these files will compile.
If they won’t compile,

how would you fix them,
and if they do compile, what

would he their output?

A

class StreamingSong {

String title;
String artist;
int duration;

void play() {
System.out.println("Playing song");
}

void printDetails() {
System.out.println("This is " + title +
" by " + artist);
}
}

class StreamingSongTestDrive {
public static void main(String[] args) {

song.artist = "The Beatles";
song.title = "Come Together";

song.play() ;
song.printDetails() ;

—> Answers on page 46.

42 chapter 2

class Episode {

int seriesNumber;
int episodeNumber;

void skipIntro() {
System.out.println("Skipping intro...");
}

void skipToNext() {
System.out.println("Loading next episode
}
}

class EpisodeTestDrive {
public static void main(String[] args) {

Episode episode = new Episode();
episode.seriesNumber = 4;
episode.play() ;
episode.skipIntro();

A

Code Magnets

A Java program is all scrambled up on
the fridge. Can you reconstruct the
code snippets to make a working Java
program that produces the output listed
below? Some of the curly braces fell on
the floor and they were too small to pick
up, so feel free to add as many of those
as you need.

classes and objects

———— Answers on page 46.

d.playSnare();

DrumKit d = new DrumKit () ;

boolean topHat = true;

boolean snare = true;

void playSnare() {

System.out.println("bang bang ba-bang");

public static void main(String [] args) {

d.snare = false;

class DrumKitTestDrive {

class DrumKit ({

Vo

File Edit Window Help Dance

2

bang bang ba-bang

ding ding da-ding

% java DrumKitTestDrive

}

System. Out.printilp (

id playTophat () g

"ding ding da-ding");

you are here » 43

puzzle: Pool Puzzle

public class EchoTestDrive {
public static void main (String []

args) {
_ Echo el = new Echo();
0o] Puzzle 0
Your job is to take code snippets from int x = 0;
the pool and place them into the while () |

blank lines in the code. You may
use the same snippet more than
once, and you won't need to use

el.hello();

all the snippets. Your goal is to it A
make classes that will compile and eZ.count = eZ.count + I;
run and produce the output listed be- }
low. Some of the exercises and puzzles if |) |
in this book might have more than one e2.count = e2.count + el.count;

correct answer. If you find another cor-

}
rect answer, give yourself bonus points! X =x + 1;

Output }
System.out.println(e2.count) ;

File Edit Window Help Implode }
%$java EchoTestDrive

helloooo...

helloooo...

class {
int = 0;
void {
Bonus Question ! System.out.println("helloocoo... ");
If the last line of output was J
24 instead of 10, how would }

you complete the puzzle?

Note: Each snippet
from the pool can be
used more than once!

Echo

e2 x>0 Tester
count x> 1 echo() e2=el;
el=el+1; count() Echo e2;
el =count+ 1; hello() Echoe2=el;
el.count = count + 1; Echo e2 = new Echo(); x==3

el.count=el.count + 1;

44 chapter2 —> Answers on page 47.

classes and objects

A bunch of Java components, in full costume, are playing a party
game, “Who am 1?” They give you a clue, and you try to guess who
they are, based on what they say. Assume they always tell the truth
about themselves. If they happen to say something that could be
true for more than one of them, choose all for whom that sentence
can apply. Fill in the blanks next to the sentence with the names of
one or more attendees. The first one’s on us.

Tonight’s attendees:
Class Method Object Instance variable

| am compiled from a .java file. tlass

My instance variable values can
be different from my buddy’s
values.

| behave like a template.

| like to do stuff.

| can have many methods.

| represent “state.”

| have behaviors.

| am located in objects.

| live on the heap.

| am used to create object instances.

My state can change.

| declare methods.

| can change at runtime.

—> Answers on page 47.

you are here » 45

exercise solutions

Exercise SoLutions

Code Magnets (from page 43)

class DrumKit {
boolean topHat = true;
boolean snare = true;

void playTopHat () {
System.out.println("ding ding da-ding");

void playSnare () {
System.out.println("bang bang ba-bang");

class DrumKitTestDrive ({
public static void main(String[] args) {
DrumKit d = new DrumKit ();
d.playSnare () ;
d.snare = false;
d.playTopHat () ;

if (d.snare == true) {
d.playSnare () ;
}

File Edit Window Help Dance

2

% java DrumKitTestDrive
bang bang ba-bang

ding ding da-ding

46 chapter 2

B

BE the C@m‘fﬂet (from page 42)

class StreamingSong {
String title;
String artist;
int duration;

void play() {
System.out.println("Playing song");
}

void printDetails() {
System.out.println("This is " + title +
" by " + artist);

) We've 90t the templat.
} have to make an ol;ct'zi

class StreamingSongTestDrive {
public static void main(String[] args) {

how we

StreamingSong song = new StreamingSong();

song.artist = "The Beatles";
song.title = "Come Together";
song.play () ;

song.printDetails();

class Episode { d \aY()
int seriesNumber; ie: episodey !
i The line: €7 .
int episodeNumber; _\Eo:\d‘“)k com\fl\c wrt\\ou{'i is \a\l
e thod in the episode €<%
void play() {
System.out.printin(*Playing episode " + episodeNumber);

void skipIntro() f{
System.out.println("Skipping intro...");
}

void skipToNext () {
System.out.println("Loading next episode...");

}

class EpisodeTestDrive {
public static void main(String[] args) {
Episode episode = new Episode();
episode.seriesNumber = 4;
episode.play();
episode.skipIntro();

% Puzz]e Solutions

P@ol Puzz]e (from page 44)

public class EchoTestDrive {
public static void main (Stringl]

args) {
Echo el = new Echo():;
Echo e2 = new Echo(); // correct answer
-or-
Echo e2 =e1; // bonus "24" answer
int x = 0;
while (x<4) {
el.hello();
el.count=el.count+ 1;
if (x==3) {
e2.count = e2.count + 1;
}
if (x>0) {
e2.count = e2.count + el.count;

}

x =x + 1;
}
System.out.println(e2.count) ;

}

class Echo {
int count = 0O;

void hello() {

System.out.println ("helloococo... ");

File Edit Window Help Assimilate
%$java EchoTestDrive

helloooco...
helloooo...
helloooo...
helloooo...
10

classes and objects

WIIO Am 19 (from page 45)

| am compiled from a .java file.

My instance variable values can be
different from my buddy’s values.

| behave like a template.

| like to do stuff.

| can have many methods.
| represent “state.”

| have behaviors.

| am located in objects.

| live on the heap.

| am used to create object
instances.

My state can change.
| declare methods.

| can change at runtime.

tlass

object

tlass

objeet, method

class, objeet

instance vaviable

objeet, ¢lass

method, instante vaviable
object

elass
ob\)cc{:, instante vaviable
tlass

objcl:[:, instante vaviable

Note: both classes and objects are said to have state and behavior.
They're defined in the class, but the object is also said to “have”
them. Right now, we don't care where they technically live.

you are here » 47

3 primitives and references

Know Your Variables

o abcdefg uk!mnOpqrsfuvwa”

,;1

D A
eclarations and Assignments |
| s

]

5"'& X,

ﬁoaf z = 3 /4.

lorgy = x 43,

Variables can store two types of things: primitives and references.
So far you've used variables in two places—as object state (instance variables) and as local
variables (variables declared within a method). Later, we'll use variables as arguments (values
sent to a method by the calling code), and as return types (values sent back to the caller of the
method). You've seen variables declared as simple primitive integer values (type int). You've
seen variables declared as something more complex like a String or an array. But there’s gotta
be more to life than integers, Strings, and arrays. What if you have a PetOwner object with a

Dog instance variable? Or a Car with an Engine? In this chapter we’'ll unwrap the mysteries of Java
types (like the difference between primited and references) and look at what you can declare as a
variable, what you can putin a variable, and what you can do with a variable. And we'll finally see

what life is truly like on the garbage-collectible heap.

this is a new chapter 49

declaring a variable

Peclaring a variable

Java cares about type. It won’t let you do
something bizarre and dangerous like stuff a
Giraffe reference into a Rabbit variable—what
happens when someone tries to ask the so-called
Rabbit to hop () ? And it won’t let you put a
floating-point number into an integer variable,
unless you lell the compiler that you know you might
lose precision (like, everything after the decimal
point).

The compiler can spot most problems:
Rabbit hopper = new Giraffe() ;
Don’t expect that to compile. 7hankfully.

For all this type-safety to work, you must declare

the type of your variable. Is it an integer? a Dog?

A single character? Variables come in two flavors:
primitive and object reference. Primitives hold
fundamental values (think: simple bit patterns)
including integers, booleans, and floating-point num-
bers. Object references hold, well, references to objects
(gee, didn’t that clear it up).

We’ll look at primitives first and then move on
to what an object reference really means. But
regardless of the type, you must follow two
declaration rules:

variables must have a type

LA L \ 4‘ Besides a type, a variable needs a name so that you
A i can use that name in code.
Rabbit ﬁ

Variable ’@} = variables must have a name

int count;

Jc\/yz‘ Rnamc

Note: When you see a statement like: “an object of
type X,” think of #ype and class as synonyms. (We’ll
refine that a little more in later chapters.)

50 chapter 3

“I'd like a double mocha, no, make it an int.”

When you think of Java variables, think of cups. Coffee cups, tea cups, giant cups
that hold lots and lots of your favorite drink, those big cups the popcorn comes in
at the movies, cups with wonderful tactile handles, and cups with metallic trim that
you learned can never, ever go in the microwave.

A variable is just a cup. A container. It holds something.

It has a size and a type. In this chapter, we’re going to look first at the variables
(cups) that hold primitives: then a little later we’ll look at cups that hold references
to objects. Stay with us here on the whole cup analogy—as simple as it is right

now, it'll give us a common way to look at things when the discussion gets more
complex. And that’ll happen soon.

Primitives are like the cups they have at the coffee shop. If you’ve been to a
Starbucks, you know what we’re talking about here. They come in different sizes,
and each has a name like “short,” “tall,” and, “I’d like a ‘grande’ mocha half-caff
with extra whipped cream.”

You might see the cups displayed on the counter so you
can order appropriately:

small short tall grande
And in Java, primitives come in different sizes, and those sizes have
names. When you declare any variable in Java, you
must declare it with a specific type. The four
_ containers here are for the four integer
primitives in Java.

long int short by‘re

Each cup holds a value, so for Java primitives, rather than saying, “I'd like a tall
french roast,” you say to the compiler, “I’d like an int variable with the number 90
please.” Except for one tiny difference...in Java you also have to give your cup a
name. So 1t’s actually, “T’d like an int please, with the value of 2486, and name the
variable height.” Fach primitive variable has a fixed number of bits (cup size).
The sizes for the six numeric primitives in Java are shown below:

ﬂﬁﬂﬂ

byte short int long float double
8 16 32 64 32 64

primitives and references

Primitive Types
Type BitDepth Value Range

boolean and char

boolean (vM-specific) true or false
char 16 bits 0to 65535

numeric (all are signed)

integer

byte 8 bits -128to 127

short 16 bits -32768to
32767

int 32 bits -2147483648
to 2147483647

long 64 bits -huge to huge

floating point

float 32 bits varies

double 64 bits varies

Primitive declarations
with assignments:

int x;

x = 234;

byte b = 89;

boolean isFun = true;
double d = 3456.98;
char ¢ = ‘f';

int z = x;

boolean isPunkRock;
isPunkRock = false;
boolean powerOn;
powerOn = isFun;
long big = 3456789L;
float £ = 32.5£;

Note the ¢ and L W\:\a\vc .
some number fypes: You "
s\?ec\‘;\ta\\\l kel the Lomv\h .
what You mean, oF it w9 .
d: confused between \S(\m\ o
\oo\(mg mm\)cv {’,\IYCS. ow

tase-
use upper oF lower

you are here » 51

primitive assignment

You really don’t want to spill that...

Be sure the value can fit into the variable.

You can’t put a large value into a
small cup.

Well, OK, you can, but you'll lose
some. You'll get, as we say, spillage.
The compiler tries to help prevent
this if it can tell from your code
that something’s not going to fit in
the container (variable/cup) you're
using

For example, you can’t pour an
int-full of stuff into a byte-sized
container, as follows:

int x = 24;
byte b = x;

//won’t work!!

Why doesn’t this work, you ask? After all, the value of x is 24, and 24 1s definitely small
enough to fit into a byte. You know that, and we know that, but all the compiler cares
about 1s that you're trying to put a big thing into a small thing, and there’s the possibility
of spilling. Don’t expect the compiler to know what the value of x 1s, even if you happen
to be able to see it literally in your code.

You can assign a value to a variable in one of several ways including:
B type a literal value after the equals sign (x=12, isGood = true, etc.)
B assign the value of one variable to another (x =y)
B use an expression combining the two (x =y + 43)

In the examples below, the literal values are in bold italics:

int size = 32; declare an int named size, assign it the value 32

char initial = 'j'; declare a char named initial, assign it the value §’
double d = 456.709; declare a double named d, assign it the value 456.709
boolean isLearning; declare a boolean named isCrazy (no assignment)
isLearning = true; assign the value frue to the previously declared isCrazy
int y = x + 456; declare an int named y, assign it the value that is the sum

of whatever x is now plus 456

52 chapter 3

— harpen our pencil —
S Y

The compiler won't let you put
a value from a large cup into

a small one. But what about
the other way—pouring a
small cup into a big one? No
problem.

Based on what you know
about the size and type of the
primitive variables, see if you
can figure out which of these
are legal and which aren't.
We haven't covered all the
rules yet, so on some of these
you'll have to use your best
judgment. Tip: The compiler
always errs on the side of
safety.

From the following list, Circle
the statements that would be
legal if these lines were in a
single method:

1. int x = 34.5;
2. boolean boo = x;

3. int g = 17;

4. int y g;

5. y=y + 10;

6. short s;

7. s =y;

8. byte b = 3;
9. byte v = b;

10. short n = 12;
11. v = n;

12. byte k = 128;

— Answers on page 68.

primitives and references

Back away from that keyword!

You know you need a name and a type for your variables.
You already know the primitive types.

But what can you use as names? The rules are simple.
You can name a class, method, or variable according to the
following rules (the real rules are slightly more flexible, but

these will keep you safe):

H It must start with a letter, underscore (_), or
dollar sign ($). You can’t start a name with a
number.

B After the first character, you can use numbers as
well. Just don’t start it with a number.

H It can be anything you like, subject to those two
rules, just so long as it isn’t one of Java’s reserved
words.

 even bette"

Reserved words are keywords (and other things) that the compiler
recognizes. And if you really want to play confuse-a-compiler, then
just #rp using a reserved word as a name.

No matter what
you hear, do not, I
repeat, do not let me
ingest another large
furry dog.

You've already seen some reserved words:

public static void

And the primitive types are reserved as well:

boolean char byte short int long float double

But there are a lot more we haven’t discussed yet. Even if you don’t

need to know what they mean, you still need to know you can’t use ’em
yourself. Do not—under any circumstances—itry to memorize these
now. To make room for these in your head, you’d probably have to lose
something else. Like where your car is parked. Don’t worry, by the end of
the book you’ll have most of them down cold.

This table reserved

_ catch double float int private super true
abstract char else for interface protected | switch try
assert class enum goto long public synchronized | void
boolean const extends if native return this volatile
break continue false implements | new short throw while
byte default final import null static throws

case do finally instanceof | package strictfp transient

Java’s keywords,

reserved words,

and special identifiers. If you use these for names, the compiler will probably be very, very upset.

you are here »

53

object references

Controlling your Dog object

You know how to declare a primitive variable and assign it a value.
But now what about non-primitive variables? In other words, what

about objects? Dog d = new Dog();
d.bark();

B There is actually no such thing as an object variable. \

B There’s only an object reference variable. think of this

B An object reference variable holds bits that represent a . .
like this

way to access an object.

B Iltdoesn’t hold the object itself, but it holds something
like a pointer. Or an address. Except, in Java we don’t
really know whatis inside a reference variable. We do
know that whatever it is, it represents one and only one
object. And the JVM knows how to use the reference to
get to the object.

You can’t stuff’ an object into a variable. We often think of it that
way...we say things like, “I passed the String to the System.out.
println() method.” Or, “The method returns a Dog” or, “I put a new
Foo object into the variable named myFoo.”

But that’s not what happens. There aren’t giant expand-

\,‘Think of a Doy

veference vaviable as

able cups that can grow to the size of any object.
Objects live in one place and one place only—the
garbage-collectible heap! (You’ll learn more about

that later in this chapter.) 3 D05 remote tontrol.

ﬁ /"/ You use it to get the
‘ objeet to do something
(invoke methods).

Although a primitive variable is full of bits
representing the actual value of the variable,
an object reference variable is full of bits
representing a way to get to the
object.

You use the dot operator (.) on a ref-
erence variable to say, “use the thing
before the dot to get me the thing affer
the dot.” For example:

myDog.bark () ;

means, “use the object referenced by the variable myDog to invoke
the bark() method.” When you use the dot operator on an object
reference variable, think of it like pressing a button on the remote
control for that object.

54 chapter3

ﬂﬂﬁﬂ

byte short int long reference
8 16 32 64 (bit depth not relevant)

An object reference is just
another variable value

Something that goes in a cup.
Only this time, the value is a remote control.

Primitive Variable ~
= 7. o
byte x = 7; primitive
The bits representing 7 go value
into the variable (00000111).
byte

Reference Variable .

Q
Dog myDog = new Dog() ; Dog &
The bits representing a way to get to 3 Q\
the Dog object go into the variable. \rcgcvcnt,c
The Dog object itself does not go into value

the variable!

Dog

With primitive variables, the value of the vari-
able is...the value (5, -26.7, ‘a’).

With reference variables, the value of the
variable is...bits representing a way to get to a
specific object.

You don’t know (or care) how any particular
JVM implements object references. Sure, they
might be a pointer to a pointer to...but even
if you know, you still can’t use the bits for
anything other than accessing an object.

We don’t care how many 1s and Os there are in a reference variable. It's
up to each JVM and the phase of the moon.

primitives and references

The 3 steps of object
declaration, creation and

assignment

1 2
=~ 3 ——~——"—"X
Dog myDog = new Dog() ;

Declare a reference
variable

Dog myDog = new Dog() ;

Tells the JVM to allocate space for a
reference variable, and names that
variable myDog. The reference variable
is, forever, of type Dog. In other words,
a remote control that has buttons to
control a Dog, but not a Cat or a Button Dog
or a Socket.

e Create an object

Dog myDog = new Dog() ;

Tells the JVM to allocate space for a
new Dog object on the heap (we’'ll
learn a lot more about that process,
especially in Chapter 9, Life and Death

of an Object). Dog object

Link the object
and the reference

Dog myDog = new Dog() ;

Assigns the new Dog to the reference
variable myDog. In other words,
programs the remote control.

Dog object

you are here » 55

object references

therejare no

Dumb Questions

Q,' How big is a reference
variable?

A: You don’t know. Unless
you're cozy with someone on the
JVM’s development team, you
don’t know how a reference is
represented. There are pointers
in there somewhere, but you
can't access them. You won't
need to. (OK, if you insist, you
might as well just imagine it

to be a 64-bit value.) But when
you're talking about memory
allocation issues, your Big
Concern should be about how
many objects (as opposed to
object references) you're creating
and how big they (the objects)
really are.

Q: So, does that mean that

all object references are the
same size, regardless of the size
of the actual objects to which
they refer?

A: Yep. All references for a
given JVM will be the same

size regardless of the objects
they reference, but each JVYM
might have a different way of
representing references, so
references on one JVM may be
smaller or larger than references
on another JVM.

Q _Can I do arithmeticon a
reference variable, increment
it, you know—C stuff?

A: Nope. Say it with me again,
“Javais not C”

56 chapter 3

Java 'Expos-ed’

This week’s interview:
Object Reference

HeadFirst: So, tell us, what's life like for an object reference?

Reference: Pretty simple, really. 'm a remote control, and I can be programmed to
control different objects.

HeadFirst: Do you mean different objects even while you’re running? Like, can you
refer to a Dog and then five minutes later refer to a Car?

Reference: Of course not. Once 'm declared, that’s it. If I'm a Dog remote control,
then I'll never be able to point (oops—my bad, we’re not supposed to say point), I mean,
refer to anything but a Dog,

HeadFirst: Does that mean you can refer to only one Dog?

Reference: No. I can be referring to one Dog, and then five minutes later I can refer to
some other Dog. As long as it’s a Dog, I can be redirected (like reprogramming your remote
to a different TV) to it. Unless...no never mind.

HeadFirst: No, tell me. What were you gonna say?

Reference: I don’t think you want to get into this now, but I'll just give you the short
version—if I'm marked as fina1l, then once I am assigned a Dog;, I can never be repro-
grammed to anything else but #at one and only Dog. In other words, no other object can
be assigned to me.

HeadFirst: You’re right, we don’t want to talk about that now. OK, so unless you’re
final, then you can refer to one Dog and then refer to a different Dog later. Can you ever
refer to nothing at all? Is it possible to not be programmed to anything?

Reference: Yes, but it disturbs me to talk about it.

HeadFirst: Why is that?

Reference: Because it means I'm null, and that’s upsetting to me.
HeadFirst: You mean, because then you have no value?

Reference: Oh, null s a value. 'm still a remote control, but it’s like you brought
home a new universal remote control and you don’t have a TV. 'm not programmed to
control anything. They can press my buttons all day long, but nothing good happens. I
just feel so...useless. A waste of bits. Granted, not that many bits, but still. And that’s not
the worst part. If I am the only reference to a particular object and then I'm set to null
(deprogrammed), it means that now nobody can get to that object I had been referring to.

HeadFirst: And that’s bad because...

Reference: You have to ask? Here I've developed a relationship with this object, an
intimate connection, and then the tie is suddenly, cruelly, severed. And I will never see
that object again, because now it’s eligible for [producer, cue tragic music| garbage collection.
Sniff. But do you think programmers ever consider that? Snif. Why, why can’t I be a primi-
tive? [hate being a reference. The responsibility, all the broken attachments...

primitives and references

Life on the garbage-collectible heap

Book b = new Book() ;

Book ¢ = new Book() ;

Declare two Book reference
variables. Create two new Book
objects. Assign the Book objects to
the reference variables.

The two Book objects are now living
on the heap.

References: 2
Objects: 2

Book

Book d = c;

Declare a new Book reference variable.
Rather than creating a new, third Book
object, assign the value of variable c to
variable d. But what does this mean?

It's like saying “Take the bits in ¢, make a
copy of them, and stick that copy into d”

Both c and d refer to the same
object.

The c and d variables hold
two different copies of the
same value. Two remotes
programmed to one TV.

References: 3
Objects: 2

c = b;

Assign the value of variable b to
variable c¢. By now you know what
this means. The bits inside variable
b are copied, and that new copy is
stuffed into variable c.

Both b and c refer to the
same object.

The c variable no longer
refers to its old Book
object.

References: 3
Objects: 2

you are here » 57

objects on the heap

Life and death on the heap

Book b = new Book() ; ,////’—-;>
o pe)

Book ¢ = new Book() ;

Declare two Book reference variables.
Create two new Book objects. Assign
the Book objects to the reference
variables.

The two book objects are now living
on the heap.

Active References: 2
Reachable Objects: 2

Book

b =c;

Assign the value of variable c to variable b.
The bits inside variable ¢ are copied, and
that new copy is stuffed into variable b.
Both variables hold identical values.

Both b and c refer to the same
object. Object 1 is abandoned
and eligible for Garbage Collec-
tion (GC).

Active References: 2
Reachable Objects: 1
Abandoned Objects: 1

The first object that b referenced, Object 1,
has no more references. It's unreachable. Book

c = null;

Assign the value null to variable c.
This makes c a null reference, meaning
it doesn’t refer to anything. But it’s still
a reference variable, and another Book
object can still be assigned to it.

Object 2 still has an active
reference (b), and as long
as it does, the object is not
eligible for GC.

Active References: 1 . \ <

. Levente . ‘an
null References: 1 null ve 4o an‘fjd“"%) <§
Reachable Objects: 1 (not \’V"',’)Ya"'\mc

Abandoned Objects: 1

58 chapter3

An array is like a tray of cups

The Java standard library includes lots of sophisticated
data structures including maps, trees, and sets (see
Appendix B), but arrays are great when you just want a
quick, ordered, efficient list of things. Arrays give you fast
random access by letting you use an index position to get
to any element in the array.

Every element in an array is just a variable. In other
words, one of the eight primitive variable types (think:
Large Furry Dog) or a reference variable. Anything you
would put in a variable of that type can be assigned to an

Declare an int array variable. An array variable is

a remote control fo an array object.
int[] nums;

primitives and references

array element of that type. So in an array of type int (int[]),
each element can hold an int. In a Dog array (Dog[]) each
element can hold...a Dog? No, remember that a reference
variable just holds a reference (a remote control), not the
object itself. So in a Dog array, each element can hold a
remote control to a Dog, Of course, we still have to make the
Dog objects...and you’ll see all that on the next page.

Be sure to notice one key thing in the picture—the
array is an object, even though it’s an array of
primitives.

Arrays are always ohjects,
whether they're declared to
hold primitives or object

Create a new int array with a length
of 7, and assign it to the previously
declared int [] variable nums

12/

references.

nums

Give each element in the array
some int value.

Remember, elements in an int
array are just int variables.

©

Y
733 nums[0] = 6;
;‘5 nums[1l] = 19;
¥ nums[2] = 44;
~ nums [3] = 42;
nums[4] = 10;
nums[5] = 20;
nums[6] = 1;

Arrays are objects too

new int[7];

7 int vaviables

UIUI

2 3 4

int int int

Ui

5
int

\¥]

0

int

U

I

int

int array object (int[])

Notice that the array itself is an ob\)cc{:,
even fhough the 7 elements ave P\rimi{:ivcs.

You can have an array object that’s declared to %old primitive values. In other words, the
array object can have elements that are primitives, but the array itself is never a primitive.
Regardless of what the array holds, the array itself is always an object!

you are here » 59

an array of objects
Make an array of Dogs

Declare a Dog array variable
Dog[] pets;

Create a new Dog array with
a length of 7, and assign it to
the previously declared Dog []
variable pets

new Dog [V

What's wmissing?

Dogs! We have an array
of Dog references, but no
actual Dog objects!

pets =

Dog Dog Dog Dog Dog Dog Dog

Dog array object (Dog[])
Dog[]

Create new Dog objects, and
assign them to the array
elements.

Remember, elements in a Dog
array are just Dog reference
variables. We still need Dogs!

009 ObJec,. 009 ObJeCf

pets[0] = new Dog() ;
pets[l] = new Dog();

— Yours to solve.

—@Oharpen your pencil —
i your p

What is the current value of
pets[2]?

What code would make
pets[3] refer to one of the
two existing Dog objects?

Dog array object (Dog[])

60 chapter 3

Java cares about type-

ce you’ve decla ed
::n’t :ut anything m_lt except
that are of a compatible array

For example, you ¢
hink (th: Ulr(\il: eDogs are i
inks that o
:‘Pk\\len)'l‘ zsk each one o t?cxr'k, a:d the
horror discover there's a ca ke
you can't stick a double info
(spillage, rememper?). You an,
apyte intoan int a.r'my,. e
will always fit info an int-Siz
known as an implicit wide
ils later;
::\\Z’rd'?lrtz compiler won't let you pu

wrong thing in an array, based on
declared type.

red an array, you

. i Dog
an't put a Cat info a
pr‘eT?y awful if someone
n the array, SO

lurking.) And
can, however, put
d cup. This is

ning. We'll get info
for now just remember

Dog

primitives and references

Control your Dog

name

(with a reference variable)

bark()
eat()
chaseCat()

Dog fido = new Dog() ;

fido.name = "Fido";

We created a Dog object and used

things
type-

n to their
nt array

e abyte

t the .
the array s

the dot operator on the reference
variable fido to access the name
variable.*

We can use the fido reference to
get the dog to bark() or eat() or
chaseCat).

fido.bark () ;
fido.chaseCat() ;

What happens if the Dog is in
a Dog array?
We know we can access the Dog’s instance

variables and methods using the dot
operator, but on what?

When the Dog is in an array, we don’t have
an actual variable name (like fido). Instead
we use array notation and push the remote
control button (dot operator) on an object
at a particular index (position) in the array:
Dog[] myDogs = new Dog[3];
myDogs [0] = new Dog() ;
myDogs[0] .name = "Fido";

myDogs[0] .bark() ;

*Yes we know we’re not demonstrating encapsulation here, but we're
trying to keep it simple. For now. We'll do encapsulation in Chapter 4.

you are here » 61

using references

class Dog {
String name;

public static void main (String[] args) { Dog

// make a Dog object and access it name

Dog dogl = new Dog(); 1| Lbyve

dogl.bark(); Steings ave 9 svcua\az:’cc bark()

dogl.name = "Bart"; <=—— of 0‘{)‘&" You e2n £ dhe t

. , 4 assign them 35 Y . e;‘ 0 at)
an . hou chaseCa
// now make a Dog array weve \’V"""‘E‘Vcs i:;;“{ ’
) N N
Dog[] myDogs = new Dog[3]; theyve ve eve —

// and put some dogs in it

myDogs [0] = new Dog () ;
myDogs[1] = new Dog();
myDogs [2] = dogl;

// now access the Dogs using the array
// references

myDogs [0] .name "Fred";

myDogs[1l] .name = "Marge";
// Hmmmm... what is myDogs[2] name?
System.out.print ("last dog’s name is ");

System.out.println (myDogs[2] .name) ;

// now loop through the array
// and tell all dogs to bark
int x = 0;

while (x < myDogs.length) { ,
myDogs [x] .bark () ; \aole ‘\cn?,‘h\‘
x=x+ 1; Pecays have ? V:; rumber

J khat apves 1% cwa‘f'

J deUA}\h*hca

public void bark() {
System.out.println(name + " says Ruff!");

public void eat () {
}

public void chaseCat () {
}

62 chapter3

A Dog example

File Edit Window Help

%java Dog

null says Ruff!

last dog’s name is Bart

Fred says Ruff!

Marge says Ruff!
Bart says Ruff!

—— BULLET POINTS

Variables come in two flavors: primitive and
reference.

Variables must always be declared with a name
and a type.

A primitive variable value is the bits representing
the value (5, ‘@', true, 3.1416, etc.).

A reference variable value is the bits
representing a way to get to an object on the
heap.

A reference variable is like a remote control.
Using the dot operator (.) on a reference
variable is like pressing a button on the remote
control to access a method or instance variable.

Areference variable has a value of nul1l when
it is not referencing any object.

An array is always an object, even if the array
is declared to hold primitives. There is no such
thing as a primitive array, only an array that
holds primitives.

primitives and references

BE the Compiler

Each of the Java files on this page
. Tepresents a complete source file.
. Your job is to play compiler and

\ determine whether each of these
A files will compile and run
without exception. If
they won’t, how would
you fix them?

A B
class Books { class Hobbits {
String title; String name;
String author;
} public static void main(String[] args) {
Hobbits[] h = new Hobbits[3];
class BooksTestDrive { int z = 0;

public static void main(String[] args) {

Books[] myBooks = new Books[3]; while (z < 4) {
int x = 0; z =z + 1;
myBooks [0] .title = "The Grapes of Java"; h[z] = new Hobbits();
myBooks[1].title = "The Java Gatsby"; h[z].name = "bilbo";
myBooks[2].title = "The Java Cookbook"; if (z == 1) {
myBooks [0] .author = "bob"; h(z].name = "frodo";
myBooks[1l].author = "sue"; }
myBooks[2] .author = "ian"; if (z == 2) {
h(z].name = "sam";
while (x < 3) { }
System.out.print (myBooks[x].title); System.out.print (h[z].name + " is a ");
System.out.print (" by "); System.out.println("good Hobbit name");
System.out.println (myBooks[x].author); }

X =x+1; }

—> Answers on page 68.

you are here » 63

exercise: Code Magnets

Code Magnets

A working Java program is all scrambled up
on the fridge. Can you reconstruct the code
snippets to make a working Java program
that produces the output listed below?
Some of the curly braces fell on the floor
and they were too small to pick up, so feel
free to add as many of those as you need!

ref = index[y];

int ref;

while (y < 4)

System.out.println(islands[ref]);

=1

index (0]

index[1] = 3i
index[2] = 0;
index[3) = 27

String [] islands = new String[4];

System.out.print ("island = ");

new 1nt[41;

File Edit Window Help Sunscreen
class TestArrays {

% java TestArrays
island = Fiji
island = Cozumel

public static void main(String [1 args)

{

island Bermuda
island = Azores

64 chapter3 —> Answers on page 68.

primitives and references

class Triangle e
iang { L use 3 sc‘aa\«a’c

double area; (gomchmeswcd° avc&x$n5k9
int height; Lesk ¢ass betause ‘: .
; he .
int length; save spate on the ©
00] Puzzle

Your job is to take code snippets from
the pool and place them into the

blank lines in the code. You may
use the same snippet more than
once, and you won't need to use

public static void main(String[] args) {

while () A
all the snippets. Your goal is to
make a class that will compile and
run and produce the output listed. __ .height = (x + 1) * 2;
.length = x + 4;

Output

System.out.print ("triangle " + x + ", area");

File Edit Window Help Bermuda

System.out.println(" = " + .area);
%java Triangle
triangle 0, area }
triangle 1, area
triangle 2, area x = 27;
triangle 3, area Triangle t5 = ta[2];
Yy = ta[2].area = 343;
System.out.print("y = " + y);
Bonus Question! System.out.println(", t5 area = " + tb.area);
For extra bonus points, use snippets }
from the pool to fill in the missing void setArea() {

output (above). = (height * length) / 2;

} Note: Each snippet
: from the pool can be
used more than once!

4, t5area=18.0
4, t5area=343.0

area)
27,t5area=18.0 int x;
ta.area it 1
S i ; — .
ta.x.area 27,15 area =343.0 int y 0 X=X+ 2' ta.x
INtx=0; X=X+2;
’ ta(x
/ y ta[x].area ta[x] = setArea(); intx=1; X=X -1; taEx; X <4
Triangle [] ta = new Triangle(4); ta-x=setArea(); inty=yx;

. x<5
Triangle ta = new [] Triangle[4]; talX]setAreal); 280 ta=newTriangle(;

riangle [] ta = new Triangle[4]; 30.0 talx] = new Triangle();
= . ta.x = new Triangle();

—> Answers on page 69.

you are here » 65

puzzle: Heap o’ Trouble

A Heap o' Trouble

A short Java program is listed to the
right. When*“// do stuff”is reached,
some objects and some reference vari-
ables will have been created. Your task
is to determine which of the reference
variables refer to which objects. Not all
the reference variables will be used, and
some objects might be referred to more
than once. Draw lines connecting the
reference variables with their matching
objects.

Tip: Unless you're way smarter than we
are, you probably need to draw dia-
grams like the ones on page 57-60 of
this chapter. Use a pencil so you can
draw and then erase reference links (the
arrows going from a reference remote
control to an object).

—> Answers on page 69.

66 chapter3

class HeapQuiz {
int id = 0;

public static void main(String[] args) {
int x = 0;
HeapQuiz[] hg = new HeapQuiz[5];
while (x < 3) {
hg[x] = new HeapQuiz():;
hglx].id = x;

X x + 1;

}
hg[3] = hqgll];
hg[4] = hqll];
hg[3] = null;
hg[4] = hqlO0];
hg[0] = hqg[3];
hg[3] = hql2];
hg[2] = hq[O0];
// do stuff

}

}
Reference Variables: HeapQuiz Objects:

primitives and references

The case of the pilfered references

It was a dark and stormy night. Tawny strolled into the programmers’ bullpen like she owned
the place. She knew that all the programmers would still be hard at work, and she wanted help.
She needed a new method added to the pivotal class that was to be loaded into the client’s
new top-secret Java-enabled cell phone. Heap space in the cell phone’s memory was tight, and
everyone knew it. The normally raucous buzz in the bullpen fell to silence as Tawny eased her
way to the white board. She sketched a quick overview of the new method’s functionality and
slowly scanned the room. “Well folks, it’s crunch time,” she purred. “Whoever creates the most
9 e memory efficient version of this method is coming with me to the client’s launch party on Maui
FIV@—MInute tomorrrc})/w...to help me install the new software.” ¢ P

M}’Stel’ y The next morning Tawny glided into the bullpen. “Ladies and Gentlemen,” she smiled,
“the plane leaves in a few hours, show me what you’ve got!”” Bob went first; as he
began to sketch his design on the white board, Tawny said, “Let’s get to the point Bob,
show me how you handled updating the list of contact objects.” Bob quickly drew a
code fragment on the board:

Contact [] contacts = new Contact[10];

while (x < 10) { // make 10 contact objects
contacts[x] = new Contact();
Xx =x + 1;

}

// do complicated Contact list updating with contacts

“Tawny, I know we’re tight on memory, but your spec said that we had to be able to access
individual contact information for all ten allowable contacts; this was the best scheme I could
cook up,” said Bob. Kate was next, already imagining coconut cocktails at the party, “Bob,”
she said, “your solution’s a bit kludgy, don’t you think?”” Kate smirked, “Take a look at this
baby”:

Contact contactRef;

while (x < 10) { // make 10 contact objects
contactRef = new Contact();
x = x + 1;

}

// do complicated Contact list updating with contactRef

“I saved a bunch of reference variables worth of memory, Bob-o-rino, so put away your
sunscreen,” mocked Kate. “Not so fast Kate!” said Tawny, “you’ve saved a little memory, but
Bob’s coming with me.”

Why did Tawny choose Bob’s method over Kate’s, when Kate’s used less memory?

—> Answers on page 69.

you are here » 67

exercise solutions

Exegcise SoLutions

Sharpen your pencil (from page 52)

o U1 b W N

short

int x = 34.5; X 7. s =y; X
boolean boo = x;X 8. byte b = 3;
int g = 17; 9. byte v = b;

int y = g,b/’ 10. short n = 12;/
y =y + 105 11. v = n; X
s; =

Code Magnets (from page 64)

class TestArrays {

public static void main(String[] args) {

int[] index = new int([4];

index[0]
index[1]

index[2] =
index[3] = 2;

o W =

String[] islands = new String[4];

islands[0]
islands[1]
islands[2]

[3]
int yv = 0;

islands

int ref;

while (y < 4)

"Bermuda";
"Fiji";
"Azores";
"Cozumel";

{

ref = index[y];

System.out.print ("island = ");

System.out.println(islands[ref]);
y=vy+1;

File Edit Window Help Sunscreen

% java
island

TestArrays

island =

island
island =

68 chapter3

Fiji
Cozumel
Bermuda
Azores

A int x = 0;

BE the Compier (from page 63)

class Books {
String title;
String author;

}

class BooksTestDrive
public static void main(String[] args) {
Books|[] myBooks = new Books[3];
. We have to

P\CV'\C""\:'CY khe Book

myBooks[0] = new Books(); ly make
myBooks[1] = new Books(); 2 _"a,l|
myBooks[2] = new Books(); objects -
myBooks[0].title = "The Grapes of Java";

]
myBooks[1].title = "The Java Gatsby";
myBooks[2].title = "The Java Cookbook";
myBooks [0] .author = "bob";
myBooks[1].author = "sue";
myBooks [2] .author = "ian";

while (x < 3) {
System.out.print (myBooks[x].title);
System.out.print (" by ");
System.out.println (myBooks[x].author);
x=x+1;

}

class Hobbits {
String name;

public static void main(String[] args) {
Hobbits[] h = new Hobbits[3];

intz=-1; Remember: .
i . : rays
Whlzle:(zz<+2)l{; With element & / ¥s start
h[z] = new Hobbits();
B h(z].name = "bilbo";
if (z == 1) {
h{z].name = "frodo";
}
if (z == 2) {
h{z].name = "sam";

}
System.out.print (h[z].name + " is a ");
System.out.println("good Hobbit name");

‘% Puzz]e Solutions

Poo] Puzzle (from page 65)

class Triangle {
double area;
int height;
int length;

public static void main (String[] args) {

}

intx=0;
Triangle[] ta = new Triangle[4];
while (x<4) {

ta[x] = new Triangle();

ta[x].height = (x + 1) * 2;
talx].length = x + 4;
ta[x].setAreal();

System.out.print ("triangle " + x +
", area");
System.out.println(" = " + ta[x].area);
x=x+1;
}
inty=x;
x = 27;
Triangle t5 = tal2];
tal[2] .area = 343;
System.out.print ("y = " + vy);
System.out.println (", t5 area = " +
t5.area);

void setArea () {

}

area = (height * length) / 2;

File Edit Window Help Bermuda
%$java Triangle
triangle 0, area = 4.0
triangle 1, area = 10.0
triangle 2, area = 18.0

triangle 3, area = 28.0
y = 4, 1t area = 343.0

primitives and references

Five-Minufe Mystery
(from page 67)

The case of the pilfered references

Tawny could see that Kate’s method had a serious flaw.
It’s true that she didn’t use as many reference variables
as Bob, but there was no way to access any but the last
of the Contact objects that her method created. With each
trip through the loop, she was assigning a new object
to the one reference variable, so the previously refer-
enced object was abandoned on the heap—unreachable.
Without access to nine of the ten objects created, Kate’s
method was useless.

(The software was a huge success, and the client gave Tawny and Bob an extra

week in Hawaii. We'd like to tell you that by finishing this book you too will get stuff
like that.)

A Heap o Trouble (from page 66)

Reference Variables:

HeapQuiz Objects:

you are here » 69

4 methods use instance variables

How Objects Behave

Let's keep those little
variables private, OK?

State affects behavior, behavior affects state. we know that objects

have state and behavior, represented by instance variables and methods. But until now, we
haven't looked at how state and behavior are related. We already know that each instance of a
class (each object of a particular type) can have its own unique values for its instance variables.
Dog A can have a name “Fido” and a weight of 70 pounds. Dog B is “Killer” and weighs 9 pounds.
And if the Dog class has a method makeNoise(), well, don’t you think a 70-pound dog barks a
bit deeper than the little 9-pounder? (Assuming that annoying yippy sound can be considered
a bark.) Fortunately, that’s the whole point of an object—it has behavior that acts on its state. In
other words, methods use instance variable values. Like, “if dog is less than 14 pounds, make

yippy sound, else..” or “increase weight by 5." Let’s go change some state.

this is a new chapter 71

objects have state and behavior

Rewewmber: a class desceribes what an
object knows and what an object does

A class is the blueprint for an object. When you
write a class, youre describing how the JVM should
make an object of that type. You already know that
every object of that type can have different wstance
variable values. But what about the methods?

Can every object of that type have different
wethod behavior?

Well...sort of *

Every instance of a particular class has the same
methods, but the methods can behave differently based
on the value of the instance variables.

The Song class has two instance variables, fitle and
artist. When you call the play() method on an the
instance, it will play the song represented by the
value of the #itle and artist instance variables for that
instance. So, if you call the play() method on one
instance, you’ll hear the song “Havana” by Cabello,
while another instance plays “Sing” by Travis. The
method code, however, is the same.

void play() {

Song

instance |
variables |artist knows
(state)

setTitle()
methods setArtist() does
(behavior) play()

es
Q.\ Ve '\'\S*/anb

ok t\ass Sord

My Way

Sinatra

Grateful ‘
Dead

soundPlayer.playSound(title, artist);

Song songl = new Song() ;
songl.setArtist ("Travis") ; w'\\\ Laust
songl.setTitle ("Sing") ;

Song song2 = new Song() ;
song2.setArtist ("Sex Pistols");

song2.setTitle ("My Way") ;

*Yes, another stunningly clear answer!

72 chapter 4

X -mg\',a'\“

Aos
Ay Y\ai(;‘:é\» Yo paY

Song

X\ Song

s2.play();
sl.play();

Calling play() on this i
will tause IMYO;/;/”I&.Q S“S:;tc

(but not the Sinatra one).

methods use instance variables

The size affects the bark

A small Dog’s bark is different from a big Dog’s bark.

The Dog class has an instance variable size that the bark()
method uses to decide what kind of bark sound to make.

@ Bark Different.

Dog
class Dog { size
. . name
int size;
String name; bark()
void bark () {

if (size > 60) {
System.out.println ("Wooof! Wooof!");
} else if (size > 14) {
System.out.println ("Ruff! Ruff!");
} else {

System.out.println("Yip! Yip!");

class DogTestDrive {

public static void main(Stringl[] args) {
Dog one = new Dog();
one.size = 70;
Dog two = new Dog();
two.size = 8;
Dog three = new Dog () ;

three.size = 35;

File Edit Window Help

one.bark () ;
two.bark () ; %java DogTestDrive

three.bark(); Wooof! Wooof!
} Yip! Yip!
} Ruff! Ruff!

you are here » 73

method parameters

You can send things to a method

Just as you expect from any programming language, you can pass values into your
methods. You might, for example, want to tell a Dog object how many times to
bark by calling:

d.bark (3) ;

Depending on your programming background and personal preferences, you might
use the term arguments or perhaps parameters for the values passed into a method.
Although there are formal computer science distinctions that people who wear lab
coats (and who will almost certainly not read this book) make, we have bigger fish
to fry in this book. So you can call them whatever you like (arguments, donuts, hair-
balls, etc.) but we're doing it like this:

A caller passes arguments. A method takes parameters.

Arguments are the things you pass into the methods. An argument (a value like
2, Yoo, or a reference to a Dog) lands face-down into a...wait for it...parameter.
And a parameter is nothing more than a local variable. A variable with a type and
a name that can be used inside the body of the method.

But here’s the important part: If a method takes a parameter, you must
pass it something when you call it. And that something must be a value of
the appropriate type.

Dog d = new Dog() ;

Call the bark method on the Dog refer- .
ence, and pass in the value 3 (as the d.bark(3);

argument to the method). h_ avgument

value 3 are delivered into the
bark method.

e The bits representing the int

00'»\
Paramete,. $ The bits land in the numOfBarks
' parameter (an int-sized variable).
J
voild bark (int numOfBarks) {
while (numOfBarks > 0) {

System.out.println("ruff");

Use the numOfBarks
parameter as a variable in
the method code.

numOfBarks = numOfBarks - 1;

}

74 chapter4

methods use instance variables

You can get things back from a method

Methods can also return values. Every method 1s declared with a return
type, but until now we’ve made all of our methods with a void return
type, which means they don’t give anything back.

void go () {
}

But we can declare a method to give a specific type of value back to
the caller, such as:

Cute...
but not exactly what I
was expecting.

int giveSecret() {
return 42;

}

If you declare a method to return a value, you must return
a value of the declared type! (Or a value that is compatible
with the declared type. We'll get into that more when we
talk about polymorphism in Chapters 7 and 8.)

Whatever you say
you’ll give back, you
better give back!

int theSec) life.giveSecret() ;

S
Twese OFL a
" o X2 ave veturne 4

The biks VEPETU, thod, and 2"

m the g\chct,rc thed, 0
f:oh\\c vanable named theSel
return @
| |

you are here » 75

multiple arguments

You can send more than one thing
to a method

Methods can have multiple parameters. Separate them with
commas when you declare them, and separate the argu-
ments with commas when you pass them. Most importantly,
if a method has parameters, you must pass arguments of the
right type and order.

Calling a two-parameter method and sending
it two arguments
void go () {
TestStuff t = new TestStuff ()
t.takeTwo (12, 34); The ar
o as?umcn{:s You Pass |apd in £
} Z Passed '(il'ic»\. Fi he Same order

s
:‘ Parameter, sqp arument lands ;
Parameter, 3pq

void takeTwo (int x, int y) {
int z = x + y;

System.out.println("Total is " + z);

You can pass variables info a method, as long as
the variable type matches the parameter type

ke *
void gol) | and \a\:\g\;‘b w 12“
N it R
int foo = 7; The “a\‘;;:amc’cﬁ*;‘%; .:\o’oo ("g‘i‘:‘ \;&5 L
int bar = 3; ?Qt“\l'(;\w\ *ﬁ\f‘\:&,cs“ ;_],;,-\:“\)3‘-
t.takeTwo (foo, bar); V-*"_\i::&,\ca\ ko e ™
ave
} \
void takeTwo (int x, int y) { 2 [L's the same
_ What's the value °§ 7‘0" ‘addcd 00 + bar
int z = x + y; vesult ‘[‘”_‘jd SCJC ‘ azscd them into the
System.out.println("Total is " + z); at the Bm¢ \fo“d\,)
{_lachwo VO\C{\‘O

76 chapter 4

methods use instance variables

Java is pass-by-value.

That means pass-by-copy.

S
000\\ . \
. . petter? Try it- REP t
_ Declare an int variable O, like you @ 40 8 - own, Better Ve
int x = 7; and assign it the value dumb second \\\"\Z\;\amg with your own Words
int '7'. The bit pattern for replace the V::; forget it
7 goes into the variable and you'l "
named x.
@ Declare a method with an int
void go(int z){ } parameter named z.
int
Py of x .
RN < 6 Call the go() method, passing
O P the variable x as the argument.
The bits in x are copied, and
the copy lands in z.
int . . int
foo.go (x) ; void go(int z){ }
x doesn’t thange N L adz arent 0000 Change the value of z inside
e if 2 does S ometked o the method. The value of x
@ doesn't change! The argument
.............. @ passed to the z parameter was
it int only a copy of x.
void go(int z){ The method can't change the
z =0; bits that were in the calling
variable x.

you are here » 77

arguments and return values

therejare no
Dumb Questions
< What happens if the argument you want to
pass is an object instead of a primitive?

A- You'll learn more about this in later chapters,
but you already know the answer. Java passes
everything by value. Everything. But...value means
bits inside the variable. And remember, you don’t
stuff objects into variables; the variable is a remote
control—a reference to an object. So if you pass a
reference to an object into a method, you're passing
a copy of the remote control. Stay tuned, though,
we'll have lots more to say about this.

Q' Can a method declare multiple return
values? Or is there some way to return more than
one value?

A- Sort of. A method can declare only one return
value. BUT...if you want to return, say, three int
values, then the declared return type can be an int
array. Stuff those ints into the array, and pass it on
back. It's a little more involved to return multiple
values with different types; we'll be talking about
that in a later chapter when we talk about ArrayList.

Q; Do | have to return the exact type | declared?

A- You can return anything that can be implicitly
promoted to that type. So, you can pass a byte where
an int is expected. The caller won't care, because the
byte fits just fine into the int the caller will use for
assigning the result. You must use an explicit cast
when the declared type is smaller than what you're
trying to return (we'll see these in Chapter 5).

Q: Do | have to do something with the return
value of a method? Can | just ignore it?

A: Java doesn't require you to acknowledge a
return value. You might want to call a method with

a non-void return type, even though you don’t care
about the return value. In this case, you're calling

the method for the work it does inside the method,
rather than for what the method gives returns. In
Java, you don’t have to assign or use the return value.

78 chapter 4

"Reminder: Java
cares about type!

You can’t return a Giraffe when
the return type is declared

as a Rabbit. Same thing with
parameters. You can’t pass a

1) Jzy Giraffe into a method that takes
eyl a Rabbit.

Variable ’@5 <

—— BULLET POINTS

= Classes define what an object knows and what an
object does.

= Things an object knows are its instance variables
(state).

= Things an object does are its methods (behavior).

= Methods can use instance variables so that objects
of the same type can behave differently.

= Amethod can have parameters, which means you
can pass one or more values in to the method.

= The number and type of values you pass in must
match the order and type of the parameters
declared by the method.

= Values passed in and out of methods can be
implicitly promoted to a larger type or explicitly cast
to a smaller type.

= The value you pass as an argument to a method
can be a literal value (2, ‘c’, etc.) or a variable of
the declared parameter type (for example, x where
X is an int variable). (There are other things you
can pass as arguments, but we're not there yet.)

= Amethod must declare a return type. A void return
type means the method doesn't return anything.

= |fa method declares a non-void return type, it must
return a value compatible with the declared return

type.

Cool things you can do with parameters

and return types

Now that we’ve seen how parameters and return types work, it’s time
to put them to good use: let’s create Getters and Setters. If you're
into being all formal about it, you might prefer to call them Accessors
and Mutators. But that’s a waste of perfectly good syllables. Besides,
Getters and Setters fits a common Java naming convention, so that’s
what we’ll call them.

Getters and Setters let you, well, get and set things. Instance variable val-
ues, usually. A Getter’s sole purpose in life is to send back, as a return
value, the value of whatever it is that particular Getter is supposed to
be Getting. And by now; it’s probably no surprise that a Setter lives and
breathes for the chance to take an argument value and use it to set the
value of an instance variable.

class ElectricGuitar {
String brand;
int numOfPickups;
boolean rockStarUsesIt;

String getBrand() {
return brand;

}

void setBrand(String aBrand) ({
brand = aBrand;

}

int getNumOfPickups () {
return numOfPickups;

}

void setNumOfPickups (int num) {
numOfPickups = num;

}

boolean getRockStarUsesIt() {
return rockStarUsesIt;

}

void setRockStarUsesIt (boolean yesOrNo) {
rockStarUsesIt = yesOrNo;

}

methods use instance variables

ElectricGuitar

brand
numOfPickups
rockStarUseslt

—_

getBrand()
setBrand()
getNumOfPickups()
setNumOfPickups()

getRockStarUseslt()
setRockStarUseslt()

No‘u" Using
t\,\csc v\a"‘-"‘?)
tonvent]

) £o\\OW‘“5
¥ andard th3
oull see n 19

1% Java tode

you are here » 79

real developers encapsulate

Encapsulation

Do it or risk huwiliation and
ridicule.

Until this most important moment, we’ve
been committing one of the worst OO faux
pas (and we’re not talking minor violation
like showing up without the “B” in BYOB).
No, we’re talking Faux Pas with a capital
“I” And “P”

Our shameful transgression?
Exposing our data!

Here we are, just humming along without a
care in the world leaving our data out there
for anyone to see and even touch.

You may have already experienced that
vaguely unsettling feeling that comes with
leaving your instance variables exposed.

Exposed means reachable with the dot opera-
tor, as in:

theCat.height = 27;

Think about this idea of using our remote
control to make a direct change to the Cat
object’s size instance variable. In the hands of
the wrong person, a reference variable (remote
control) is quite a dangerous weapon. Because
what’s to prevent:

theCat.height = 0;

This would be a Bad Thing. We need to build
setter methods for all the instance variables,
and find a way to force other code to call the
setters rather than access the data directly.

80 chapter4

Jen says you're
well-encapsulated...

tev
i dy o call a set
B\I{—i:):; me:z:v::&;&& the cat from

me

unaf,ccv’cab\c Gize thanges:

public void setHeight(int ht) {
if (ht > 9) { W
. € put i
R
Mminj—
} mum ¢4 he.‘a;,g"

Hide the data

Yes, it ¢s that simple to go from
an implementation that’s just
begging for bad data to one that
protects your data and protects
your right to modify your
implementation later.

OK, so how exactly do you /fide
the data? With the public
and private access modifiers.
You're familiar with public—
we use it with every main
method.

Here’s an encapsulation starter
rule of thumb (all standard
disclaimers about rules of
thumb are in effect): mark your
instance variables private and
provide public getters and
setters for access control. When
you have more design and cod-
ing savvy in Java, you will prob-
ably do things a little differently,
but for now, this approach will
keep you safe.

Mark instance
variables private.

Mark getters and
setters public.

“Sadly, Bill forgot to
encapsulate his Cat class and
ended up with a flat cat.”

(overheard at the water cooler)

methods use instance variables

Java Exposed

This week’s interview:
An Object gets candid about encapsulation.

HeadFirst: What's the big deal about encapsulation?

Object: OK, you know that dream where you'’re giving a talk to 500 people when you
suddenly realize you're naked?

HeadFirst: Yeah, we've had that one. It’s right up there with the one about the Pilates
machine and...no, we won’t go there. OK; so you feel naked. But other than being a little
exposed, 1s there any danger?

Obiject: Is there any danger? Is there any danger? [starts laughing] Hey, did all you other
mstances hear that, “Is there any danger?” he asks? [falls on the floor laughing]

HeadFirst: What’s funny about that? Seems like a reasonable question.

Object: OK, I'll explain it. It’s [bursts out laughing again, uncontrollably]
HeadFirst: Can I get you anything? Water?

Object: Whew! Oh boy. No I'm fine, really. I'll be serious. Deep breath. OK, go on.
HeadFirst: So what does encapsulation protect you from?

Object: Encapsulation puts a force-field around my instance variables, so nobody can set
them to, let’s say, something wmappropriate.

HeadFirst: Can you give me an example?

Object: Happy to. Most instance variable values are coded with certain assumptions
about their boundaries. Like, think of all the things that would break if negative numbers
were allowed. Number of bathrooms in an office. Velocity of an airplane. Birthdays.
Barbell weight. Phone numbers. Microwave oven power.

HeadFirst: I see what you mean. So how does encapsulation let you set boundaries?

Object: By forcing other code to go through setter methods. That way, the setter method
can validate the parameter and decide if it’s doable. Maybe the method will reject it and
do nothing, or maybe it’ll throw an Exception (like if it’s a null Social Security number
for a credit card application), or maybe the method will round the parameter sent in to
the nearest acceptable value. The point is, you can do whatever you want in the setter
method, whereas you can’t do anpthing if your instance variables are public.

HeadFirst: But sometimes I see setter methods that simply set the value without check-
ing anything, If you have an instance variable that doesn’t have a boundary, doesn’t that
setter method create unnecessary overhead? A performance hit?

Object: The point to setters (and getters, too) is that you can change your mind later,
without breaking anybody else’s code! Imagine if half the people in your com-

pany used your class with public instance variables, and one day you suddenly realized,
“Oops—there’s something I didn’t plan for with that value, I'm going to have to switch

to a setter method.” You break everyone’s code. The cool thing about encapsulation is
that you get to change your mind. And nobody gets hurt. The performance gain from using
variables directly is so miniscule and would rarely—f ever—be worth it.

you are here » 81

how objects behave

Encapsulating the
GoodDog
GoodPog class class Gooddog {
.Sb“u,/private int size; size
\\c W
Ma_“-‘o){’c Y&s
vad public int getSize() { getSizel)
return size;)
} setSize()
bark()
)
Make the ‘5‘1&’“ “\':\'\f,. —>public void setSize (int s) {
c‘h\\od‘s Y/ .
setker ™ size = s;

void bark () {

’ if (size > 60
Even U\o?h the methods don't veally if (size)

d w\c{:ionah{'—y; the nite {2‘\""5 System.out.printin (Mooof: MWooofit)
fad’c\\vajcwyou ¢an thange Your mind later. } else if (size > 14) {
S
l‘/cm\ ¢an tome back and make 3 method System.out.println ("Ruff! Ruff!");

safer, faster, better. } else {
System.out.println ("Yip! Yip!");

Any place where a
particular value can

class GoodDogTestDrive {

be used, a method public static void main(String[] args) {
call that returns that GoodDog one = new GoodDog () ;
type can be used one.setSize (70);

GoodDog two = new GoodDog () ;
two.setSize (8);

instead Of: System.out.println ("Dog one: + one.getSize());
. System.out.println ("Dog two: " + two.getSize());
int x = 3 + 24;

one.bark();
you can say: two.bark () ;
int x = 3 + one.getSize(); }

82 chapter 4

methods use instance variables

How do objects in an array
behave?

Just like any other object. The only difference is how you
get to them. In other words, how you get the remote con-
trol. Let’s try calling methods on Dog objects in an array.

Declare and create a Dog array
to hold seven Dog references.

Dog[] pets;

new Dog[7] ;/

pets =

Dog[]

e Create two new Dog objects,
and assign them to the first
two array elements.
pets[0] = new Dog() ;
pets[1l] = new Dog() ;

6 Call methods on the two Dog
objects.

pets[0] .setSize (30) ;
int x = pets[0] .getSize();
pets[l] .setSize(8) ;

Dog array object (Dog[])

you are here » 83

initializing instance variables

Peclaring and initializing
instance variables

You already know that a variable declaration needs at least a name and
a type:

int size;

String name;

And you know that you can initialize (assign a value to) the variable at
the same time:

int size = 420;
String name = "Donny";

Instance variables
always get a
default value. If
you don’t explicitly
assign a value

to an instance
variable or you

don’t call a setter

But when you don’t initialize an instance variable, what happens when
you call a getter method? In other words, what is the value of an instance
variable before you initialize it?

method, the
instance variable
still has a value!

class PoorDog { but don
private int size; (/‘/ ’

private String name;

integers 0

I lellc int (’et ha{ v"l hcs vetur 27 Oat"' |ntS 0 0
W l { 4 {:U nt s 5
Slze () { V

return size;

} references null

booleans false

public String getName () {
return name;

}
}
2 \N\\\
public class PoorDogTestDrive { | o Yo* \\V\z
public static void main(String[] args) { Wha gomgie:

.. even
PoorDog one = new PoorDog() ; e

System.out.println("Dog size is " + one.getSize())
System.out.println("Dog name is " + one.getName()) ;
}

} skance vaviables)

\{ou don% have {-p -\V\.l‘{ja\.\zac :;C-(:au\‘{', va\vb NumbCY

because they always \navc) et O, booleans 9¢

= s luding Eh
r'\m'\J(AVCZ (o‘cdc‘:,(‘tv;gc‘énivncc vaviables get vull-
alse, and o) 3 vemote tontral fhat

(RCMCM\JCY, null \')us{ means

[med to an\/{:hing. A
isn lling / programme
‘::&::;’;J;\:L‘Sm attual ochLJc.)

File Edit Window Help CallVet

% java PoorDogTestDrive

Dog size is 0

Dog name is null

84 chapter4

The difference between instance
and local variables

Instance variables are declared
inside a class but not within a method.

class Horse {
private double height = 15.2;
private String breed;
// more code...

e Local variables are declared within a method.

class AddThing {
b INSTANCE variables
12;

int a;
int b =

public int add() {
int total = a + Db;
return total;

<—LOCAL vaviable

}

6 Local variables MUST be initialized before use!

class Foo {

public void go () { Wor't Lom\,\\c!! \{W tan
int x; d:z\avc % w\{:\\ov‘t a{: V\al\ub
i as Yyou ¥
EEm Y \;;{'flfgsg"‘z‘ {:hc\lcom\?'\\cr
} S~ freaks out-

File Edit Window Help

% javac Foo.java

Foo.java:4: variable x might

not have been initialized

int z = x + 3;
1l error A

methods use instance variables

Local variables do
NOT get a default
value! The compiler
complains if you
try to use a local
variable before

the variable is
initialized.

thereyare no

Dumb Questions

. What about method parameters?
How do the rules about local variables
apply to them?

A- Method parameters are virtually the
same as local variables—they’re declared
inside the method (well, technically they're
declared in the argument list of the method
rather than within the body of the method,
but they're still local variables as opposed to
instance variables). But method parameters
will never be uninitialized, so you'll never get
a compiler error telling you that a parameter
variable might not have been initialized.

Instead, the compiler will give you an error
if you try to invoke a method without giving
the arguments that the method needs. So
parameters are always initialized, because
the compiler guarantees that methods are
always called with arguments that match
the parameters. The arguments are assigned
(automatically) to the parameters.

you are here » 85

object equality

Comparing variables (primitives or references)

Sometimes you want to know if two primitives are the same; for example,

you might want to check an int result with some expected integer value. Use =={o comP are two
That’s easy enough: just use the == operator. Sometimes you want to know Pﬁmi—tives or to see if

if two reference variables refer to a single object on the heap; for example,

1s this Dog object exactly the same Dog object I started with? Easy as well: two I’efel’ences Pe{‘el’ to

just use the == operator. But sometimes you want to know if two objects are ‘ect
equal. And for that, you need the .equals() method. the same ObJ ‘

The idea of equality for objects depends on the type of object. For USe ﬂle e‘[ﬂ&lS() meﬂlOd
example, if two different String objects have the same characters (say, “my to see i{' two di{z‘erent

name”), they are meaningfully equivalent, regardless of whether they are .

two distinct objects on the heap. But what about a Dog? Do you want to ObJectS are eCLllal.

treat two Dogs as being equal if they happen to have the same size and

weight? Probably not. So whether two different objects should be treated (E.g., two different String ohjects that
as equal depends on what makes sense for that particular object type. We’ll both contain the characters “Fred”)
explore the notion of object equality again in later chapters, but for now,

we need to understand that the == operator is used only to compare the bits in two variables.

What those bits represent doesn’t matter. The bits are either the same, or they’re not.

To compare two primitives, use the == operator

The == operator can be used to compare two variables of any kind, and it simply compares Z’:‘c‘e f:i’(z Pattery are

; m
the bits. are c‘l“algu‘:o fhese two
if (a==b) {...} looks at the bits in a and b and returns true if the bit pattern is the same "y =
(although all the extra zeros on the left end don’t matter). e

e ™o
int a = 3; (There, e of
the \e 'L eave
byte b = 3; buk we don
heve .

if (a ==b) { // true } that int byte

To see if two references are the same (which means they refer to
- #
the same object on the heap) use the == operator The b; patt
Same f, €rns gy,

Remember, the == operator cares only about the pattern of bits in the variable. The rules are eq 37 dand ¢ ° ﬂfh
are the same whether the variable is a reference or primitive. So the == operator returns Using = Y
true if two reference variables refer to the same object! In that case, we don’t know what the
bit pattern is (because it’s dependent on the JVM and hidden from us), but we do know that O
whatever it looks like, ¢t will be the same for two references to a single object.

Foo a =new Foo() ;

o
“ee
A=

0)

Foo b = new Foo() ;

Foo ¢c = a; Foo

if (a ==b) { } // false a==¢is true

if (a==1¢) { } // true a==bis false Foo

if (b ==c¢) { } // false Foo

86 chapter4

methods use instance variables

BULLET POINTS

= Encapsulation gives you control over who changes the
data in your class and how.

= Make an instance variable private so it can’t be changed

keep rr]\:yc\I/‘g/Si»c’:sb les by accessing the variable directly.

private. If you want to = Create a public mutator method, e.g., a setter, to control
see them, you have to how other code interacts with your data. For example,
talk to my methods. you can add validation code inside a setter to make sure

the value isn’'t changed to something invalid.

= |nstance variables are assigned values by default, even
if you don't set them explicitly.

= [ocal variables, e.g., variables inside methods, are
not assigned a value by default. You always need to
initialize them.

= Use ==to check if two primitives are the same value.

= Use == to check if two references are the same, i.e., two
object variables are actually the same object.

= Use .equals() to see if two objects are equivalent (but
not necessarily the same object), e.g., to check if two
String values contain the same characters.

B harpen your pencil

2N int a = calcArea(7, 12);
y short ¢ = 7;
What’s legal? K E E P calcArea(c, 15);

Given the method below, which of
the method calls listed on the right h int d = calcArea(57);
are legal?
Put a checkmark next to the ones R I G H T calcArea(2, 3);
that are legal. (Some statements are
there to assign values used in the long t = 42;
method calls.) int £ = calcArea(t, 17);

int g = calcArea();
int calcArea(int height, int width) {

return height * width; calcArea() ;

} byte h = calcArea(4, 20);

int j = calcArea(2, 3, 5);
—> Answers on page 93.

you are here » 87

exercise: Be the Compiler

BE the Compiler

Each of the Java files on this page

. Tepresents a complete source file.

o Your job is fo play compiler and

A\ determine whether each of these files
| will compile. If they won’t
compile, how would you
fix them, and if they do
compile, what would he
their output?

class XCopy { class Clock {
String time;
public static void main(String[] args) {

int orig = 42; void setTime(String t) {
XCopy x = new XCopy(); time = t;
int y = x.go(orig); }
System.out.println(orig + " " + y);
} void getTime () {
return time;
int go(int arg) { }
arg = arg * 2; }

return arg;
} class ClockTestDrive {
} public static void main(String[] args) {
Clock ¢ = new Clock();

c.setTime ("1245");
String tod = c.getTime();
System.out.println("time: "+tod);

— Answers on page 93.

88 chapter 4

methods use instance variables

A bunch of Java components, in full costume, are playing a party
game, “Who am I?” They give you a clue, and you try to guess who
they are, based on what they say. Assume they always tell the truth
about themselves. If they happen to say something that could be
true for more than one attendee, then write down all for whom that
sentence applies. Fill in the blanks next to the sentence with the
names of one or more attendees.

9 Tonight’s attendees:
m‘. . instance variable, argument, return, getter, setter,
g encapsulation, public, private, pass by value, method

A class can have any number of these.

A method can have only one of these.

This can be implicitly promoted.

| prefer my instance variables private.

It really means “make a copy.”

Only setters should update these.

A method can have many of these.

| return something by definition.

| shouldn’t be used with instance variables.

| can have many arguments.

By definition, | take one argument.

These help create encapsulation.

| always fly solo.

—> Answers on page 93.

you are here » 89

puzzle: Mixed Messages

Mixed
Messages

A short Java program is listed to your right.
Two blocks of the program are missing.
Your challenge is to match the candidate
blocks of code (below) with the output
that you'd see if the blocks were inserted.

Not all the lines of output will be used, and
some of the lines of output might be used
more than once. Draw lines connecting
the candidate blocks of code with their
matching command-line output.

Candidates:

i<9 14 7
index < 5 9 5
i < 20 19 1
index < 5 14 1
i< 7 25 1
index < 7 7 7
i< 19 20 1
index < 1 20 5

90 chapter4

Possible output:

public class Mix4 {

int counter = 0;

public static void main (String[] args) {
int count = 0;

Mix4[] mixes = new Mix4[20];

int 1 = 0;
wnile ([]
mixes[i] = new Mix4();

mixes[i].counter = mixes[i].counter + 1;
count = count + 1;
count = count + mixes[i].maybeNew (i) ;
i=1+1;
}
System.out.println(count + " " +
mixes[1l].counter);

public int maybeNew (int index) {
Mix4 mix = new Mix4 ();
mix.counter = mix.counter + 1;
return 1;
}

return 0;

—> Answers on page 94.

methods use instance variables

public class Puzzled {
public static void main(String [] args) {

int number = 1;

Poo] Puzzle et o

while (1 < 6) {

\ Your job is to take code snippets from the
// pool and place them into the blank lines

// in the code. You may not use the same
snippet more than once, and you won't
need to use all the snippets. Your goal
is to make a class that will compile and J
run and produce the output listed.

number = number * 10;

int result = 0;
i=6;

result = result +

}

Output System.out.println("result " + result);
File Edit Window Help }
%$java Puzzle4 }
result 543345
class {
int intValue;
doStuff (int) |
if (intValue > 100) {
return
} else {
return

Note: Each snippet
from the pool can be
used only once!

values.doStuff(i);
values[il.doStuff(factor);

intValue =i; ; i
+ values[il.doStuff(i); . .
values.intValue = i; intValue + factor; Puzzle4
H * .
values[il.intValue = i; intValue intValue * (2 + factor); /¢ Int
H * .
valueslil.intValue = number; . intValue * (5 - facto); /514e() short
) actor intvalue * factor; lues [l = lueli):
uzzle4 [] values = new Puzzle4[6]; public values [i] = new Value(i);
Value [] values = new Value[6]; private =it values []1=new Value();

Value [] values = new Puzzle4[6]; ___. : i=i-1 values [i] = new Value();
= i values = new Value();

you are here » 91

puzzle: Five Minute Mystery

Five-Minute

Mystery

92

chapter 4

Fast Times in Stim-City

When Buchanan roughly grabbed Jai’s arm from behind, Jai froze. Jai knew that Buchanan was
as stupid as he was ugly and he didn’t want to spook the big guy. Buchanan ordered Jai into his
boss’s office, but Jai’d done nothing wrong (lately), so he figured a little chat with Buchanan’s
boss Leveler couldn’t be too bad. He’d been moving lots of neural-stimmers in the west side
lately, and he figured Leveler would be pleased. Black market stimmers weren’t the best money
pump around, but they were pretty harmless. Most of the stim-junkies he’d seen tapped out after
a while and got back to life, maybe just a little less focused than before.

Leveler’s “office” was a skungy-looking skimmer, but once Buchanan shoved him in, Jai could
see that it’d been modified to provide all the extra speed and armor that a local boss like Leveler
could hope for. “Jai my boy,” hissed Leveler, “pleasure to see you again.” “Likewise I’m sure...,’
said Jai, sensing the malice behind Leveler’s greeting, “We should be square Leveler, have [
missed something?” “Ha! You’re making it look pretty good, Jai. Your volume is up, but I’ve
been experiencing, shall we say, a little ‘breach’ lately,” said Leveler.

>

Jai winced involuntarily; he’d been a top drawer jack-hacker in his day. Anytime someone fig-
ured out how to break a street-jack’s security, unwanted attention turned toward Jai. “No way it’s
me man,” said Jai, “not worth the downside. I’m retired from hacking, I just move my stuff and

mind my own business.” “Yeah, yeah,” laughed Leveler, “I’m sure you’re clean on this
one, but I’ll be losing big margins until this new jack-hacker is shut out!” “Well, best
of luck, Leveler. Maybe you could just drop me here and I’ll go move a few more
“units’ for you before I wrap up today,” said Jai.

“I’m afraid it’s not that easy, Jai. Buchanan here tells me that word is you’re cur-
rent on Java NE 37.3.2,” insinuated Leveler. “Neural edition? Sure, I play around a

bit, so what?” Jai responded, feeling a little queasy. “Neural edition’s how I let the stim-
junkies know where the next drop will be,” explained Leveler. “Trouble is, some stim-junkie’s
stayed straight long enough to figure out how to hack into my Warehousing database.” “I need a
quick thinker like yourself, Jai, to take a look at my StimDrop Java NE class; methods, instance
variables, the whole enchilada, and figure out how they’re getting in. It should...,” “HEY!”
exclaimed Buchanan, “I don’t want no scum hacker like Jai nosin’ around my code!” “Easy big
guy,” Jai saw his chance, “I’m sure you did a top rate job with your access modi...” “Don’t tell
me, bit twiddler!” shouted Buchanan, “I left all of those junkie-level methods public so they
could access the drop site data, but I marked all the critical WareHousing methods private. No-
body on the outside can access those methods, buddy, nobody!”

“I think I can spot your leak, Leveler. What say we drop Buchanan here off at the corner and
take a cruise around the block?” suggested Jai. Buchanan clenched his fists and started toward
Jai, but Leveler’s stunner was already on Buchanan’s neck, “Let it go, Buchanan,” sneered Lev-
eler, “Keep your hands where I can see them and step outside. I think Jai and I have some plans

to make.”
What did Jai suspect?

Will he get out of Leveler’s skimmer with all his bones intact?

— > Answers on page 94.

WIIO Al'fl I 9 (from page 89)

Exercise SoLutions

Sharpen your pencil (from page 87)

int a calcArea (7,
short c 7;
calcArea (c,

12);

v

calcArea (57);

calcArea(2, 3);

15);

int d

long t = 42;

int £ = calcArea(t, 17);
int g = calcArea();
calcArea();

byte h = calcArea (4, 20);
int j = calcArea(2, 3, 5);

BE the Comyﬂer (from page 88)

methods use instance variables

Class ‘XCopy’ compiles and runs as it stands! The
outputis: ‘42 84'. Remember, Java is pass by value,
(which means pass by copy), and the variable ‘orig’ is
not changed by the go() method.

class Clock {
String time;

void setTime (String t) {
time = t;

}

String getTime () {
return time;

} . ‘Gekker
te: Qe
) t‘:{::rn tyre by

ethods have 2
dc(:'m.\t.\o“'

class ClockTestDrive {
public static void main(String[] args) {
Clock ¢ = new Clock();
c.setTime ("1245");
String tod = c.getTime();
System.out.println("time: " + tod);

}

A class can have any number of these.
A method can have only one of these.
This can be implicitly promoted.

| prefer my instance variables private.
It really means “make a copy.”

Only setters should update these.

A method can have many of these.

| return something by definition.

| shouldn’t be used with instance variables

| can have many arguments.
By definition, | take one argument.
These help create encapsulation.

| always fly solo.

instance variables, getter, setter, method

return

return,

argument

encapsulation

pass by value

instance variables

argument

getter
public
method
setter
getter,

return

setter, public, private

you are here » 93

puzzle solutions

Puzz]e Solutions

Poo] Puzzle (from page 91)

public class Puzzled {
public static void main (String[] args) {
Value[] values = new Value[6];
int number = 1;
int 1 = 0;
while (i < 6) {
values[i] = new Value();
valueslil.intValue = number;

number = number * 10;
i=i+1;

}

int result = 0;

i=6;

while (i > 0) {

i=i-1;

result = result + values[il.doStuff(i);
}

System.out.println ("result " + result);

}

class Value {
int intValue;

publicint dostuff (int factor) {
if (intValue > 100) {
return intValue * factor;
} else {
return intValue * (5 - factor);
}
}

Output

File Edit Window Help BellyFlop

%$java Puzzled

result 543345

94 chapter4

Five—Minu[e M}'Stel’y (from page 92)

What did Jai suspect?

Jai knew that Buchanan wasn’t the sharpest
pencil in the box. When Jai heard Buchanan
talk about his code, Buchanan never mentioned
his instance variables. Jai suspected that while
Buchanan did in fact handle his methods
correctly, he failed to mark his instance variables
private. That slip-up could have easily cost
Leveler thousands.

Mixed
Messages (from page %0)

Candidates: Possible output:
i< 9 14 7
index < 5 9 5
i< 20 19 1
index < 5 14 1
i< 7 25 1
index < 7 7 7
i< 19 / 20 1
index < 1 20 5

5 writing a program

Extra-Strength Methods

T can lift
heavy objects.

Let’s put some muscle in our methods. we dabbled with variables, played
with a few objects, and wrote a little code. But we were weak. We need more tools. Like
operators. We need more operators so we can do something a little more interesting than,
say, bark. And loops. We need loops, but what'’s with the wimpy while loops? We need for
loops if we're really serious. Might be useful to generate random numbers. Better learn
that too. And why don’t we learn it all by building something real, to see what it’s like to write
(and test) a program from scratch. Maybe a game, like Battleships. That's a heavy-lifting task,
so it'll take two chapters to finish. We'll build a simple version in this chapter and then build a

more powerful deluxe version in Chapter 6, Using the Java Library.

this is a new chapter 95

building a real game

Let’s build a Battleship-style
game: “Sink a Startup”

It’s you against the computer, but unlike the real Battleship
game, in this one you don’t place any ships of your own.
Instead, your job is to sink the computer’s ships in the fewest
number of guesses.

Oh, and we aren’t sinking ships. We’re killing ill-advised,
Silicon Valley Startups (thus establishing business relevancy
so you can expense the cost of this book).

Goal: Sink all of the computer’s Startups in the fewest
number of guesses. You're given a rating or level, based on
how well you perform.

Setup: When the game program is launched, the computer
places three Startups on a virtual 7 x 7 grid. When that’s
complete, the game asks for your first guess.

How you play: We haven’t learned to build a GUI yet,

so this version works at the command line. The computer
will prompt you to enter a guess (a cell) that you’ll type at
the command line as “A3,” “C5,” etc.). In response to your
guess, you'll see a result at the command-line, either “hit,”
“miss,” or “You sunk poniez” (or whatever the lucky Startup
of the day is). When you’ve sent all three Startups to that big
404 1n the sky, the game ends by printing out your rating.

ath bo?,
T X7 gvid E\S 3 “cell
A 4//
B
=
]
U 3
D poniez
E
F
G hacqi

0 1 2 3 4 5 6

’\ starts at zevo, like Java arrays

96 chapter5

You’re going to build the
Sink a Startup game, with
a7 x 7 grid and three
Startups. Each Startup
takes up three cells.

part of a game interaction

File Edit Window Help Sell
%$java StartupBust
Enter a guess A3
miss

Enter a guess B2
miss

Enter

miss

Enter a guess

hit

Enter a guess D3
hit

Enter a guess D4
Ouch! You sunk poniez
kill

Enter a guess G3
hit

Enter a guess

hit

Enter a guess G5
Ouch! You sunk hacqgi : (

All Startups are dead! Your stock
is now worthless

Took you long enough. 62 guesses.

writing a program

First, a high-level design

We know we’ll need classes and methods, but what A civele means
should they be? To answer that, we need more infor- Lack of Linish
mation about what the game should do. K ©

First, we need to figure out the general flow of the
game. Here’s the basic idea:

0 User starts the game.
Game setup

g Game creates three Startups

Get user

< guess Q

<

Game places the three Start- e
ups onto a virtual grid

Game play begins.

Repeat the following until there are
no more Startups:

remove
location cell

q\ A diamond

vepresents a
detision point.

Prompt user for a guess
(“AZ," “CO," eTC.)

remove
Startup

Check the user guess against
all Startups to look for a hit,
miss, or kill. Take appropri-
ate action: if a hit, delete cell
(A2, D4, etc.). If akill, delete
Startup.

still some
Startups
alive?

Game finishes.

Give the user a rating based on e display user
the number of guesses. score/rating

Now we have an idea of the kinds of things the
program needs to do. The next step is figuring out
what kind of objects we’ll need to do the work.
Remember, think like Brad rather than Laura (who
we met in Chapter 2, A Trip to Objectville); focus

first on the things in the program rather than the

game
over

procedures.
Whoa. A real flow chart.

you are here » 97

a simpler version of the game

The “Simple Startup Game”
a gentler introduction

It looks like we’re gonna need at least two classes, a Game

class and a Startup class. But before we build the full-
monty Sink a Startup game, we’ll start with a stripped-
down, simplified version, Simple Startup Game. We'll
build the simple version in #hs chapter, followed by the

and gives it a location on three cells in
the single row of seven cells.

Instead of "A2," "C4," and so on, the
locations are just integers (for example:
1,2,3 are the cell locations in this
picture):

o Game starts and creates ONE Startup

deluxe version that we build in the next chapter.

Everything is simpler in this game. Instead of a 2-D grid,

Z==

we hide the Startup in just a single row. And instead of three
Startups, we use one.

The goal is the same, though, so the game still needs to
make a Startup instance, assign it a location somewhere in
the row, get user input, and when all of the Startup’s cells
have been hit, the game is over. This simplified version

of the game gives us a big head start on building the full
game. If we can get this small
SimpleStartupGame

one working, we can scale it up

to the more complex one later.

In this simple version, the game SimpleStartup

class has no instance variables,
and all the game code is in the
main() method. In other words,

int [] locationCells

void Maif | int numOfpits

when the program is launched
and main() begins to run, it will
make the one and only Startup
instance, pick a location for it
(three consecutive cells on the
single virtual seven-cell row), ask
the user for a guess, check the

String checkYourself(int guess)

void setLocationCeHs(int[] loc)

guess, and repeat until all three cells have
been hit.

Keep in mind that the virtual row is...vzrtual. In other
words, it doesn’t exist anywhere in the program. As long
as both the game and the user know that the Startup

1s hidden in three consecutive cells out of a possible
seven (starting at zero), the row itself doesn’t have to be
represented in code. You might be tempted to build an
array of seven ints and then assign the Startup to three
of the seven elements in the array, but you don’t need to.
All we need is an array that holds just the three cells the
Startup occupies.

98 chapter5

2 3 4 5 6

Game play begins. Prompt user for
a guess; then check to see if it hit
any of the Startup’s three cells.
If a hit, increment the numOfHits
variable.

Game finishes when all three cells have
been hit (the numOfHits variable val-
ue is 3), and the user is told how many
guesses it took to sink the Startup.

A complete game interaction

File Edit Window Help Destro

%$java SimpleStartupGame

enter a number 2

hit

enter a number 3

hit

enter a number 4

miss

enter a number 1

kill

You took 4 guesses

Peveloping a Class

As a programmer, you probably have a methodology/
process/approach to writing code. Well, so do we. Our
sequence is designed to help you see (and learn) what we’re
thinking as we work through coding a class. It isn’t necessarily
the way we (or you) write code in the Real World. In the Real
World, of course, you’ll follow the approach your personal
preferences, project, or employer dictate. We, however, can
do pretty much whatever we want. And when we create a
Java class as a “learning experience,” we usually do it like
this:

O Figure out what the class is supposed to do.

O List the instance variables and methods.

writing a program

The three things we’ll write for
each class:

prep code test code

This bar is displayed on the next set of pages to tell
you which part you're working on. For example, if
you see this picture at the top of a page, it means
you're working on prep code for the SimpleStartup
class.

SimpleStartup class

prep code rst code

prep code

O Write prep code for the methods. (You'll see
this inPus':)a moment) (A form of pseudocode, to help you focus on
J ’ the logic without stressing about syntax.
O Write test code for the methods.
test code
O Implement the class. A class or methods that will test the real code
O Test the methods and validate that it's doing the right thing.
[0 Debug and reimplement as needed. real code
The actual implementation of the class. This
O Express gratitude that we don't have to test is where we write real Java code.
our so-called learning experience app on
actual live users.
To DO:
simplestartuP class
) O write prep code
@ RAaNN O write test code
PQWEWR O write final Java code
Flex those dendrites. simplestart“peame
How would you decide which class or classes class

to build first, when you're writing a program?
Assuming that all but the tiniest programs
need more than one class (if you're following
good OO principles and not having one class
do many different jobs), where do you start?

O write prep code

[writetesteod® [rot needed]

O write fina

| Java code

you are here » 99

SimpleStartup class

prep code rst code

SimpleStartup

int] locationCells
int numOfHits

String checkYourself(int guess)

void setLocationCells(intf] loc)

You’ll get the idea of how prep code (our version of pseudocode) works as you read
through this example. It’s sort of halfway between real Java code and a plain English
description of the class. Most prep code includes three parts: instance variable
declarations, method declarations, method logic. The most important part of prep code
1s the method logic, because it defines what has to happen, which we later translate into
how when we actually write the method code.

DECLARE an int array to hold the location cells. Call it locationCells.
DECLARE an int to hold the number of hits. Call it numOfHits and SET it to 0.

100 chapter5

DECLARE a checkYourself() method that takes a int for the user's guess (I, 3, etc.), checks it,
and returns a result representing a “hit,” “miss,” or “kill.”

DECLARE a setlocationCells() setter method that takes an int array (which has the three cell
locations as ints (2, 3,4, etc.)).

METHOD: String checkYourself(int userGuess)
GET the user guess as an int parameter
—— REPEAT with each of the location cells in the int array
// COMPARE the user guess to the location cell
—IF the user guess matches
INCREMENT the number of hits
/7 FIND OUT if it was the last location cell:
IF number of hits is 3, RETURN “kill” as the result
ELSE it was not a kill, so RETURN “hit”
END IF
ELSE the user guess did not match, so RETURN “miss”
—END IF

—— END REPEAT
END METHOD

METHOD: void setlLocationCells(int[] cellLocations)
GET the cell locations as an int array parameter
ASSIGN the cell locations parameter to the cell locations instance variable

END METHOD

prep code test code [CEUNIL()

Writing the method
implementations

Let’s write the real
wmethod code now and get
this puppy working.

Before we start coding the
methods, though, let’s back

up and write some code to

test the methods. That’s right,
we’re writing the test code before
there’s anything to test!

The concept of writing the test
code first is one of the practices
of Test-Driven Development
(TDD), and it can make it easier
(and faster) for you to write

your code. We’re not necessarily
saying you should use TDD, but
we do like the part about writing
tests first. And TDD just sounds
cool.

writing a program

Oh my! For a minute
there I thought you
weren't gonna write your
test code first. Whoo!
Don't scare me like that.

Test-Driven Development (TDD)

Back in 1999, Extreme Programming (XP) was a newcomer
to the software development methodology world. One

of the central ideas in XP was to write test code before
writing the actual code. Since then, the idea of writing
test code first has spun off of XP and become the core of a
newer, more popular subset of XP called TDD. (Yes, yes, we
know we've just grossly oversimplified this, please cut us a
little slack here.)

TDD is a LARGE topic, and we're only going to scratch the
surface in this book. But we hope that the way we're going
about developing the “Sink a Startup” game gives you
some sense of TDD.

Check out Test Driven Development: By Example by Kent
Beck if you want to learn more about how TDD works.

Here is a partial list of key ideas in TDD:

Write the test code first.
Develop in iteration cycles.
Keep it (the code) simple.

Refactor (improve the code) whenever and
wherever you notice the opportunity.

Don't release anything until it passes all the tests.

Don’t put in anything that’s not in the spec
(no matter how tempted you are to put in
functionality “for the future”).

No killer schedules; work regular hours.

you are here» 101

SimpleStartup class

prep code testcode [CEINTL()

Writing test code for the SimpleStartup class

We need to write test code that can make a SimpleStartup object and
run its methods. For the SimpleStartup class, we really care about
only the checkYourself() method, although we will have to implement the
setLocationCells() method in order to get the checkTourselff) method to run
correctly.

Take a good look at the prep code below for the checkYourself() method
(the setLocationCells() method is a no-brainer setter method, so we’re not
worried about it, but in a “real” application we might want a more robust
“setter” method, which we would want to test).

Then ask yourself, “If the checkYourself{) method were implemented,
what test code could I write that would prove to me the method is
working correctly?”

Based on this prep code: Here's what we should fest:
METHOD String checkYourself{int userGuess) 1. Instantiate a SimpleStartup object.
GET the user guess as an int parameter 2. Assign it a location (an array of 3 ints, like
REPEAT with each of the location cells in the int array {2.3,4)).
/I COMPARE the user guess to the location cell 3. Ocrz‘?ée) an int to represent a user guess (2,
IF the user guess matches 4. Invoke the checkYourself() method passing
INCREMENT the number of hits it the fake user guess.
// FIND OUT if it was the last location cell: 5. Print out the result to see if it's correct
IF number of hits is 3, RETURN “Kill" as the result (‘passed” or “failed”).
ELSE it was not a kill, so RETURN “Hit"
END IF
ELSE the user guess did not match, so RETURN “Miss”
END IF
END REPEAT
END METHOD

102 chapter 5

prep code testcode [CCINTL[)

therejare no

Dum Questions

. Maybe I'm missing some-
thing here, but how exactly do
you run a test on something
that doesn't yet exist!?

A- You don't. We never said
you start by running the test;
you start by writing the test. At
the time you write the test code,
you won't have anything to run
it against, so you probably won't
be able to compile it until you
write “stub” code that can com-
pile, but that will always cause
the test to fail (like, return null).

Q; Then I still don’t see the
point. Why not wait until the
code is written, and then whip
out the test code?

A: The act of thinking

through (and writing) the test
code helps clarify your thoughts
about what the method itself
needs to do.

As soon as your implementation
code is done, you already have
test code just waiting to validate
it. Besides, you know if you don't
do it now, you'll never do it.
There’s always something more
interesting to do.

Ideally, write a little test code,
then write only the implementa-
tion code you need in order to
pass that test. Then write a little
more test code and write only
the new implementation code
needed to pass that new test.

At each test iteration, you run
all the previously written tests
to prove that your latest code
additions don't break previously
tested code.

writing a program

Test code for the SimpleStartup class

e d
public class SimpleStartupTestDrive { \5{33"103{: Lup
S0
public static void main (String[] args) { o \)e,c’c
SimpleStartup dot = new SimpleStartup() ;/ ¢
. edy or
Make ah*i“*’ 2 Jd“c&,
e
_— Bre o B Lom .
int[] locations = {2, 3, 4}; s ot ok 28
dot.setLocationCells (locations) ; I
hVOke
\ method ﬂ,e sette,
'ﬂlc Séak‘é up.

Make a fake
2; <€~— user guess
dot.checkYourself (userGuess) ;

‘\ /hVokc the ¢heek

int userGuess

String result

mcfhod on the Z::S:CMO
String testResult = "failed"; iec{ and pass if {:hu
e

if (result.equals("hit")) { fake guess.

testResult = "passed”; "€ the fake guess (2) gjves
} back 3 ‘Wit it's working
System.out.println (testResult) ;

(\ (Pklh‘(: ou‘(: the test vesult
} PaSScd or “F ‘ d”).

— Yours to so]ve.

— harpen Your pencll

A In the next couple of pages we implement the SimpleStartup class,
and then later we return to the test class. Looking at our test code
above, what else should be added? What are we not testing in this
code that we should be testing for? Write your ideas (or lines of
code) below:

you are here» 103

SimpleStartup class

prep code test code

The checkYourself() method

There isn’t a perfect mapping from prep code to Java code; you’ll see a few adjustments.
The prep code gave us a much better idea of what the code needs to do, and now we
have to figure out the Java code that can do the Aow.

In the back of your mind, be thinking about parts of this code you might want (or need)

to improve. The numbers

@ are for things (syntax and language features) you haven’t

seen yet. They’re explained on the opposite page.

GET the user
guess

REPEAT with
each cell in the int
array

IF the user guess
matches

INCREMENT
the number of
hits

// FIND OUT if
it was the last cell

IF number of hits
is 3,
RETURN ill”

as the result

ELSE it was
not a kill, so
RETURN'hit"

ELSE

RETURN
“miss”

104 chapter5

public String checkYourself (int guess) {

Make a va
String result = "miss"; € veturn. Fu{t‘at’:fol hold the vesult we'll

i) We senme ¢ n as)'thc default
for (int cell locationCells) { RCP&?{:wﬁ cach
array (in the |
if (guess == cell) {€ > Compae ¢, Y teach CeHI op‘ {:°CaflonCc”s

C o JCC‘{:)

result =

| € user ue
"hit"; ‘ C"‘Ch'l: (Cc”) 'l',s = {:; {:hls

numOfHits++; <« We got a hit/

£~ Getout of fhe |
to test the o{:hc:oc':ll

break;
ho need

} // end if
} // end for

if (numOfHits == locationCells.length) {

Wcrcou{o«c‘l:hcl , but |
—— now ‘dead’ (hit 3 ‘f;:\ch l;hdcﬁ}fa:“c Ifhwe "
result Sbrmg to “Kill” e e

result = "kill";
} // end if

System.out.println(result); &< D ‘SFla)' the vesult Lor the user (¢

unless | miss”

was changcd to “hit” or “ki “")
return result; . Return fhe vesult back 1o

'l:hC Ca”iha mc{:hod
} // end method

prep code test code

Just the new stuff

The things we haven’t seen before are
on this page. Stop worrying! There are
more details later in the chapter. This is
just enough to get you going.

his for loo detlavation as “vc\:ca{:
%:: dca{;,h‘scl:v:m’c‘:n the lotationCells

and assign it o the int vaviable ‘cell’.

Y,

@ The for loop

—~—

Detlare 3 variable that wi
at will hold %ne e
{:;mv il?;b‘la\rr(a\/.gach time ‘l:hroug;: ‘l:ehccnl‘:::
' vaviable (in this case an int vari bl '
eell”) will hold 3 diffevent el o e
arcay, et o element from the
(.odcydo:s :3 “b::;kﬁt.c :0 Wk Chments (or he

ce #4' below).
@ The post-increment
operator numOfHits++
@ break statement
break;

'Hlin
N loga:';

The avedy

writing a program

The €olon (.

A Who’e
aveay: take Lhe next element in the areay Value |

meahs “'- 2
h
eans “[, » 50 the

onCell..» “3¢h int

for (int cell : locationCells) { }
N— ~ —

to kevate ovex " tx: ;:Sc
Lime ’c\wov‘b\\ thne \\\ﬁfé 355'\3“:i 3
E\a‘.)‘\ev:\i:“~ n The a\\i:'a? Nv\Jou e 350

elem® able e

’““3 v:E ‘i\\\cs pnagker?)
ent

The +4 means add | to
whatever’s there (in other
words, intrement by |).

rumOfHits++ is the same (in

this case) as sayin rumOfHits =
numOFHits + l, wiz

h less typing,

Gets you out of a loop. Immediately. Right heve.
No i{;cra'(:iov\, no boolean {:cs{:, \)us{: 56{‘, out how!

you are here» 105

SimpleStartup class

prep code test code

thereare no
Dumb Questions

Q: In the beginning of the
book, there was an example of a
for loop that was really different
from this one—are there two
different styles of for loops?

A: Yes! From the first version of
Java there has been a single kind
of for loop (explained later in this
chapter) that looks like this:
for (int i = 0; i < 10; i++)
{

// do something 10 times

}

You can use this format for any
kind of loop you need. But...

since Java 5, you can also use

the enhanced for loop (that's the
official description) when your
loop needs to iterate over the
elements in an array (or another
kind of collection, as you'll see in
the next chapter). You can always
use the plain old for loop to iterate
over an array, but the enhanced for
loop makes it easier.

. If you can add one to an int
by using ++, can you also subtract
one in some way?

A: Yep absolutely. Hopefully it's
not too surprising to find out that

the syntax is -- (two minuses), like
this:

countdown = i--;

106 chapter 5

Final code for SimpleStartup and SimpleStartupTestDrive

public class SimpleStartupTestDrive {
public static void main(String[] args) {
SimpleStartup dot = new SimpleStartup();

int[] locations = {2, 3, 4};

dot.setLocationCells (locations);

int userGuess = 2;

String result = dot.checkYourself (userGuess);
String testResult = "failed";

if (result.equals("hit")) {
testResult = "passed";
}

System.out.println (testResult);

class SimpleStartup {
private int[] locationCells;
private int numOfHits = 0;

public void setLocationCells (int[] locs) {

locationCells = locs;

public String checkYourself (int guess) {

String result = "miss";
for (int cell locationCells) {
if (guess == cell) {
result = "hit";
numOfHits++;
break;

} // end if
} // end for
if (numOfHits ==
locationCells.length) {
result = "kill";
} // end if
System.out.println(result);
return result;
} // end method
} // close class
There’s a little bug lurking here. It compiles and

runs, but...don’t worry about it for now, but we will
have to face it a little later.

What should we see when
we run this code?

The test code makes a
SimpleStartup object

and gives it a location at
2,3,4.Then it sends a fake
user guess of “2”into the
checkYouself() method. If the
code is working correctly, we
should see the result print
out:

% java SimpleStartupTestDrive
hit

passed

writing a program

prep code rst code

0 harpen our pencil
S y

We built the test class and the SimpleStartup class. But we still haven’t made the
actual game. Given the code on the opposite page and the spec for the actual

game, write in your ideas for prep code for the game class. We've given you a few The SimpleStartupGame
lines here and there to get you started. The actual game code is on the next page, needs to do this:
so don’t turn the page until you do this exercise! 1. Make the single

You should have somewhere between 12 and 18 lines (including the ones we wrote, ~ SimpleStartup object.

but not including lines that have only a curly brace). 2. Make a location for it (three
consecutive cells on a single
row of seven virtual cells).

METHOD public static void main (String [] args) 3. Ask the user for a guess

DECLARE an int variable to hold the number of user guesses, named numOfGuesses
4. Check the guess.

5. Repeat until the Startup is
sunk.

6. Tell the user how many
guesses it took.

COMPUTE a random number between 0 and 4 that will be the starting location cell position

A complete game interaction

File Edit Window Help Runawa

%java SimpleStartupGame

WHILE the Startup is still alive: enter a number 2
hit
enter a number 3
hit
enter a number 4

GET user input from the command line

miss
enter a number 1
kill

You took 4 guesses

— Yours to solve.

you are here» 107

SimpleStartupGame class

prep code rst code

108

chapter 5

Prep code for the SimpleStartupGame class
Everything happens in main()

There are some things you’ll have to take on faith. For example, we have one line of
prep code that says “GET user input from command line.” Let me tell you, that’s a
little more than we want to implement from scratch right now. But happily, we’re using
OO. And that means you get to ask some other class/object to do something for you,
without worrying about how it does it. When you write prep code, you should assume

that somehow you’ll be able to do whatever you need to do, so you can put all your
brainpower into working out the logic.

public static void main (String [] args)

DECLARE an int variable to hold the number of user guesses, named numOfGuesses, and set it to O

MAKE a new SimpleStartup instance

COMPUTE a random number between 0 and 4 that will be the starting location cell position

MAKE an int array with 3 ints using the randomly generated number; that number incremented by |,
and that number incremented by 2 (example: 3,4,5)

INVOKE the setLocationCells() method on the SimpleStartup instance

DECLARE a boolean variable representing the state of the game, named isAlive. SET it to true

WHILE the Startup is still alive (isAlive == true):

GET user input from the command line

// CHECK the user guess

INVOKE the checkYourself() method on the SimpleStartup instance
INCREMENT numOfGuesses variable

// CHECK for Startup death

IF result is "kill”

SET isAlive to false (which means we won't enter the loop again)

PRINT the number of user guesses

END IF
END WHILE
END METHOD

e_o ()
mefacognitive £1p
Don’t work one part of the brain for too long a stretch at one time.
Working just the left side of the brain for more than 30 minutes
is like working just your left arm for 30 minutes. Give each side
of your brain a break by switching sides at regular intervals.
When you shift to one side, the other side gets to rest and
recover. Left-brain activities include things like step-by-step
sequences, logical problem-solving, and analysis, while the
right-brain kicks in for metaphors, creative problem-solving,
pattern-matching, and visualizing.

— BULLET POINTS

writing a program

Your Java program should start with a high-
level design.

Typically you'll write three things when you
create a new class:

= prep code
= test code
= real (Java) code

Prep code should describe what to do, not
how to do it. Implementation comes later.

Use the prep code to help design the test
code.

A class can have one superclass only.

Write test code before you implement the
methods.

Choose for loops over while loops when you
know how many times you want to repeat the
loop code.

The enhanced for loop is an easy way to loop
over an array or collection.

Use the increment operator to add 1to a
variable (x++;).

Use the decrement operator to su