

Advance Praise for Head First C#

“Head First C# is a great book, both for brand new developers and developers like myself coming from
a Java background. No assumptions are made as to the reader’s proficiency yet the material builds up
quickly enough for those who are not complete newbies—a hard balance to strike. This book got me up
to speed in no time for my first large scale C# development project at work—I highly recommend it.”

— Shalewa Odusanya, Technical Account Manager, Google

“Head First C# is an excellent, simple, and fun way of learning C#. It’s the best piece for C# beginners
I’ve ever seen—the samples are clear, the topics are concise and well written. The mini-games that guide
you through the different programming challenges will definitely stick the knowledge to your brain. A
great learn-by-doing book!”

— Johnny Halife, Chief Architect, Mural.ly

“Head First C# is a comprehensive guide to learning C# that reads like a conversation with a friend. The
many coding challenges keep it fun, even when the concepts are tough.”

— Rebeca Duhn-Krahn, founding partner at Semphore Solutions

“I’ve never read a computer book cover to cover, but this one held my interest from the first page to the
last. If you want to learn C# in depth and have fun doing it, this is THE book for you.”

— Andy Parker, fledgling C# programmer

“It’s hard to really learn a programming language without good engaging examples, and this book is full
of them! Head First C# will guide beginners of all sorts to a long and productive relationship with C#
and the .NET Framework.”

—Chris Burrows, developer for Microsoft’s C# Compiler team

“With Head First C#, Andrew and Jenny have presented an excellent tutorial on learning C#. It is very
approachable while covering a great amount of detail in a unique style. If you’ve been turned off by
more conventional books on C#, you’ll love this one.”

—Jay Hilyard, software developer, co-author of C# 3.0 Cookbook

“I’d reccomend this book to anyone looking for a great introduction into the world of programming and
C#. From the first page onwards, the authors walks the reader through some of the more challenging
concepts of C# in a simple, easy-to-follow way. At the end of some of the larger projects/labs, the
reader can look back at their programs and stand in awe of what they’ve accomplished.”

—David Sterling, developer for Microsoft’s Visual C# Compiler team

“Head First C# is a highly enjoyable tutorial, full of memorable examples and entertaining exercises. Its
lively style is sure to captivate readers—from the humorously annotated examples, to the Fireside Chats,
where the abstract class and interface butt heads in a heated argument! For anyone new to programming,
there’s no better way to dive in.”

—�Joseph Albahari, C# Design Architect at Egton Medical Information Systems,
the UK’s largest primary healthcare software supplier,
co-author of C# 3.0 in a Nutshell

Praise for other Head First books

“[Head First C#] was an easy book to read and understand. I will recommend this book to any developer
wanting to jump into the C# waters. I will recommend it to the advanced developer that wants to
understand better what is happening with their code. [I will recommend it to developers who] want to
find a better way to explain how C# works to their less-seasoned developer friends.”

—Giuseppe Turitto, C# and ASP.NET developer for Cornwall Consulting Group

“Andrew and Jenny have crafted another stimulating Head First learning experience. Grab a pencil, a
computer, and enjoy the ride as you engage your left brain, right brain, and funny bone.”

—Bill Mietelski, software engineer

“Going through this Head First C# book was a great experience. I have not come across a book series
which actually teaches you so well.…This is a book I would definitely recommend to people wanting to
learn C#”

—Krishna Pala, MCP

“I feel like a thousand pounds of books have just been lifted off of my head.”

—Ward Cunningham, inventor of the Wiki and founder of the Hillside Group

“Just the right tone for the geeked-out, casual-cool guru coder in all of us. The right reference for
practical development strategies—gets my brain going without having to slog through a bunch of tired
stale professor-speak.”

—�Travis Kalanick, Founder of Scour and Red Swoosh
Member of the MIT TR100

“There are books you buy, books you keep, books you keep on your desk, and thanks to O’Reilly and the
Head First crew, there is the penultimate category, Head First books. They’re the ones that are dog-
eared, mangled, and carried everywhere. Head First SQL is at the top of my stack. Heck, even the PDF I
have for review is tattered and torn.”

— �Bill Sawyer, ATG Curriculum Manager, Oracle

“This book’s admirable clarity, humor and substantial doses of clever make it the sort of book that helps
even non-programmers think well about problem-solving.”

— �Cory Doctorow, co-editor of Boing Boing
Author, Down and Out in the Magic Kingdom
and Someone Comes to Town, Someone Leaves Town

Praise for other Head First books

“I received the book yesterday and started to read it…and I couldn’t stop. This is definitely très ‘cool.’ It
is fun, but they cover a lot of ground and they are right to the point. I’m really impressed.”

— �Erich Gamma, IBM Distinguished Engineer, and co-author of
Design Patterns

“One of the funniest and smartest books on software design I’ve ever read.”

— �Aaron LaBerge, VP Technology, ESPN.com

“What used to be a long trial and error learning process has now been reduced neatly into an engaging
paperback.”

— �Mike Davidson, CEO, Newsvine, Inc.

“Elegant design is at the core of every chapter here, each concept conveyed with equal doses of
pragmatism and wit.”

— �Ken Goldstein, Executive Vice President, Disney Online

“Usually when reading through a book or article on design patterns, I’d have to occasionally stick myself
in the eye with something just to make sure I was paying attention. Not with this book. Odd as it may
sound, this book makes learning about design patterns fun.

“While other books on design patterns are saying ‘Bueller… Bueller… Bueller…’ this book is on the float
belting out ‘Shake it up, baby!’”

— �Eric Wuehler

“I literally love this book. In fact, I kissed this book in front of my wife.”

— �Satish Kumar

Other related books from O’Reilly

Programming C# 4.0

C# 4.0 in a Nutshell

C# Essentials

C# Language Pocket Reference

Other books in O’Reilly’s Head First series

Head First Java

Head First Object-Oriented Analysis and Design (OOA&D)

Head Rush Ajax

Head First HTML with CSS and XHTML

Head First Design Patterns

Head First Servlets and JSP

Head First EJB

Head First PMP

Head First SQL

Head First Software Development

Head First JavaScript

Head First Ajax

Head First Statistics

Head First Physics

Head First Programming

Head First Ruby on Rails

Head First PHP & MySQL

Head First Algebra

Head First Data Analysis

Head First Excel

Beijing • Cambridge • K�ln • Sebastopol • Tokyo

Andrew Stellman
Jennifer Greene

Head First C#
Third Edition

Wouldn’t it be dreamy if
there was a C# book that was

more fun than memorizing
a phone book? It’s probably

nothing but a fantasy....

Head First C#

Third Edition

by Andrew Stellman and Jennifer Greene

Copyright © 2013 Andrew Stellman and Jennifer Greene. All rights reserved.

Printed in the United States of America.

Published by O’Reilly Media, Inc., 1005 Gravenstein Highway North, Sebastopol, CA 95472.

O’Reilly Media books may be purchased for educational, business, or sales promotional use. Online editions are also
available for most titles (http://my.safaribooksonline.com). For more information, contact our corporate/institutional sales
department: (800) 998-9938 or corporate@oreilly.com.

Series Creators:		 Kathy Sierra, Bert Bates

Cover Designers:		 Louise Barr, Karen Montgomery

Production Editor:		 Melanie Yarbrough

Proofreader:			 Rachel Monaghan

Indexer:			 Ellen Troutman-Zaig

Page Viewers:	 	 Quentin the whippet and Tequila the pomeranian

Printing History:

November 2007: First Edition.
May 2010: Second Edition.
August 2013: Third Edition.

The O’Reilly logo is a registered trademark of O’Reilly Media, Inc. The Head First series designations, Head First C#,
and related trade dress are trademarks of O’Reilly Media, Inc.

Microsoft, Windows, Visual Studio, MSDN, the .NET logo, Visual Basic and Visual C# are registered trademarks of
Microsoft Corporation.

Many of the designations used by manufacturers and sellers to distinguish their products are claimed as trademarks.
Where those designations appear in this book, and O’Reilly Media, Inc., was aware of a trademark claim, the
designations have been printed in caps or initial caps.

While every precaution has been taken in the preparation of this book, the publisher and the authors assume no
responsibility for errors or omissions, or for damages resulting from the use of the information contained herein.

No bees, space aliens, or comic book heroes were harmed in the making of this book.

ISBN: 978-1-449-34350-7

[M]										

This book is dedicated to the loving memory of Sludgie the Whale,
who swam to Brooklyn on April 17, 2007.

You were only in our canal for a day,
but you’ll be in our hearts forever.

viii

Jennifer Greene studied philosophy in college
but, like everyone else in the field, couldn’t find
a job doing it. Luckily, she’s a great software
engineer, so she started out working at an online
service, and that’s the first time she really got a
good sense of what good software development
looked like.

She moved to New York in 1998 to work on
software quality at a financial software company.
She’s managed a teams of developers, testers and
PMs on software projects in media and finance
since then.

She’s traveled all over the world to work with
different software teams and build all kinds of
cool projects.

She loves traveling, watching Bollywood movies,
reading the occasional comic book, playing PS3
games, and hanging out with her huge siberian
cat, Sascha.

Andrew Stellman, despite being raised a
New Yorker, has lived in Minneapolis, Geneva,
and Pittsburgh... twice. The first time was when
he graduated from Carnegie Mellon’s School of
Computer Science, and then again when he and
Jenny were starting their consulting business and
writing their first book for O’Reilly.

Andrew’s first job after college was building
software at a record company, EMI-Capitol
Records—which actually made sense, as he went
to LaGuardia High School of Music & Art and
the Performing Arts to study cello and jazz bass
guitar. He and Jenny first worked together at
a company on Wall Street that built financial
software, where he was managing a team of
programmers. Over the years he’s been a Vice
President at a major investment bank, architected
large-scale real-time back end systems, managed
large international software teams, and consulted
for companies, schools, and organizations,
including Microsoft, the National Bureau of
Economic Research, and MIT. He’s had the
privilege of working with some pretty amazing
programmers during that time, and likes to think
that he’s learned a few things from them.

When he’s not writing books, Andrew keeps
himself busy writing useless (but fun) software,
playing both music and video games, practicing
taiji and aikido, and owning a Pomeranian.

the authors

Jenny and Andrew have been building software and writing about software engineering together since they first

met in 1998. Their first book, Applied Software Project Management, was published by O’Reilly in 2005. Other

Stellman and Greene books for O’Reilly include Beautiful Teams (2009), and their first book in the Head First

series, Head First PMP (2007).
They founded Stellman & Greene Consulting in 2003 to build a really neat software project for scientists studying

herbicide exposure in Vietnam vets. In addition to building software and writing books, they’ve consulted for

companies and spoken at conferences and meetings of software engineers, architects and project managers.

Check out their blog, Building Better Software: http://www.stellman-greene.com

Follow @AndrewStellman and @JennyGreene on Twitter

Jenny

Andrew

Thanks for buying our book! We
really love writing about this
stuff, and we hope you get a

kick out of reading it…

…because
we know you’re
going to have
a great time

learning C#.

This photo (and the photo of the
Gowanus Canal) by Nisha Sondhe

table of contents

ix

Table of Contents (Summary)

Table of Contents (the real thing)
Your brain on C#. � You’re sitting around trying to learn something, but

your brain keeps telling you all that learning isn’t important. Your brain’s saying,

“Better leave room for more important things, like which wild animals to avoid and

whether nude archery is a bad idea.” So how do you trick your brain into thinking

that your life really depends on learning C#?

Intro

Who is this book for?						 xxxii

We know what you’re thinking.	 				 xxxiii

Metacognition: thinking about thinking				 xxxv

Here’s what YOU can do to bend your brain into submission		 xxxvii

What you need for this book					 xxxviii

Read me							 xxxix

The technical review team						 xl

Acknowledgments						 xli

 	 Intro	 xxxi

1	 Start building with C#: Building something cool, fast!	 1

2	 It’s All Just Code: Under the hood	 53

3	 Objects: Get Oriented: Making code make sense	 101

4	 Types and References: It’s 10:00. Do you know where your data is?	 141

 	 C# Lab 1: A Day at the races	 187

5	 Encapsulation: Keep your privates…private	 197

6	 Inheritance: Your object’s family tree	 237

7	 Interfaces and abstract classes: Making classes keep their promises	 293

8	 Enums and collections: Storing lots of data	 351

9	 Reading and Writing Files: Save the last byte for me!	 409

 	 C# Lab 2: The Quest	 465

10	 Designing Windows Store Apps with XAML:
	 Taking your apps to the next level	 487

11	 XAML, File, I/O, and Data Contract Serialization: Writing files right	 535

12	 Exception Handling: Putting out fires gets old	 569

13	 Captain Amazing: The Death of the Object	 611

14	 Querying Data and Building Apps with LINQ: Get control of your data	 649

15	 Events and Delegates: What your code does when you’re not looking	 701

16	 Architecting Apps with the MVVM Pattern:
	 Great apps on the inside and outside	 745

 	 C# Lab 3: Invaders	 807

17	 Bonus Project! Build a Windows Phone app	 831

i	 Leftovers: The top 11 things we wanted to include in this book	 845

table of contents

x

Build something cool, fast!1 Want to build great apps really fast?�
With C#, you’ve got a great programming language and a valuable tool at

your fingertips. With the Visual Studio IDE, you’ll never have to spend hours

writing obscure code to get a button working again. Even better, you’ll be able to

build really cool software, rather than remembering which bit of code was for

the name of a button, and which one was for its label. Sound appealing? Turn

the page, and let’s get programming.

start building with C#

Why you should learn C#						 2

C# and the Visual Studio IDE make lots of things easy			 3

What you do in Visual Studio…					 4

What Visual Studio does for you…					 4

Aliens attack!							 8

Only you can help save the Earth					 9

Here’s what you’re going to build					 10

Start with a blank application					 12

Set up the grid for your page					 18

Add controls to your grid						 20

Use properties to change how the controls look			 22

Controls make the game work					 24

You’ve set the stage for the game					 29

What you’ll do next						 30

Add a method that does something					 31

Fill in the code for your method					 32

Finish the method and run your program				 34

Here’s what you’ve done so far					 36

Add timers to manage the gameplay					 38

Make the Start button work					 40

Run the program to see your progress				 41

Add code to make your controls interact with the player			 42

Dragging humans onto enemies ends the game			 44

Your game is now playable					 45

Make your enemies look like aliens					 46

Add a splash screen and a tile					 47

Publish your app						 48

Use the Remote Debugger to sideload your app			 49

Start remote debugging						 50
?!

Uh oh! Aliens
are beaming up
humans. Not good!

table of contents

xi

Under the hood

You’re a programmer, not just an IDE user.�
You can get a lot of work done using the IDE. But there’s only so far it

can take you. Sure, there are a lot of repetitive tasks that you do when

you build an application. And the IDE is great at doing those things for

you. But working with the IDE is only the beginning. You can get your

programs to do so much more—and writing C# code is how you do it.

Once you get the hang of coding, there’s nothing your programs can’t do.

it’s all just code

2
When you’re doing this…					 54

…the IDE does this					 55

Where programs come from				 56

The IDE helps you code					 58

Anatomy of a program					 60

Two classes can be in the same namespace			 65

Your programs use variables to work with data			 66

C# uses familiar math symbols				 68

Use the debugger to see your variables change			 69

Loops perform an action over and over			 71

if/else statements make decisions				 72

Build an app from the ground up				 73

Make each button do something				 75

Set up conditions and see if they’re true			 76

Windows Desktop apps are easy to build			 87

Rebuild your app for Windows Desktop			 88

Your desktop app knows where to start			 92

You can change your program’s entry point			 94

When you change things in the IDE,
you’re also changing your code				 96

Namespace
Class

Method 1
statement
statement

Method 2
statement
statement

Every time you make a new program, you define a namespace for it so that its code is separate from the .NET Framework and Windows Store API classes.

A class has one or more methods. Your methods always have to live
inside a class. And methods are
made up of statements—like the
ones you’ve already seen.

A class contains a piece of your
program (although some very small
programs can have just one class).

table of contents

xii

3 Making Code Make Sense

Every program you write solves a problem.�
When you’re building a program, it’s always a good idea to start by thinking about what

problem your program’s supposed to solve. That’s why objects are really useful. They

let you structure your code based on the problem it’s solving, so that you can spend your

time thinking about the problem you need to work on rather than getting bogged down in

the mechanics of writing code. When you use objects right, you end up with code that’s

intuitive to write, and easy to read and change.

objects: get oriented!

new Navigator()

new
 Na

vig
ato

r()

new Navigator()

How Mike thinks about his problems			 102

How Mike’s car navigation system thinks about his problems	 103

Mike’s Navigator class has methods to set and modify routes	 104

Use what you’ve learned to build a program that uses a class	 105

Mike gets an idea					 107

Mike can use objects to solve his problem			 108

You use a class to build an object				 109

When you create a new object from a class,
it’s called an instance of that class				 110

A better solution…brought to you by objects!			 111

An instance uses fields to keep track of things			 116

Let’s create some instances!				 117

Thanks for the memory					 118

What’s on your program’s mind				 119

You can use class and method names to make your code intuitive	 120

Give your classes a natural structure				 122

Class diagrams help you organize your classes so they make sense	 124

Build a class to work with some guys				 128

Create a project for your guys				 129

Build a form to interact with the guys			 130

There’s an easier way to initialize objects			 133

Navigator

SetCurrentLocation()
SetDestination()
ModifyRouteToAvoid()
ModifyRouteToInclude()
GetRoute()
GetTimeToDestination()
TotalDistance()

table of contents

xiii

4 It’s 10:00. Do you know where your data is?

Data type, database, Lieutenant Commander Data…
it’s all important stuff. �Without data, your programs are useless. You

need information from your users, and you use that to look up or produce new

information to give back to them. In fact, almost everything you do in programming

involves working with data in one way or another. In this chapter, you’ll learn the

ins and outs of C#’s data types, see how to work with data in your program, and

even figure out a few dirty secrets about objects (pssst…objects are data, too).

types and references

The variable’s type determines what kind of data it can store		 142

A variable is like a data to-go cup					 144

10 pounds of data in a 5-pound bag					 145

Even when a number is the right size, you can’t just assign it to any variable	 146

When you cast a value that’s too big, C# will adjust it automatically	 147

C# does some casting automatically					 148

When you call a method, the arguments must be compatible
with the types of the parameters					 149

Debug the mileage calculator					 153

Combining = with an operator 					 154

Objects use variables, too						 155

Refer to your objects with reference variables				 156

References are like labels for your object				 157

If there aren’t any more references, your object gets garbage-collected	 158

Multiple references and their side effects				 160

Two references means TWO ways to change an object’s data		 165

A special case: arrays						 166

Arrays can contain a bunch of reference variables, too			 167

Welcome to Sloppy Joe’s Budget House o’ Discount Sandwiches!		 168

Objects use references to talk to each other				 170

Where no object has gone before					 171

Build a typing game						 176

Controls are objects, just like any other object				 180

fido

Luck
y

fido
Luck

y

table of contents

xiv

Joe, Bob, and Al love going to the track, but they’re
tired of losing all their money. They need you to build a
simulator for them so they can figure out winners before
they lay their money down. And, if you do a good job,
they’ll cut you in on their profits.

C# Lab 1
A Day at the Races

The spec: build a racetrack simulator				 188

The Finished Product					 196

table of contents

xv

5 Keep your privates… private

Ever wished for a little more privacy?�
Sometimes your objects feel the same way. Just like you don’t want anybody you

don’t trust reading your journal or paging through your bank statements, good objects

don’t let other objects go poking around their fields. In this chapter, you’re going to

learn about the power of encapsulation. You’ll make your object’s data private, and

add methods to protect how that data is accessed.

encapsulation

Kathleen is an event planner					 198

What does the estimator do?					 199

You’re going to build a program for Kathleen				 200

Kathleen’s test drive						 206

Each option should be calculated individually				 208

It’s easy to accidentally misuse your objects				 210

Encapsulation means keeping some of the data in a class private		 211

Use encapsulation to control access to your class’s methods and fields	 212

But is the RealName field REALLY protected?			 213

Private fields and methods can only be accessed from inside the class 	 214

Encapsulation keeps your data pristine				 222

Properties make encapsulation easier				 223

Build an application to test the Farmer class				 224

Use automatic properties to finish the class				 225

What if we want to change the feed multiplier?			 226

Use a constructor to initialize private fields				 227

table of contents

xvi

6 Your object’s family tree

Sometimes you DO want to be just like your parents.
Ever run across an object that almost does exactly what you want your object to do?

Found yourself wishing that if you could just change a few things, that object would

be perfect? Well, that’s just one reason that inheritance is one of the most powerful

concepts and techniques in the C# language. Before you’re through with this chapter,

you’ll learn how to subclass an object to get its behavior, but keep the flexibility to

make changes to that behavior. You’ll avoid duplicate code, model the real world

more closely, and end up with code that’s easier to maintain.

inheritance

Kathleen does birthday parties, too					 238

We need a BirthdayParty class					 239

Build the Party Planner version 2.0					 240

One more thing…can you add a $100 fee for parties over 12?		 247

When your classes use inheritance, you only need to write your code once	 248

Build up your class model by starting general and getting more specific	 249

How would you design a zoo simulator?				 250

Use inheritance to avoid duplicate code in subclasses			 251

Different animals make different noises				 252

Think about how to group the animals				 253

Create the class hierarchy						 254

Every subclass extends its base class					 255

Use a colon to inherit from a base class				 256

We know that inheritance adds the base class fields, properties,
and methods to the subclass…					 259

A subclass can override methods to change or replace methods it inherited	 260

Any place where you can use a base class,
you can use one of its subclasses instead				 261

A subclass can hide methods in the superclass				 268

Use the override and virtual keywords to inherit behavior		 270

A subclass can access its base class using the base keyword		 272

When a base class has a constructor, your subclass needs one, too		 273

Now you’re ready to finish the job for Kathleen!			 274

Build a beehive management system					 279

How you’ll build the beehive management system			 280

Canine

Eat()
Sleep()

Dog

MakeNoise()Wolf

MakeNoise()

table of contents

xvii

7 Making classes keep their promises

Actions speak louder than words.�
Sometimes you need to group your objects together based on the things they can

do rather than the classes they inherit from. That’s where interfaces come in—they

let you work with any class that can do the job. But with great power comes great

responsibility, and any class that implements an interface must promise to fulfill all of

its obligations…or the compiler will break their kneecaps, see?

interfaces and abstract classes

Let’s get back to bee-sics						 294

We can use inheritance to create classes for different types of bees		 295

An interface tells a class that it must implement
certain methods and properties					 296

Use the interface keyword to define an interface			 297

Now you can create an instance of NectarStinger that does both jobs	 298

Classes that implement interfaces have to include
ALL of the interface’s methods 					 299

Get a little practice using interfaces					 300

You can’t instantiate an interface, but you can reference an interface	 302

Interface references work just like object references			 303

You can find out if a class implements a certain interface with “is”		 304

Interfaces can inherit from other interfaces				 305

The RoboBee 4000 can do a worker bee’s job without using valuable honey	 306

A CoffeeMaker is also an Appliance					 308

Upcasting works with both objects and interfaces			 309

Downcasting lets you turn your appliance back into a coffee maker	 310

Upcasting and downcasting work with interfaces, too			 311

There’s more than just public and private				 315

Access modifiers change visibility					 316

Some classes should never be instantiated				 319

An abstract class is like a cross between a class and an interface		 320

Like we said, some classes should never be instantiated			 322

An abstract method doesn’t have a body				 323

The Deadly Diamond of Death!					 328

Polymorphism means that one object can take many different forms	 331

Location
Name
Exits
Description

Room
decoration:
private string
field

Outside
hot: private
bool field

table of contents

xviii

8 Storing lots of data

When it rains, it pours.�
In the real world, you don’t get to handle your data in tiny little bits and pieces.

No, your data’s going to come at you in loads, piles, and bunches. You’ll need

some pretty powerful tools to organize all of it, and that’s where collections

come in. They let you store, sort, and manage all the data that your programs

need to pore through. That way, you can think about writing programs to work

with your data, and let the collections worry about keeping track of it for you.

enums and collections

Strings don’t always work for storing categories of data			 352

Enums let you work with a set of valid values				 353

Enums let you represent numbers with names				 354

Arrays are hard to work with					 358

Lists make it easy to store collections of…anything			 359

Lists are more flexible than arrays					 360

Lists shrink and grow dynamically					 363

Generics can store any type					 364

Collection initializers are similar to object initializers			 368

Lists are easy, but SORTING can be tricky				 370

IComparable<Duck> helps your list sort its ducks			 371

Use IComparer to tell your List how to sort				 372

Create an instance of your comparer object				 373

IComparer can do complex comparisons				 374

Overriding a ToString() method lets an object describe itself 		 377

Update your foreach loops to let your Ducks and Cards print themselves	 378

When you write a foreach loop, you’re using IEnumerable<T>		 379

You can upcast an entire list using IEnumerable			 380

You can build your own overloaded methods				 381

Use a dictionary to store keys and values				 387

The dictionary functionality rundown				 388

Build a program that uses a dictionary				 389

And yet MORE collection types…					 401

A queue is FIFO—First In, First Out				 402

A stack is LIFO—Last In, First Out					 403

poof!

table of contents

xix

9 Save the last byte for me!

Sometimes it pays to be a little persistent.�
So far, all of your programs have been pretty short-lived. They fire up, run for

a while, and shut down. But that’s not always enough, especially when you’re

dealing with important information. You need to be able to save your work. In

this chapter, we’ll look at how to write data to a file, and then how to read that

information back in from a file. You’ll learn about the .NET stream classes,

and also take a look at the mysteries of hexadecimal and binary.

reading and writing files

69 117 114 101 107 97 33

.NET uses streams to read and write data				 410

Different streams read and write different things			 411

A FileStream reads and writes bytes to a file				 412

Write text to a file in three simple steps				 413

The Swindler launches another diabolical plan			 414

Reading and writing using two objects				 417

Data can go through more than one stream				 418

Use built-in objects to pop up standard dialog boxes			 421

Dialog boxes are just another WinForms control			 422

Use the built-in File and Directory classes to work with files and directories	 424

Use file dialogs to open and save files (all with just a few lines of code)	 427

IDisposable makes sure your objects are disposed of properly		 429

Avoid filesystem errors with using statements				 430

Use a switch statement to choose the right option			 437

Add an overloaded Deck() constructor that reads a deck of cards
in from a file							 439

When an object is serialized, all of the objects it refers to get serialized, too…443

Serialization lets you read or write a whole object graph all at once	 444

.NET uses Unicode to store characters and text			 449

C# can use byte arrays to move data around				 450

Use a BinaryWriter to write binary data				 451

You can read and write serialized files manually, too			 453

Find where the files differ, and use that information to alter them		 454

Working with binary files can be tricky				 455

Use file streams to build a hex dumper				 456

Use Stream.Read() to read bytes from a stream			 458

table of contents

xx

C# Lab 2
The Quest

Your job is to build an adventure game where a mighty
adventurer is on a quest to defeat level after level of
deadly enemies. You’ll build a turn-based system, which
means the player makes one move and then the enemies
make one move. The player can move or attack, and then
each enemy gets a chance to move and attack. The game
keeps going until the player either defeats all the enemies
on all seven levels or dies.

The spec: build an adventure game				 466

The fun’s just beginning!					 486

table of contents

xxi

The grid is made up of 20-pixel
squares called units.

Each unit is broken down
into 5-pixel sub-units

10 Taking your apps to the next level

You’re ready for a whole new world of app development.�
Using WinForms to build Windows Desktop apps is a great way to learn important C#

concepts, but there’s so much more you can do with your programs. In this chapter,

you’ll use XAML to design your Windows Store apps, you’ll learn how to build pages

to fit any device, integrate your data into your pages with data binding, and use

Visual Studio to cut through the mystery of XAML pages by exploring the objects

created by your XAML code.

designing windows store apps with xaml

Brian’s running Windows 8				 488

Windows Forms use an object graph set up by the IDE		 494

Use the IDE to explore the object graph			 497

Windows Store apps use XAML to create UI objects		 498

Redesign the Go Fish! form as a Windows Store app page	 500

Page layout starts with controls				 502

Rows and columns can resize to match the page size		 504

Use the grid system to lay out app pages			 506

Data binding connects your XAML pages to your classes	 512

XAML controls can contain text...and more			 514

Use data binding to build Sloppy Joe a better menu		 516

Use static resources to declare your objects in XAML		 522

Use a data template to display objects			 524

INotifyPropertyChanged lets bound objects send updates	 526

Modify MenuMaker to notify you when the
GeneratedDate property changes				 527

ListBox objec
t ObservableCo
lle

ct
io

nBinding
ItemsSource="{Binding}"

table of contents

xxii

11 Writing files right

xaml, file i/o, and data contract serialization

Nobody likes to be kept waiting...especially not users.�
Computers are good at doing lots of things at once, so there’s no reason your apps

shouldn’t be able to as well. In this chapter, you’ll learn how to keep your apps responsive

by building asynchronous methods. You’ll also learn how to use the built-in file

pickers and message dialogs and asynchronous file input and output without

freezing up your apps. Combine this with data contract serialization, and you’ve got the

makings of a thoroughly modern app.
Brian runs into file trouble						 536

Windows Store apps use await to be more responsive			 538

Use the FileIO class to read and write files				 540

Build a slightly less simple text editor				 542

A data contract is an abstract definition of your object’s data		 547

Use async methods to find and open files				 548

KnownFolders helps you access high-profile folders			 550

The whole object graph is serialized to XML				 551

Stream some Guy objects to your app’s local folder			 552

Take your Guy Serializer for a test drive				 556

Use a Task to call one async method from another			 557

Build Brian a new Excuse Manager app				 558

Separate the page, excuse, and Excuse Manager			 559

Create the main page for the Excuse Manager				 560

Add the app bar to the main page					 561

Build the ExcuseManager class					 562

Add the code-behind for the page					 564

table of contents

xxiii

12 Putting out fires gets old

exception handling

Programmers aren’t meant to be firefighters.�
You’ve worked your tail off, waded through technical manuals and a few engaging

Head First books, and you’ve reached the pinnacle of your profession. But you’re

still getting panicked phone calls in the middle of the night from work because your

program crashes, or doesn’t behave like it’s supposed to. Nothing pulls you

out of the programming groove like having to fix a strange bug...but with exception

handling, you can write code to deal with problems that come up. Better yet, you

can even react to those problems, and keep things running.
Brian needs his excuses to be mobile				 570

When your program throws an exception,
.NET generates an Exception object				 574

Brian’s code did something unexpected				 576

All exception objects inherit from Exception			 578

The debugger helps you track down
and prevent exceptions in your code				 579

Use the IDE’s debugger to ferret out exactly
what went wrong in the Excuse Manager	 		 580

Uh oh—the code’s still got problems...	 			 583

Handle exceptions with try and catch	 			 585

What happens when a method you want to call is risky?		 586

Use the debugger to follow the try/catch flow			 588

If you have code that ALWAYS should run, use a finally block	 590

Use the Exception object to get information about the problem	 595

Use more than one catch block to handle
multiple types of exceptions					 596

One class throws an exception that a method
in another class can catch					 597

An easy way to avoid a lot of problems:
using gives you try and finally for free				 601

Exception avoidance: implement IDisposable to do your own cleanup	602

The worst catch block EVER: catch-all plus comments		 604

A few simple ideas for exception handling		 	 606Exception obj
ec

t

int[] anArray = {3, 4, 1, 11};
int aValue = anArray[15];

your class, now with
exception handlinguser

now your program’s more robust!

public class Data {

 public void

 Process(Input i) {

 try {

 if (i.IsBad()) {

 explode();

 } catch {

 HandleIt();

 }

 }

 }

Wow, this program’s really stable!

Uh oh! what
the heck

happened?

An object

table of contents

xxiv

13 Your last chance to DO something…your object’s finalizer			 618

When EXACTLY does a finalizer run?					 619

Dispose() works with using; finalizers work with garbage collection			 620

Finalizers can’t depend on stability						 622

Make an object serialize itself in its Dispose()					 623

A struct looks like an object…						 627

…but isn’t an object							 627

Values get copied; references get assigned					 628

Structs are value types; objects are reference types				 629

The stack vs. the heap: more on memory					 631

Use out parameters to make a method return more than one value			 634

Pass by reference using the ref modifier					 635

Use optional parameters to set default values					 636

Use nullable types when you need nonexistent values				 637

Nullable types help you make your programs more robust			 638

“Captain” Amazing…not so much						 641

Extension methods add new behavior to EXISTING classes			 642

Extending a fundamental type: string					 644

CAPTAIN AMAZING
THE DEATH

OF THE OBJECT

table of contents

xxv

14 Get control of your data

querying data and building apps with LINQ

It’s a data-driven world…it’s good to know how to live in it.�
Gone are the days when you could program for days, even weeks, without dealing

with loads of data. Today, everything is about data. And that’s where LINQ comes in.

LINQ not only lets you query data in a simple, intuitive way, but it lets you group data

and merge data from different data sources. And once you’ve wrangled your data

into manageable chunks, your Windows Store apps have controls for navigating

data that let your users navigate, explore, and even zoom into the details.

Jimmy’s a Captain Amazing super-fan...			 650

…but his collection’s all over the place			 651

LINQ can pull data from multiple sources			 652

.NET collections are already set up for LINQ			 653

LINQ makes queries easy					 654

LINQ is simple, but your queries don’t have to be		 655

Jimmy could use some help				 658

Start building Jimmy an app				 660

Use the new keyword to create anonymous types 		 663

LINQ is versatile					 666

Add the new queries to Jimmy’s app				 668

LINQ can combine your results into groups			 673

Combine Jimmy’s values into groups				 674

Use join to combine two collections into one sequence		 677

Jimmy saved a bunch of dough				 678

Use semantic zoom to navigate your data			 684

Add semantic zoom to Jimmy’s app				 686

You made Jimmy’s day					 691

The IDE’s Split App template helps you build apps
for navigating data					 692

table of contents

xxvi

Fan object

Pitcher object

Umpire object

BallEventArgs

~
BallInPlay event

15 What your code does when you’re not looking

events and delegates

Ever wish your objects could think for themselves?		 702

But how does an object KNOW to respond?			 702

When an EVENT occurs…objects listen			 703

One object raises its event, others listen for it…		 704

Then, the other objects handle the event			 705

Connecting the dots					 706

The IDE generates event handlers for you automatically		 710

Generic EventHandlers let you define your own event types	 716

Windows Forms use many different events			 717

One event, multiple handlers				 718

Windows Store apps use events for
process lifetime management				 720

Add process lifetime management to Jimmy’s comics		 721

XAML controls use routed events				 724

Create an app to explore routed events			 725

Connecting event senders with event listeners			 730

A delegate STANDS IN for an actual method			 731

Delegates in action					 732

An object can subscribe to an event…			 735

Use a callback to control who’s listening			 736

A callback is just a way to use delegates			 738

You can use callbacks with MessageDialog commands		 740

Use delegates to use the Windows settings charm		 742

Your objects are starting to think for themselves.�
You can’t always control what your objects are doing. Sometimes things…happen. And

when they do, you want your objects to be smart enough to respond to anything that

pops up. And that’s what events are all about. One object publishes an event, other

objects subscribe, and everyone works together to keep things moving. Which is great,

until you want your object to take control over who can listen. That’s when callbacks will

come in handy.

table of contents

xxvii

The Head First Basketball Conference needs an app		 746

But can they agree on how to build it?			 747

Do you design for binding or for working with data?		 748

MVVM lets you design for binding and data			 749

Use the MVVM pattern to start building
the basketball roster app					 750

User controls let you create your own controls			 753

The ref needs a stopwatch					 761

MVVM means thinking about the state of the app		 762

Start building the stopwatch app’s Model			 763

Events alert the rest of the app to state changes		 764

Build the view for a simple stopwatch			 765

Add the stopwatch ViewModel				 766

Converters automatically convert values for binding		 770

Converters can work with many different types		 772

Visual states make controls respond to changes		 778

Use DoubleAnimation to animate double values		 779

Use object animations to animate object values		 780

Build an analog stopwatch using the same ViewModel		 781

UI controls can be instantiated with C# code, too		 786

C# can build “real” animations, too				 788

Create a user control to animate a picture			 789

Make your bees fly around a page				 790

Use ItemsPanelTemplate to bind controls to a Canvas		 793

Congratulations! (But you’re not done yet...)			 806

16 Great apps on the inside and outside

architecting apps with the mvvm pattern

Your apps need to be more than just visually stunning.�
When you think of design, what comes to mind? An example of great building architecture?

A beautifully-laid-out page? A product that’s as aesthetically pleasing as it is well

engineered? Those same principles apply to your apps. In this chapter you’ll learn about

the Model-View-ViewModel pattern and how you can use it to build well-architected,

loosely coupled apps. Along the way you’ll learn about animation and control templates

for your apps’ visual design, how to use converters to make data binding easier, and how

to pull it all together to lay a solid C# foundation to build any app you want.

VIEW
MODE

L

table of contents

xxviii

C# Lab 3
Invaders

In this lab you’ll pay homage to one of the most popular,
revered and replicated icons in video game history, a
game that needs no further introduction. It’s time to
build Invaders.

The grandfather of video games				 808

And yet there’s more to do…					 829

table of contents

xxix

17Build a Windows Phone app

bonus project!

You’re already able to write Windows Phone apps.�
Classes, objects, XAML, encapsulation, inheritance, polymorphism, LINQ, MVVM…

you’ve got all of the tools you need to build great Windows Store apps and desktop

apps. But did you know that you can use these same tools to build apps for

Windows Phone? It’s true! In this bonus project, we’ll walk you through creating a

game for Windows Phone. And if you don’t have a Windows Phone, don’t worry—

you’ll still be able to use the Windows Phone emulator to play it. Let’s get started!

Bee Attack!					 832

Before you begin...				 833

table of contents

xxx

i The top 11 things we wanted to include
in this book

appendix: leftovers

#1. There’s so much more to Windows Store				 846

#2. The Basics							 848

#3. Namespaces and assemblies					 854

#4. Use BackgroundWorker to make your WinForms responsive		 858

#5. The Type class and GetType()					 861

#6. Equality, IEquatable, and Equals()				 862

#7. Using yield return to create enumerable objects			 865

#8. Refactoring							 868

#9. Anonymous types, anonymous methods, and lambda expressions	 870

#10. LINQ to XML						 872

#11. Windows Presentation Foundation				 874

Did you know that C# and the .NET Framework can…			 875

The fun’s just beginning!�
We’ve shown you a lot of great tools to build some really powerful software with C#. But

there’s no way that we could include every single tool, technology, or technique in this

book—there just aren’t enough pages. We had to make some really tough choices about

what to include and what to leave out. Here are some of the topics that didn’t make the

cut. But even though we couldn’t get to them, we still think that they’re important and

useful, and we wanted to give you a small head start with them.

xxxi

how to use this book

Intro

I can’t believe
they put that in a
C# programming

book!

In this section, we answer the burning question:

“So why DID they put that in a C# programming book?”

xxxii   intro

how to use this book

1

2

3

Who is this book for?

Who should probably back away from this book?

If you can answer “yes” to all of these:

If you can answer “yes” to any of these:

this book is for you.

this book is not for you.

[Note from marketing: this book is for anyone with a credit card.]

Do you want to learn C#?

Do you like to tinker—do you learn by doing, rather than
just reading?

Do you prefer stimulating dinner party conversation
to dry, dull, academic lectures?

1

2

3

Does the idea of writing a lot of code make you bored
and a little twitchy?

Are you a kick-butt C++ or Java programmer looking for
a reference book?

Are you afraid to try something different? Would
you rather have a root canal than mix stripes with
plaid? Do you believe that a technical book can’t be
serious if C# concepts are anthropomorphized?

Do you know another
programming language,
and now you need to ramp
up on C#?

Are you already a good C#
developer, but you want to
learn more about XAML,
Model-View-ViewModel
(MVVM), or Windows Store
app development?

Do you want to get
practice writing lots of
code?

If so, then lots of people
just like you have used
this book to do exactly
those things!

No programming experience
is required to use this book...
just curiosity and interest!
Thousands of beginners with
no programming experience
have already used Head First
C# to learn to code. That
could be you!

you are here 4   xxxiii

the intro

Great. Only
700 more dull,

dry, boring
pages.

We know what you’re thinking.

And we know what your brain is thinking.

“How can this be a serious C# programming book?”

“What’s with all the graphics?”

“Can I actually learn it this way?”

Your brain craves novelty. It’s always searching, scanning, waiting for
something unusual. It was built that way, and it helps you stay alive.

So what does your brain do with all the routine, ordinary, normal things
you encounter? Everything it can to stop them from interfering with
the brain’s real job—recording things that matter. It doesn’t bother
saving the boring things; they never make it past the “this is obviously
not important” filter.

How does your brain know what’s important? Suppose you’re out for
a day hike and a tiger jumps in front of you, what happens inside your
head and body?

Neurons fire. Emotions crank up. Chemicals surge.

And that’s how your brain knows…

This must be important! Don’t forget it!

But imagine you’re at home, or in a library. It’s a safe, warm, tiger‑free zone.
You’re studying. Getting ready for an exam. Or trying to learn some
tough technical topic your boss thinks will take a week, ten days at
the most.

Just one problem. Your brain’s trying to do you a big favor. It’s trying
to make sure that this obviously non-important content doesn’t clutter
up scarce resources. Resources that are better spent storing the really
big things. Like tigers. Like the danger of fire. Like how you should
never have posted those “party” photos on your Facebook page.

And there’s no simple way to tell your brain, “Hey brain, thank you
very much, but no matter how dull this book is, and how little I’m
registering on the emotional Richter scale right now, I really do want
you to keep this stuff around.”

Your brain thinks THIS is important.

Your brain t
hinks

THIS isn’t worth
saving.

xxxiv   intro

how to use this book

We think of a “Head First” reader as a learner.

So what does it take to learn something? First, you have to get it, then make sure

you don’t forget it. It’s not about pushing facts into your head. Based on the

latest research in cognitive science, neurobiology, and educational psychology,

learning takes a lot more than text on a page. We know what turns your brain on.

Some of the Head First learning principles:

Make it visual. Images are far more memorable than words alone, and

make learning much more effective (up to 89% improvement in recall and

transfer studies). It also makes things more understandable. Put the

words within or near the graphics they relate to, rather than on

the bottom or on another page, and learners will be up to twice as likely to

solve problems related to the content.

Use a conversational and personalized style. In recent studies,

students performed up to 40% better on post-learning tests if the content spoke

directly to the reader, using a first-person, conversational style rather than

taking a formal tone. Tell stories instead of lecturing. Use casual language.

Don’t take yourself too seriously. Which would you pay more attention to: a

stimulating dinner party companion, or a lecture?

Get the learner to think more deeply. In other words, unless you

actively flex your neurons, nothing much happens in your head. A reader

has to be motivated, engaged, curious, and inspired to solve problems, draw

conclusions, and generate new knowledge. And for that, you need challenges,

exercises, and thought-provoking questions, and activities that involve both

sides of the brain and multiple senses.

Get—and keep—the reader’s attention. We’ve all had the “I really want to learn this but

I can’t stay awake past page one” experience. Your brain pays attention to things that are out of

the ordinary, interesting, strange, eye-catching, unexpected. Learning a new, tough,

technical topic doesn’t have to be boring. Your brain will learn much more quickly if

it’s not.

Touch their emotions. We now know that your ability to remember

something is largely dependent on its emotional content. You remember what

you care about. You remember when you feel something. No, we’re not talking

heart‑wrenching stories about a boy and his dog. We’re talking emotions like

surprise, curiosity, fun, “what the…?” , and the feeling of “I Rule!” that comes when

you solve a puzzle, learn something everybody else thinks is hard, or realize you

know something that “I’m more technical than thou” Bob from engineering doesn’t.

you are here 4   xxxv

the intro

If you really want to learn, and you want to learn more quickly and more deeply,
pay attention to how you pay attention. Think about how you think. Learn how you
learn.

Most of us did not take courses on metacognition or learning theory when we were
growing up. We were expected to learn, but rarely taught to learn.

But we assume that if you’re holding this book, you really want to learn how to
build programs in C#. And you probably don’t want to spend a lot of time. If you
want to use what you read in this book, you need to remember what you read. And
for that, you’ve got to understand it. To get the most from this book, or any book or
learning experience, take responsibility for your brain. Your brain on this content.

The trick is to get your brain to see the new material you’re learning
as Really Important. Crucial to your well-being. As important as a
tiger. Otherwise, you’re in for a constant battle, with your brain doing
its best to keep the new content from sticking.

Metacognition: thinking about thinking

I wonder
how I can trick

my brain into
remembering
this stuff…

So just how DO you get your brain to treat C# like
it was a hungry tiger?

There’s the slow, tedious way, or the faster, more effective
way. The slow way is about sheer repetition. You obviously
know that you are able to learn and remember even the dullest
of topics if you keep pounding the same thing into your brain. With
enough repetition, your brain says, “This doesn’t feel important to him, but he
keeps looking at the same thing over and over and over, so I suppose it must be.”

The faster way is to do anything that increases brain activity, especially different
types of brain activity. The things on the previous page are a big part of the solution,
and they’re all things that have been proven to help your brain work in your favor. For
example, studies show that putting words within the pictures they describe (as opposed to
somewhere else in the page, like a caption or in the body text) causes your brain to try to
makes sense of how the words and picture relate, and this causes more neurons to fire.
More neurons firing = more chances for your brain to get that this is something worth
paying attention to, and possibly recording.

A conversational style helps because people tend to pay more attention when they
perceive that they’re in a conversation, since they’re expected to follow along and hold up
their end. The amazing thing is, your brain doesn’t necessarily care that the “conversation”
is between you and a book! On the other hand, if the writing style is formal and dry, your
brain perceives it the same way you experience being lectured to while sitting in a roomful
of passive attendees. No need to stay awake.

But pictures and conversational style are just the beginning.

xxxvi   intro

how to use this book

Here’s what WE did:
We used pictures, because your brain is tuned for visuals, not text. As far as your
brain’s concerned, a picture really is worth a thousand words. And when text and
pictures work together, we embedded the text in the pictures because your brain
works more effectively when the text is within the thing the text refers to, as opposed
to in a caption or buried in the text somewhere.

We used redundancy, saying the same thing in different ways and with different media types,
and multiple senses, to increase the chance that the content gets coded into more than one area
of your brain.

We used concepts and pictures in unexpected ways because your brain is tuned for novelty,
and we used pictures and ideas with at least some emotional content, because your brain
is tuned to pay attention to the biochemistry of emotions. That which causes you to feel
something is more likely to be remembered, even if that feeling is nothing more than a little
humor, surprise, or interest.

We used a personalized, conversational style, because your brain is tuned to pay more
attention when it believes you’re in a conversation than if it thinks you’re passively listening
to a presentation. Your brain does this even when you’re reading.

We included dozens of activities, because your brain is tuned to learn and remember more
when you do things than when you read about things. And we made the paper puzzles and
code exercises challenging-yet-do-able, because that’s what most people prefer.

We used multiple learning styles, because you might prefer step-by-step procedures,
while someone else wants to understand the big picture first, and someone else just
wants to see an example. But regardless of your own learning preference, everyone
benefits from seeing the same content represented in multiple ways.

We include content for both sides of your brain, because the more of your brain you
engage, the more likely you are to learn and remember, and the longer you can stay focused.
Since working one side of the brain often means giving the other side a chance to rest, you
can be more productive at learning for a longer period of time.

And we included stories and exercises that present more than one point of view,
because your brain is tuned to learn more deeply when it’s forced to make evaluations and
judgments.

We included challenges, with exercises, and by asking questions that don’t always have
a straight answer, because your brain is tuned to learn and remember when it has to work at
something. Think about it—you can’t get your body in shape just by watching people at the
gym. But we did our best to make sure that when you’re working hard, it’s on the right things.
That you’re not spending one extra dendrite processing a hard-to-understand example,
or parsing difficult, jargon-laden, or overly terse text.

We used people. In stories, examples, pictures, etc., because, well, because you’re a person.
And your brain pays more attention to people than it does to things.

When you define a class, you define
its methods, just like a blueprint
defines the layout of the house.

You can use one blueprint to
make any number of houses,
and you can use one class to
make any number of objects.

you are here 4   xxxvii

the intro

So, we did our part. The rest is up to you. These tips are a
starting point; listen to your brain and figure out what works
for you and what doesn’t. Try new things.

1

3

4

5 Drink water. Lots of it.

Your brain works best in a nice bath of fluid.
Dehydration (which can happen before you ever
feel thirsty) decreases cognitive function.

Make this the last thing you read before
bed. Or at least the last challenging thing.

6

7

9 Write a lot of software!

There’s only one way to learn to program: writing
a lot of code. And that’s what you’re going to do
throughout this book. Coding is a skill, and the only
way to get good at it is to practice. We’re going to
give you a lot of practice: every chapter has exercises
that pose a problem for you to solve. Don’t just skip
over them—a lot of the learning happens when
you solve the exercises. We included a solution to
each exercise—don’t be afraid to peek at the
solution if you get stuck! (It’s easy to get snagged on
something small.) But try to solve the problem before
you look at the solution. And definitely get it working
before you move on to the next part of the book.

Listen to your brain.

8 Feel something.

Your brain needs to know that this matters. Get
involved with the stories. Make up your own
captions for the photos. Groaning over a bad joke
is still better than feeling nothing at all.

Pay attention to whether your brain is getting
overloaded. If you find yourself starting to skim
the surface or forget what you just read, it’s time
for a break. Once you go past a certain point, you
won’t learn faster by trying to shove more in, and
you might even hurt the process.

Talk about it. Out loud.

Speaking activates a different part of the brain.
If you’re trying to understand something, or
increase your chance of remembering it later, say
it out loud. Better still, try to explain it out loud
to someone else. You’ll learn more quickly, and
you might uncover ideas you hadn’t known were
there when you were reading about it.

Part of the learning (especially the transfer to
long-term memory) happens after you put the
book down. Your brain needs time on its own, to
do more processing. If you put in something new
during that processing time, some of what you
just learned will be lost.

Read the “There are No Dumb Questions”

That means all of them. They’re not optional
sidebars—they’re part of the core content!
Don’t skip them.

Slow down. The more you understand,
the less you have to memorize.

Don’t just read. Stop and think. When the
book asks you a question, don’t just skip to the
answer. Imagine that someone really is asking
the question. The more deeply you force your
brain to think, the better chance you have of
learning and remembering.

Cut this out and stick it on your refrigerator.

Here’s what YOU can do to					 bend
your brain into submission

2 Do the exercises. Write your own notes.

We put them in, but if we did them for you,
that would be like having someone else do
your workouts for you. And don’t just look at
the exercises. Use a pencil. There’s plenty of
evidence that physical activity while learning
can increase the learning.

xxxviii   intro

how to use this book

We wrote this book using Visual Studio Express 2012 for Windows 8 and Visual Studio Express 2012 for
Windows Desktop. All of the screenshots that you see throughout the book were taken from those two editions
of Visual Studio, so we recommend that you use them. You can also use Visual Studio 2012 Professional, Premium,
Ultimate or Test Professional editions, but you’ll see some small differences (but nothing that will cause problems with
the coding exercises throughout the book).

 SETTING UP VISUAL STUDIO 2012 EXPRESS EDITIONS

¥	 You can download Visual Studio Express 2012 for Windows 8 for free from Microsoft’s website. It installs cleanly alongside
other editions, as well as previous versions: http://www.microsoft.com/visualstudio/eng/downloads

¥	 Once you’ve got it installed, you’ll need to do the same thing for Visual Studio Express 2012 for Windows Desktop.

What you need for this book:

What to do if you don’t have Windows 8 or can’t run Visual Studio 2012
Many of the coding exercises in this book require Windows 8. But we definitely understand that some of our readers
may not be running it—for example, a lot of professional programmers have office computers that are running
operating systems as old as Windows 2003, or only have Visual Studio 2010 installed and cannot upgrade it. If you’re
one of these readers, don’t worry—you can still do almost every exercise in this book. Here’s how:

≥≥ The exercises in chapters 3 through 9 the first two labs do not require Windows 8 at all. You’ll even be able to
do them using Visual Studio 2010 (and even 2008), although the screenshots may differ a bit from what you see.

≥≥ For the rest of the book, you’ll need to build Windows Presentation Foundation (WPF) desktop
apps instead of Windows 8 apps. We’ve put together a PDF that you can download from the Head First Labs
website (http://headfirstlabs.com/hfcsharp) to help you out with this. Flip to leftover #11 in the appendix to learn more.

Click the “Install
Now” link to launch
the web installer,
which automatically
downloads and
installs Visual Studio.

You’ll also need to
generate a product key,
which is free for the
Express editions (but
requires you to create a
Microsoft.com account).

The screenshots in this book match Visual Studio
2012 Express Edition, the latest free version

available at the time of this printing. We’ll keep future
printings up to date, but Microsoft typically makes

older versions available for download.

you are here 4   xxxix

the intro

Read me
This is a learning experience, not a reference book. We deliberately stripped out
everything that might get in the way of learning whatever it is we’re working on at
that point in the book. And the first time through, you need to begin at the beginning,
because the book makes assumptions about what you’ve already seen and learned.

The activities are NOT optional.

The puzzles and activities are not add-ons; they’re part of the core content of the book.
Some of them are to help with memory, some for understanding, and some to help you
apply what you’ve learned. Don’t skip the written problems. The pool puzzles are
the only things you don’t have to do, but they’re good for giving your brain a chance to
think about twisty little logic puzzles.

The redundancy is intentional and important.

One distinct difference in a Head First book is that we want you to really get it. And we
want you to finish the book remembering what you’ve learned. Most reference books
don’t have retention and recall as a goal, but this book is about learning, so you’ll see
some of the same concepts come up more than once.

Do all the exercises!

The one big assumption that we made when we wrote this book is that you want to
learn how to program in C#. So we know you want to get your hands dirty right away,
and dig right into the code. We gave you a lot of opportunities to sharpen your skills
by putting exercises in every chapter. We’ve labeled some of them “Do this!”—when
you see that, it means that we’ll walk you through all of the steps to solve a particular
problem. But when you see the Exercise logo with the running shoes, then we’ve left
a big portion of the problem up to you to solve, and we gave you the solution that we
came up with. Don’t be afraid to peek at the solution—it’s not cheating! But you’ll
learn the most if you try to solve the problem first.

We’ve also placed all the exercise solutions’ source code on the web so you can download
it. You’ll find it at http://www.headfirstlabs.com/books/hfcsharp/

The “Brain Power” questions don’t have answers.

For some of them, there is no right answer, and for others, part of the learning
experience of the Brain Power activities is for you to decide if and when your answers
are right. In some of the Brain Power questions you will find hints to point you in the
right direction.

We use a lot of diagrams to
make tough concepts easier
to understand.

You should do ALL of the
“Sharpen your pencil” activities

Activities marked with the Exercise (running shoe) logo are really important! Don’t skip them if you’re serious about learning C#.

If you see the Pool Puzzle logo,
the activity is optional, and if
you don’t like twisty logic, you
won’t like these either.

 mi5Agent

 ciaAgent



xl   intro

The technical review team

the review team

Lisa Kellner

Technical Reviewers:

The book you’re reading has very few errors in it, and give a lot of credit for its high quality to some great technical
reviewers. We’re really grateful for the work that they did for this book—we would have gone to press with errors
(including one or two big ones) had it not been for the most kick-ass review team EVER.…

First of all, we really want to thank Lisa Kellner—this is our ninth (!) book that she’s reviewed for us, and she made a
huge difference in the readability of the final product. Thanks, Lisa! And special thanks to Chris Burrows, Rebeca
Dunn-Krahn, and David Sterling for their enormous amount of technical guidance, and to Joe Albahari and Jon
Skeet for their really careful and thoughtful review of the first edition, and Nick Paladino who did the same for the
second edition.

Chris Burrows is a developer at Microsoft on the C# Compiler team who focused on design and implementation of
language features in C# 4.0, most notably dynamic.

Rebeca Dunn-Krahn is a founding partner at Semaphore Solutions, a custom software shop in Victoria, Canada,
that specializes in .NET applications. She lives in Victoria with her husband Tobias, her children, Sophia and Sebastian,
a cat, and three chickens.

David Sterling has worked on the Visual C# Compiler team for nearly three years.

Johnny Halife is a Chief Architect & Co-Founder of Mural.ly (http://murally.com), a web start-up that allows people
to create murals: collecting any content inside them and organizing it in a flexible and organic way in one big space.
Johnny’s a specialist on cloud and high-scalability solutions. He’s also a passionate runner and sports fan.

Not pictured (but just
as awesome are the
reviewers from previous
editions): Joe Albahari,
Jay Hilyard, Aayam
Singh, Theodore, Peter
Ritchie, Bill Meitelski
Andy Parker, Wayne
Bradney, Dave Murdoch,
Bridgette Julie
Landers, Nick Paldino,
David Sterling. Special
thanks to reader Alan
Ouellette and our other
readers who let us
know about issues that
slipped through QC for
the first and second
editions.

David SterlingJohnny Halife

Chris Burrows

Rebeca Dunn-Krahn

you are here 4   xli

the intro

Acknowledgments
Our editor:

We want to thank our editor, Courtney Nash, for editing this
book. Thanks!

There are so many people at O’Reilly we want to thank that we hope we don’t
forget anyone. Special Thanks to production editor Melanie Yarbrough,
indexer Ellen Troutman-Zaig, Rachel Monaghan for her sharp
proofread, Ron Bilodeau for volunteering his time and preflighting expertise,
and for offering one last sanity check—all of whom helped get this book from
production to press in record time. And as always, we love Mary Treseler,
and can’t wait to work with her again! And a big shout out to our other
friends and editors, Andy Oram, Mike Hendrickson, Laurie Petryki,
Tim O’Reilly, and Sanders Kleinfeld. And if you’re reading this book
right now, then you can thank the greatest publicity team in the industry:
Marsee Henon, Sara Peyton, and the rest of the folks at Sebastopol.

The O’Reilly team:

Courtney Nash

xlii   intro

Safari® Books Online
Safari Books Online is an on-demand digital library that lets you easily search over 7,500
technology and creative reference books and videos to find the answers you need quickly.

With a subscription, you can read any page and watch any video from our library online. Read books on your cell
phone and mobile devices. Access new titles before they are available for print, and get exclusive access to manuscripts
in development and post feedback for the authors. Copy and paste code samples, organize your favorites, download
chapters, bookmark key sections, create notes, print out pages, and benefit from tons of other time-saving features.

O’Reilly Media has uploaded this book to the Safari Books Online service. To have full digital access
to this book and others on similar topics from O’Reilly and other publishers, sign up for free at
http://my.safaribooksonline.com/?portal=oreilly.

safari books online

this is a new chapter   1

I’m ready for a
wild ride!

start building with c#1

Build something cool, fast!

Want to build great apps really fast?�
With C#, you’ve got a great programming language and a valuable tool at

your fingertips. With the Visual Studio IDE, you’ll never have to spend hours

writing obscure code to get a button working again. Even better, you’ll be able

to build really cool software, rather than remembering which bit of code was

for the name of a button, and which one was for its label. Sound appealing?

Turn the page, and let’s get programming.

2   Chapter 1

Why you should learn C#
C# and the Visual Studio IDE make it easy for you to get to the business
of writing code, and writing it fast. When you’re working with C#, the
IDE is your best friend and constant companion.

c# makes it easy

What you get with Visual Studio and C#…
With a language like C#, tuned for Windows
programming, and the Visual Studio IDE, you can focus
on what your program is supposed to do immediately:

Here’s what the IDE automates for you…
Every time you want to get started writing a program, or
just putting a button on a page, your program needs a
whole bunch of repetitive code.

using System;

using System.
Collections.G

eneric;

using System.
Windows.Forms

;

namespace A_N
ew_Program

{
 static cl

ass Program

 {
 /// <

summary>

 /// T
he main entry

 point for th
e application

.

 /// <
/summary>

 [STAT
hread]

 stati
c void Main()

 {
 A

pplication.En
ableVisualSty

les();

 A
pplication.Se

tCompatibleTe
xtRenderingDe

fault(false);

 A
pplication.Ru

n(new Form1()
);

 }
 }
}

private void InitializeComponent(){
 this.button1 = new System.Windows.Forms.Button();
 this.SuspendLayout(); //
 // button1
 //
 this.button1.Location = new System.Drawing.Point(105, 56);
 this.button1.Name = "button1"; this.button1.Size = new System.Drawing.Size(75, 23);
 this.button1.TabIndex = 0; this.button1.Text = "button1"; this.button1.UseVisualStyleBackColor = true;
 this.button1.Click += new System.EventHandler(this.button1_Click);

 //
 // Form1
 //
 this.AutoScaleDimensions = new System.Drawing.SizeF(8F, 16F);

 this.AutoScaleMode = System.Windows.Forms.AutoScaleMode.Font;

 this.ClientSize = new System.Drawing.Size(292, 267);
 this.Controls.Add(this.button1); this.Name = "Form1"; this.Text = "Form1"; this.ResumeLayout(false);}

It takes all this code just to draw a button in a window. Adding a bunch of visual elements to a page could take 10 times as much code.

Data access

C#, the .NET Framework,

and the Visual Studio IDE
have prebuilt structures
that handle the tedious
code that’s part of most
programming tasks.

.NET Framework
solutions

The result is a better-looking app that takes less time to write.

Visual obje
ct

s

The IDE—or Visual Studio Integrated
Development Environment—is an
important part of working in C#. It’s a
program that helps you edit your code,
manage your files, and submit your apps
to the Windows Store.

you are here 4   3

start building with c#

 Build an application, FAST. Creating programs in C# is a snap. The
language is flexible and easy to learn, and the Visual Studio IDE does a lot of
work for you automatically. You can leave mundane coding tasks to the IDE
and focus on what your code should accomplish.

1

 Build visually stunning programs. When you combine C# with
XAML, the visual markup language for designing user interfaces, you’re
using one of the most effective tools around for creating visual programs...
and you’ll use it to build software that looks as great as it acts.

3

 Design a great-looking user interface. The Visual Designer in the
Visual Studio IDE is one of the easiest-to-use design tools out there. It
does so much for you that you’ll find that creating user interfaces for your
programs is one of the most satisfying parts of developing a C# application.
You can build full-featured professional programs without having to spend
hours writing a graphical user interface entirely from scratch.

2

 Focus on solving your REAL problems. The IDE does a lot for you, but you
are still in control of what you build with C#. The IDE lets you just focus on your
program, your work (or fun!), and your users. It handles all the grunt work for you:

≥≥ Keeping track of all your projects

≥≥ Making it easy to edit your project’s code

≥≥ Keeping track of your project’s graphics, audio, icons, and other resources

≥≥ Helping you manage and interact with your data

All this means you’ll have all the time you would’ve spent doing this routine
programming to put into building and sharing killer apps.

4

When you use C# and Visual Studio, you get all of
these great features, without having to do any extra
work. Together, they let you:

You’re going to see exactly
what we mean next.

C# and the Visual Studio IDE make
lots of things easy

apps

you are here 4
3

5

4   Chapter 1

let’s get started

App.xaml.csMainPage.xaml

This file contains the C# code that’s run when the app is launched or resumed.

This file contains the XAML
code that defines the user
interface of the main page.

What you do in Visual Studio…
Go ahead and start up Visual Studio for Windows 8, if you haven’t already. Skip over the start page and select New
Project from the File menu. There are several project types to choose from. Expand Visual C# and Windows
Store, and select Blank App (XAML). The IDE will create a folder called Visual Studio 2012 in your Documents folder,
and put your applications in a Projects folder under it (you can use the Location box to change this).

MainPage.Xaml.cs

The C# code that
controls the main
page’s behavior
lives here.

What Visual Studio does for you…
As soon as you save the project, the IDE creates a bunch of files, including
MainPage.xaml, MainPage.Xaml.cs, and App.xaml.cs, when you create a new
project. It adds these to the Solution Explorer window, and by default, puts
those files in the Projects\App1\App1 folder.

Visual Studio creates all three of
these files automatically. It creates
several other files as well! You can see
them in the Solution Explorer window.

	 Things may
look a bit
different in
your IDE.

This is what the New
Project window looks
like in Visual Studio for
Windows 8 Express
Edition. If you’re using
the Professional or Team
Foundation edition, it
might be a bit different. But
don’t worry, everything still
works exactly the same.

Make sure that you save your project
as soon as you create it by selecting
Save All from the File menu—that’ll
save all of the project files out to
the folder. If you select Save, it just
saves the one you’re working on.

If you don’t see this option, you might be running
Visual Studio 2012 for Windows Desktop. You’ll
need to exit that IDE and launch Visual Studio
Express 2012 for Windows 8.

you are here 4   5

start building with c#

v Just a couple more steps and your screen will match the picture below. First, make sure you open
the Toolbox and Error List windows by choosing them from the View menu. Next, select the Light
color theme from the Options menu. You should be able to figure out the purpose of many of
these windows and files based on what you already know. Then, in each of the blanks, try to fill in
an annotation saying what that part of the IDE does. We’ve done one to get you started. See if you
can guess what all of these things are for.

This toolbar has buttons that
apply to what
you’re currently doing in the IDE.

We’ve blown up this
window below so you
have more room.

If you don’t see the Error List or
Toolbox, choose them from the View menu.

We switched to the Light color
theme because it’s easier
to see light screenshots in
a book. If you like it, pick

“Options...” from the Tools
menu, expand Environment,

and click on General to change
it (feel free to change back).

The designer lets you edit
the user interface by
dragging controls onto it.

The screenshot on page 4 is
in the Dark color theme.

6   Chapter 1

v

If you don’t see the Error List or
Toolbox, choose them from the View menu.

We’ve filled in the annotations about the different sections of the Visual
Studio C# IDE. You may have some different things written down, but you
should have been able to figure out the basics of what each window and
section of the IDE is used for.

This toolbar has buttons that apply to what you’re currently doing in the IDE.

know your ide

This window
shows properties
of whatever is
currently selected
in your designer.

This is the
toolbox. It
has a bunch of
visual controls
that you can
drag onto your
page.

This Error List window shows

you when there are errors in

your code. This pane will show

lots of diagnostic info about

your app.

The XAML and C# files that the IDE created for you when you added the new project appear in the Solution Explorer, along with any other files in your solution.

You can switch between files using the Solution Explorer in the IDE.

See this little
pushpin icon?
If you click it,
you can turn
auto-hide on or
off. The Toolbox
window has
auto-hide turned
on by default.

The designer lets you edit
the user interface by
dragging controls onto it.

Solution

you are here 4   7

start building with c#

Q: So if the IDE writes all this code
for me, is learning C# just a matter of
learning how to use the IDE?

A: No. The IDE is great at automatically
generating some code for you, but it can
only do so much. There are some things it’s
really good at, like setting up good starting
points for you, and automatically changing
properties of controls on your forms. But
the hard part of programming—figuring out
what your program needs to do and making
it do it—is something that no IDE can do
for you. Even though the Visual Studio IDE
is one of the most advanced development
environments out there, it can only go so far.
It’s you—not the IDE—who writes the code
that actually does the work.

Q: What if the IDE creates code I don’t
want in my project?

A: You can change it. The IDE is set up to
create code based on the way the element
you dragged or added is most commonly
used. But sometimes that’s not exactly what
you wanted. Everything the IDE does for
you—every line of code it creates, every file
it adds—can be changed, either manually by
editing the files directly or through an easy-
to-use interface in the IDE.

Q: Is it OK that I downloaded and
installed Visual Studio Express? Or do
I need to use one of the versions of
Visual Studio that isn’t free in order to do
everything in this book?

A: There’s nothing in this book that you
can’t do with the free version of Visual Studio
(which you can download from Microsoft’s
website). The main differences between
Express and the other editions aren’t going
to get in the way of writing C# and creating
fully functional, complete applications.

Q: You said something about
combining C# and XAML. What is XAML,
and how does it combine with C#?

A: XAML (the X is pronounced like Z, and
it rhymes with “camel”) is a markup language
that you’ll use to build your user interfaces for
your full-page Windows Store apps. XAML is
based on XML (which you’ll also learn about
later in the book), so if you’ve ever worked
with HTML you have a head start. Here’s an
example of a XAML tag to draw a gray ellipse:

<Ellipse Fill="Gray"
Height="100" Width="75"
/>

You can tell that that’s a tag because it starts
with a < followed by a word (“Ellipse”),
which makes it a start tag. This particular
Ellipse tag has three properties: one to
set its fill color to gray, and two to set its height
and width. This tag ends with />, but some
XAML tags can contain other tags. We can
turn this tag into a container tag by replacing
/> with a >, adding other tags (which can
also contain additional tags), and closing it
with an end tag that looks like this:
</Ellipse>. You’ll learn a lot more
about how XAML works and the different XAML
tags throughout the book.

Q: I’m looking at the IDE right now,
but my screen doesn’t look like yours! It’s
missing some of the windows, and others
are in the wrong place. What gives?

A: If you click on the Reset Window
Layout command under the Window menu,
the IDE will restore the default window layout
for you. Then you can use the View→Other
Windows menu to make your screen look
just like the ones in this chapter.

Visual Studio will
generate code
you can use as a
starting point for
your applications.

Making sure the
app does what
it’s supposed to
do is entirely up
to you.

8   Chapter 1

Well, there’s a surprise: vicious aliens have launched a full-scale attack
on planet Earth, abducting humans for their nefarious and unspeakable
gastronomical experiments. Didn’t see that coming!

Aliens attack!

if only humans weren’t so delicous

Uh oh! Aliens
are beaming up
humans. Not good!

Mmm,
tasty humans!

?!

you are here 4   9

start building with c#

Only you can help save the Earth
The last hopes of humanity rest on your shoulders! The
people of planet Earth need you to build an awesome C#
app to coordinate their escape from the alien menace. Are
you up to the challenge?

Drag the human into the
target before the timer at the
bottom of the page runs out.

More and more evil aliens
will fill up the screen. If
you drag your human into
one, “Game over, man!”

Don’t drag
your human
too quickly or
you’ll lose him.

Our greatest human scientific
minds have invented protective

interdimensional diamond-shaped
portals to protect the human race.

It’s up to YOU to SAVE THE
HUMANS by guiding them safely

to their target portals.

10   Chapter 1

here’s your goal

Ellip
se

XAML Main Page
and Containers Windows UI

Controls

Here’s what you’re going to build

You’ll be building
an app that has

a main

page with a bunch of vi
sual controls on i

t.
The app uses controls to provide gameplay for the player.

You’re going to need an application with a graphical user
interface, objects to make the game work, and an executable to
run. It sounds like a lot of work, but you’ll build all of this over
the rest of the chapter, and by the end you’ll have a pretty good
handle on how to use the IDE to design a page and add C# code.

Here’s the structure of the app we’re going to create:

You’ll lay out the main page

using a grid. The gameplay will

take place in the center ce
ll

of the grid—we’ll use a Canvas

for that.

Main p
ag

e

Grid

Canvas

Rectangl
e

Sta
ck

P
an

e
l

Rectangl
e

ProgressB
ar

Each human that
the player has
to save is drawn
using a StackPanel,
which contains
an ellipse and a
rectangle.

The app uses these controls
to draw the target the
human is dragged to and the countdown timer display.

The Target
timer checks the
ProgressBar’s
properties to
see if the player
ran out of time.

Grab a cup of
coffee and settle in!

You’re about to really put
the IDE through its paces,
and build a pretty cool

project.

By the end of this
chapter, you’ll know your
way around the IDE,
and have a good head
start on writing code.

you are here 4   11

start building with c#

.png

Splash
screen

StartGame()

AddEnemy()

AnimateEnemy()

EndTheGame()

C# Code Deployment
Package

.exe

Program
file

You’ll write C# code that manipulates the controls and makes the game work.

After your app is working, you can package it up so it can be uploaded to the Windows Store, Microsoft’s online marketplace for selling and distributing apps.

.xml

App
manifest

Target ti
m

er

Enemy tim
er

Tick event handler

Tick event handler

Click event handler

Start b
utto

n

methods

You’ll use two
timers to add
enemies and end the
game if the player
runs out of time.

You’ll be building an app with two different
kinds of code. First you’ll design the
user interface using XAML (Extensible
Application Markup Language), a really
flexible design language. Then you’ll
add C# code to make the game actually
work. You’ll learn a lot more about XAML
throughout the second half of the book.

		� No Windows 8? No problem.

The first two chapters and the last
half of this book have many projects
that are built with Visual Studio 2012

for Windows 8, but many readers aren’t running Windows
8 yet. Luckily, most of the Windows Store apps in this
book can also be built using Windows Presentation
Foundation (WPF), which is compatible with earlier
operating systems. You can download a free PDF with
details and instructions from http://www.headfirstlabs.com/
hfcsharp...flip to leftover #11 in the appendix for
more information.

It’s not unusual for computers in an office to be running an operating system as old as Windows 2003. With this PDF, you can still do the projects in the book.

12   Chapter 1

fill in the blanks

Start with a blank applicat ion
Every great app starts with a new project. Choose New Project from the File
menu. Make sure you have Visual C#→Window Store selected and choose
Blank App (XAML) as the project type. Type Save the Humans as
the project name.

If your code filenames don’t end in “.cs”
you may have accidentally created a
JavaScript, Visual Basic, or Visual C++
program. You can fix this by closing the
solution and starting over. If you want
to keep the project name “Save the
Humans,” then you’ll need to delete the
previous project folder.

 Your starting point is the Designer window. Double-click on MainPage.xaml in the Solution
Explorer to bring it up. Find the zoom drop-down in the lower-left corner of the designer and
choose “Fit all” to zoom it out.

1

Use these three buttons to turn on the
grid lines, turn on snapping (which
automatically lines up your controls to
each other), and turn on snapping to grid
lines (which aligns them with the grid).

The designer shows
you a preview of
the page that
you’re working
on. It looks like a
blank page with
a default black
background.

you are here 4   13

start building with c#

 The bottom half of the Designer window shows you the XAML
code. It turns out your “blank” page isn’t blank at all—it contains
a XAML grid. The grid works a lot like a table in an HTML
page or Word document. We’ll use it to lay out our pages in a way
that lets them grow or shrink to different screen sizes and shapes.

You can see the XAML code
for the blank grid that the IDE
generated for you. Keep your eyes
on it—we’ll add some columns and
rows in a minute.

This part of the project has steps numbered 1 to 5 .

Flip the page to keep going!

These are the opening and closing tags for a grid that
contains controls. When you add rows, columns, and controls
to the grid, the code for them will go between these opening
and closing tags.

.png

Splash
screen

StartGame()

AddEnemy()

Ellip
se

XAML Main Page
and Containers Windows UI

Controls

C# Code Deployment
Package

.exe

Program
file

Main p
ag

e

Grid

Canvas

Rectangl
e

Sta
ck

P
an

e
l

Rectangl
e

ProgressB
ar

.xml

App
manifest

Target ti
m

er

Enemy tim
er

Tick event handler

Tick event handler

Click event handler

Start b
utto

n

methods

You are here!

Looking to learn WPF? Look no further!
Most of the Windows Store apps in this book can be built with WPF (Windows
Presentation Foundation), which is compatible with Windows 7 and earlier operating
systems. Download the free WPF guide to Head First C# PDF from our website:
http://headfirstlabs.com/hfcsharp (see leftover #11 in the appendix for more details)

14   Chapter 1

get a running start

 Your page is going to need a title, right? And it’ll need margins, too. You
can do this all by hand with XAML, but there’s an easier way to get your
app to look like a normal Windows Store app.

Go to the Solution Explorer window and find . Right-
click on it and choose Delete to delete the MainPage.xaml page:

2

When you start
a Windows Store
app, you’ll often
replace the main
page with one
of the templates
that Visual
Studio provides.

 Now you’ll need to replace the main page. Go back to the Solution Explorer and
right-click on (it should be the second item in the
Solution Explorer) to select the project. Then choose Add→New Item... from
the menu:

3

If you chose a different name when you
created your project, you’ll see that
name instead of “Save the Humans” in
the Solution Explorer.

Over the next few pages
you’ll explore a lot of
different features in

the Visual Studio IDE,
because we’ll be using
the IDE as a powerful
tool for learning and

teaching. You’ll use the
IDE throughout the book

to explore C#. That’s a
really effective way to
get it into your brain!

If you don’t see the
Solution Explorer, you can
use the View menu to open
it. You can also reset the
IDE’s window layout using
the Window menu.

you are here 4   15

start building with c#

The IDE will pop up the Add New Item window for your project. Choose Basic Page and give it the name
MainPage.xaml. Then click the Add button to add the replacement page to your project.

The IDE will prompt you to add missing files—choose Yes to add them. Wait for the designer to finish loading. It
might display either or . Choose Rebuild Solution from the
Build menu to bring the IDE’s Designer window up to date. Now you’re ready to roll!

Let’s explore your newly added MainPage.xaml file. Scroll through the XAML pane in the designer window until you
find this XAML code. This is the grid you’ll use as the basis for your program:

Choose Basic Page to
add a new page to your
projcet based on the
Basic Page template.

Make sure you name it MainPage.xaml, because it needs
the same name as the page that you deleted.

Notice how there’s a whole separate grid,
with its own starting <Grid> and ending
</Grid> tags? That’s the page header
that displays the app name. This grid is
also contained inside the root grid that
you’ll be adding controls to.

You’ll use the IDE to lay out
your app by modifying this grid.

When you replace
MainPage.xaml with
the new Basic Page
item, the IDE needs
to add additional
files. Rebuilding
the solution brings
everything up to
date so it can
display the page in
the designer.

Your page should
be displayed in
the designer.
If it isn’t,
double-click on
MainPage.xaml
in the Solution
Explorer.

16   Chapter 1

Q:But it looks like I already have many rows and
and columns in the grid. What are those gray lines?

A: The gray lines were just Visual Studio giving you a
grid of guidelines to help you lay your controls out evenly
on the page. You can turn them on and off with the
button. None of the lines you see in the designer show up
when you run the app outside of Visual Studio. But when
you clicked and created a new row, you actually altered
the XAML, which will change the way the app behaves
when it’s compiled and executed.

Q: Wait a minute. I wanted to learn about C#. Why
am I spending all this time learning about XAML?

A: Because Windows Store apps built in C# almost
always start with a user interface that’s designed in XAML.
That’s also why Visual Studio has such a good XAML
editor—to give you the tools you need to build stunning
user interfaces. Throughout this book, you’ll learn how
to build two other types of programs with C#, desktop
applications and console applications, neither of which
use XAML. Seeing all three of these will give you a deeper
understanding of programming with C#.

not so blank after all

 Your app will be a grid with two rows and three columns (plus the
header row that came with the blank page template), with one big cell
in the middle that will contain the play area. Start defining rows by
hovering over the border until a line and triangle appear:

4

If you don’t see
the numbers 140
and 1* along
the border of
your page, click
outside the page.

...then click to
create a bottom
row in the grid.

Hover over the
border of the grid
until an orange
triangle and line
appear...

After the row is added,
the line will change
to blue and you’ll see
the row height in the
border. The height
of the center row will
change from 1* to a
larger number followed
by a star.

Windows Store
apps need to
look right on
any screen,
from tablets
to laptops to
giant monitors,
in portrait or
landscape.

Laying out the page using a
grid’s columns and rows allows
your app to automatically
adjust to the display.

you are here 4   17

start building with c#

 Do the same thing along the top border of the page—except this time create two columns, a small one
on the lefthand side and another small one on the righthand side. Don’t worry about the row heights
or column widths—they’ll vary depending on where you click. We’ll fix them in a minute.

5

When you’re done, look in the XAML window and go back to the same grid from the previous page.
Now the column widths and row heights match the numbers on the top and side of your page.

Here’s the width of the left column
you created in step 5—the width
matches the width that you saw in
the designer. That’s because the IDE
generated this XAML code for you.

Don’t worry if your
row heights or column
widths are different;
you’ll fix them on the
next page.

Your grid rows and columns are now added!
XAML grids are container controls, which means they hold other
controls. Grids consist of rows and columns that define cells, and
each cell can hold other XAML controls that show buttons, text, and
shapes. A grid is a great way to lay out a page, because you can set its
rows and columns to resize themselves based on the size of the screen.

The humans are
preparing. We don’t like

the looks of this.

18   Chapter 1

let’s size up the competition

 Set the width of the left column.
Hover over the number above the first column until a drop-
down menu appears. Choose Pixel to change the star to a
lock, then click on the number to change it to 160. Your
column’s number should now look like this:

1

Set up the grid for your page
Your app needs to be able to work on a wide range of devices, and using
a grid is a great way to do that. You can set the rows and columns of
a grid to a specific pixel height. But you can also use the Star setting,
which keeps them the same size proportionally—to each other and also
to the page—no matter how big the display or what its orientation is.

 Repeat for the right column and
the bottom row.
Make the right column and the bottom row 160 by
choosing Pixel and typing 160 into the box.

2

		� It’s OK if you’re not
a pro at app
design...yet.

We’ll talk a lot more
about what goes into designing a good
app later on. For now, we’ll walk you
through building this game. By the end of
the book, you’ll understand exactly what
all of these things do!

When you change this
number, you modify
the grid—and its
XAML code.

Set your columns or rows to
Pixel to give them a fixed
width or height. The Star
setting lets a row or column
grow or shrink proportionally
to the rest of the grid. Use
this setting in the designer
to alter the Width or Height
property in the XAML. If
you remove the Width or
Height property, it’s the same
as setting the property to 1*.

you are here 4   19

start building with c#

 Make the center column and center row the
default size 1* (if they aren’t already).
Click on the number above the center column and enter 1. Don’t use
the drop-down (leave it Star) so it looks like the picture below. Then
make sure to look back at the other columns to make sure the IDE
didn’t resize them. If it did, just change them back to 160.

3

 Look at your XAML code!
Click on the grid to make sure it’s selected, then look in the XAML window to see the code that you built.

4

You used the column and row
drop-downs to set the Width
and Height properties.

This is how a column is defined for a XAML
grid. You added three columns and three rows,
so there are three ColumnDefinition tags and
three RowDefinition tags.

In a minute, you’ll be adding controls
to your grid, which will show up here,
after the row and column definitions.

The <Grid .. > line at the top
means everything that comes
after it is part of the grid.

When you enter 1* into the box,
the IDE sets the column to its
default width. It might adjust
the other columns. If it does, just
reset them back to 160 pixels.

This top row with a height of 140 pixels is part of the Basic Page template you added.

XAML and C# are
case sensitive! Make
sure your uppercase
and lowercase letters
match example code.

20   Chapter 1

take control of your program

Add controls to your grid
Ever notice how apps are full of buttons, text, pictures, progress bars, sliders,
drop-downs, and menus? Those are called controls, and it’s time to add some
of them to your app—inside the cells defined by your grid’s rows and columns.

Drag a into the lower-right cell of the grid. Your XAML will look something like this.
See if you can figure out how it determines which row and column the controls are placed in.

2

Expand the section of the toolbox and
drag a into the bottom-left cell of the grid.

Then look at the bottom of the Designer window and have
a look at the XAML tag that the IDE generated for you.
You’ll see something like this—your margin numbers will be
different depending on where in the cell you dragged it, and the
properties might be in a different order.

1

The XAML for the button starts
here, with the opening tag.

These are properties. Each
property has a name, followed by
an equals sign, followed by its value.

If you don’t see
the toolbox, try
clicking on the
word “Toolbox”
that shows up
in the upper-left
corner of the
IDE. If it’s not
there, select
Toolbox from
the View menu
to make it
appear.

We added line breaks to make the XAML easier to
read. You can add line breaks too. Give it a try!

Click on Pointer in the toolbox, then click on the TextBlock and move it around and watch the IDE update the Margin property in the XAML.

If you don’t see the
toolbox in the IDE, you
can open it using the View menu. Use the pushpin to
keep it from collapsing.

you are here 4   21

start building with c#

When you drag a
control out of the
toolbox and onto
your page, the
IDE automatically
generates XAML
to put it where you
dragged it.

Next, expand the section of the toolbox. Drag a
into the bottom-center cell, a into the bottom-right cell (make sure it’s
below the TextBlock you already put in that cell), and a into the center cell.
Your page should now have controls on it (don’t worry if they’re placed differently than
the picture below; we’ll fix that in a minute):

3

You’ve got the Canvas control currently selected, since you just added it. (If not, use
the pointer to select it again.) Look in the XAML window:

...

It’s showing you the XAML tag for the Canvas control. It starts with <Canvas and
ends with />, and between them it has properties like Grid.Column="1" (to put
the Canvas in the center column) and Grid.Row="1" (to put it in the center row).
Try clicking in both the grid and the XAML window to select different controls.

4

Here’s the TextBlock
control you added in
step 2. You dragged
a ContentControl
into the same cell.

You just added
this ProgressBar.

When you add the
Canvas control, it
looks like an empty
box. We’ll fix that
shortly.

Here’s the ContentControl.
What do you think it does?

Try clicking this button.
It brings up the Document
Outline window. Can you
figure out how to use it?
You’ll learn more about it
in a few pages.

Here’s the
button you
added in step 1.

22   Chapter 1

your app’s property value is going up

Use propert ies to change how the controls look
The Visual Studio IDE gives you fine control over your controls. The Properties window
in the IDE lets you change the look and even the behavior of the controls on your page.

 Use the Properties window to modify the button.
Make sure the button is selected in the IDE, then look at the
Properties window in the lower-right corner of the IDE. Use
it to change the name of the control to startButton and
center the control in the cell. Once you’ve got the button looking
right, right-click on it and choose View Source to jump
straight to the <Button> tag in the XAML window.

2

 Change the text of the button.
Right-click on the button control that you dragged onto the grid and choose Edit Text
from the menu. Change the text to: Start! and see what you did to the button’s XAML:

...

1

When you edit the text in the button, the IDE
updates the Content property in the XAML.

Use the Name box to change the
name of the control to startButton.

When you used “Edit Text” on the right-click menu to change
the button’s text, the IDE updated the Content property.

Use the and buttons to set the
HorizontalAlignment and VerticalAlignment properties

to “Center” and center the button in the cell.

These little squares tell you if the property has been set. A filled square means it’s been set; an empty square means it’s been left with a default value.

When you dragged the button onto the page, the IDE
used the Margin property to place it in an exact position
in the cell. Click on the square and choose Reset from

the menu to reset the margins to 0.
Go back to the
XAML window in
the IDE and have a
look at the XAML
that you updated!

You might
need to
expand the
Common
and Layout
sections.

When you’re editing text, use the Escape key to finish. This works for other things in the IDE, too.

The properties may be in a different order. That’s OK!

you are here 4   23

start building with c#

 Change the page header text.
Right-click on the page header (“My Application”) and choose View Source to jump to the XAML for the
text block. Scroll in the XAML window until you find the Text property:

Wait a minute! That’s not text that says “My Application”—what’s going on here?

The Blank Page template uses a static resource called AppName for the name that it displays at the top
of the page. Scroll to the top of the XAML code until you find a <Page.Resources> section that has
this XAML code in it:

Replace “My Application” with the name of your application:

Now you should see the correct text at the top of the page:

3

 Use a StackPanel to group the TextBlock and ContentControl.
Make sure that the TextBlock is near the top of the cell, and the ContentControl is near
the bottom. Click and drag to select both the TextBlock and ContentControl,
and then right-click. Choose from the pop-up menu, then choose

. This adds a new control to your form: a StackPanel control. You can
select the StackPanel by clicking between the two controls.

The StackPanel is a lot like the Grid and Canvas: its job is to hold other controls
(it’s called a “container”), so it’s not visible on the form. But since you dragged the
TextBlock to the top of the cell and the ContentControl to the bottom, the IDE created
the StackPanel so it fills up most of the cell. Click in the middle of the StackPanel
to select it, then right-click and choose and to quickly reset its
properties, which will set its vertical and horizontal alignment to Stretch. Finally, right-
click on the TextBox and ContentControl to reset their layouts as well. While you have
the ContentControl selected, set its vertical and horizontal alignments to Center.

5

You are here!

.png

Splash
screen

StartGame()

AddEnemy()

Ellip
se

XAML Main Page
and Containers Windows UI

Controls

C# Code
Deployment
Package

.exe

Program
file

Main p
ag

e

Grid

Canvas

Rectangl
e

Sta
ck

P
an

e
l

Rectangl
e

ProgressB
ar

.xml

App
manifest

Target ti
m

er

Enemy tim
er

Tick event handler

Tick event handler

Click event handler

Start b
utto

n

methods

 Update the TextBlock to change its text and its style.
Use the Edit Text right-mouse menu option to change the TextBlock so it says
Avoid These (hit Escape to finish editing the text). Then right-click on it, choose
the menu item, and then choose the submenu and
select SubheaderTextStyle to make its text bigger.

4

Don’t worry about that back
button. You’ll learn all about how to use it in Chapter 14. You’ll
also learn about static resources.

Your TextBlock and
ContentControl are
in the lower-right cell
of the grid.

Right-click and
reset the layout
of the StackPanel,
TextBlock, and
ContentControl.

A box appears around
the StackPanel if you
hover over it.

You can use Edit→Undo (or Ctrl-Z) to undo
the last change. Do it several times to undo

the last few changes. If you selected the
wrong thing, you can choose Select None

from the Edit menu to deselect. You can also
hit Escape to deselect the control. If it’s

living inside a container like a StackPanel or
Grid, hitting Escape will select the container,

so you may need to hit it a few times.

24   Chapter 1

you want your game to work, right?

Controls make the game work
Controls aren’t just for decorative touches like titles and captions. They’re central to the way your game works.
Let’s add the controls that players will interact with when they play your game. Here’s what you’ll build next:

 Update the ProgressBar.
Right-click on the ProgressBar in the bottom-center cell of the grid, choose the Reset
Layout menu option, and then choose All to reset all of the properties to their default
values. Use the Height box in the Layout section of the Properties window to set the
Height to 20. The IDE stripped all of the layout-related properties from the XAML,
and then added the new Height:

1

 Turn the Canvas control into the gameplay area.
Remember that Canvas control that you dragged into the center square? It’s hard
to see it right now because a Canvas control is invisible when you first drag it out of

the toolbox, but there’s an easy way to find it. Click the very small button above
the XAML window to bring up the Document Outline. Click on to
select the Canvas control.

Make sure the Canvas control is selected, then use the Name box in the
Properties window to set the name to playArea.

2

After you’ve named the Canvas control, you can close the
Document Outline window. Then use the and buttons
in the Properties window to set its vertical and horizontal
alignments to Stretch, reset the margins, and click both
buttons to set the Width and Height to Auto. Then set its
Column to 0, and its ColumnSpan (next to Column) to 3.

Finally, open the Brush section of the Properties window and
use the button to give it a gradient. Choose the starting
and ending colors for the gradient by clicking each of the tabs
at the bottom of the color editor and then clicking on a color.

Click on the lefthand
tab, then on the
starting color for the
gradient. Then click on
the righthand tab and
choose the ending color.

Once you change the name, it’ll show up as playArea instead of [Canvas] in the Document Outline window.

You can also open the Document Outline by
clicking the tab on the side of the IDE.

You can also get to the Document Outline by choosing the View→Other Windows menu.

...and you’ll work on the
bottom row. You’ll make the ProgressBar

as wide as its column...
...and you’ll use a
template to make your
enemy look like this.

You’ll create a play area with a
gradient background...

you are here 4   25

start building with c#

You’re almost done laying out the form! Flip the page for the last steps...

 Use the Document Outline to modify the StackPanel and TextBlock controls.
Go back to the Document Outline (if you see at the top of the Document
Outline window, just click to get back to the Page outline). Select the StackPanel control, make sure its
vertical and horizontal alignments are set to center, and clear the margins. Then do the same for the TextBlock.

5

 Create the enemy template.
Your game will have a lot of enemies bouncing around the screen, and you’re going to want them to all look the
same. Luckily, XAML gives us templates, which are an easy way to make a bunch of controls look alike.

Next, right-click on the ContentControl in the Document Outline window. Choose Edit Template, then choose
Create Empty... from the menu. Name it EnemyTemplate. The IDE will add the template to the XAML.

Your newly created template is currently selected in the IDE. Collapse the Document Outline window so it doesn’t
overlap the Toolbox. Your template is still invisible, but you’ll change that in the next step. If you accidentally click out of
the control template, you can always get back to it by opening the Document Outline, right-clicking on the Content Control,
and choosing Edit Template→Edit Current.

3

You’re “flying blind” for this
next bit—the designer won’t
display anything for the
template until you add a control
and set its height and width so
it shows up. Don’t worry; you
can always undo and try again if
something goes wrong.

You can also use the
Document Outline
window to select
the grid if it gets
deselected.

 Edit the enemy template.
Add a red circle to the template:

≥≥ Double-click on in the toolbox to add an ellipse.

≥≥ Set the ellipse’s Height and Width properties to 100,
which will cause the ellipse to be displayed in the cell.

≥≥ Reset the HorizontalAlignment,
VerticalAlignment, and Margin properties by
clicking on their squares and choosing Reset.

≥≥ Go to the Brush section of the Properties window and click
on to select a solid-color brush.

≥≥ Color your ellipse red by clicking in the color bar and
dragging to the top, then clicking in the color sector and
dragging to the upper-right corner.

The XAML for your ContentControl now looks like this:

4

Click in this color
selector and drag
to the upper-right
corner.

Scroll around your page’s XAML window and see if you can find where the
EnemyTemplate is defined. It should be right below the AppName resource.

Make sure you don’t click anywhere else in the designer until
you see the ellipse. That will keep the template selected.

26   Chapter 1

check out the page you built

 Add the human to the Canvas.

You’ve got two options for adding the human. The first option is to follow the next three paragraphs. The second, quicker
option is to just type the four lines of XAML into the IDE. It’s your choice!

Select the Canvas control, then open the All XAML Controls section of the toolbox and double-click
on Ellipse to add an Ellipse control to the Canvas. Select the Canvas control again and double-click on
Rectangle. The Rectangle will be added right on top of the Ellipse, so drag the Rectangle below it.

Hold down the Shift key and click on the Ellipse so both controls are selected. Right-click on the Ellipse,
choose Group Into, and then StackPanel. Select the Ellipse, use the solid brush property to change its
color to white, and set its Width and Height properties to 10. Then select the Rectangle, make it white as
well, and change its Width to 10 and its Height to 25.

Use the Document Outline window to select the Stack Panel (make sure you see at the top of
the Properties window). Click both buttons to set the Width and Height to Auto. Then use the Name
box at the top of the window to set its name to human. Here’s the XAML you generated:

Go back to the Document Outline window to see how your new controls appear:

6

 Add the Game Over text.
When your player’s game is over, the game will need to display a Game
Over message. You’ll do it by adding a TextBlock, setting its font, and
giving it a name:

≥≥ Select the Canvas, then drag a TextBlock out of the toolbox and
onto it.

≥≥ Use the Name box in the Properties window to change the
TextBlock’s name to gameOverText.

≥≥ Use the Text section of the Properties window to change the font to
Arial Black, change the size to 100 px, and make it Bold and Italic.

≥≥ Click on the TextBlock and drag it to the middle of the Canvas.

≥≥ Edit the text so it says Game Over.

7

If you choose to type this into the XAML
window of the IDE, make sure you do it directly
above the </Canvas> tag. That’s how you indicate
that the human is contained in the Canvas.

When you drag
a control around
a Canvas, its
Left and Top
properties are
changed to set
its position. If
you change the
Left and Top
properties, you
move the control.

Your XAML may also set a Stroke
property for

the shapes that add
an outline. Can you figure

out how to add or remove it?

you are here 4   27

start building with c#

 Add the target portal that the player will drag the human onto.
There’s one last control to add to the Canvas: the target portal that your player will drag the human
into. (It doesn’t matter where in the Canvas you drag it.)

Select the Canvas control, then drag a Rectangle control onto it. Use the button in the Brushes
section of the Properties window to give it a gradient. Set its Height and Width properties to 50.

Turn your rectangle into a diamond by rotating it 45 degrees. Open the Transform section of the
Properties window to rotate the Rectangle 45 degrees by clicking on and setting the angle to 45.

Finally, use the Name box in the Properties window to give it the name target.

Congratulations—you’ve finished building the main page for your app!

8

28   Chapter 1

you took control

Now that you’ve built a user interface, you should have a sense of what some of the controls do, and you’ve used
a lot of different properties to customize them. See if you can work out which property does what, and where in
the Properties window in the IDE you find it.

Content

Height

Rotation

Fill

x:Name

XAML property

Determines how tall the
control should be

Sets the angle that the
control is turned

You use this in your C#
code to manipulate a
specific control

The color of the control

Use this when you want
to change text displayed
inside your control

What it does
Where to find it

in the Properties
window in the IDE

At the top

Here’s a hint: you can use the Search box in the
Properties window to find properties—but some of

these properties aren’t on every type of control.

Solution on page 37

you are here 4   29

start building with c#

You’ve set the stage for the game
Your page is now all set for coding. You set up the grid that will
serve as the basis of your page, and you added controls that will
make up the elements of the game.

Visual Studio gave you useful tools for laying
out your page, but all it really did was help you
create XAML code. You’re the one in charge!

The first step you did was to create the project and set up the grid.

Then you added controls to your page. The next step is to write code that uses them.

.png

Splash
screen

StartGame()

AddEnemy()

AnimateEnemy()

EndTheGame()Ellip
se

XAML Main Page
and Containers Windows UI

Controls

C# Code Deployment
Package

.exe

Program
file

Main p
ag

e

Grid

Canvas

Rectangl
e

Sta
ck

P
an

e
l

Rectangl
e

ProgressB
ar

.xml

App
manifest

Target ti
m

er

Enemy tim
er

Tick event handler

Tick event handler

Click event handler

Start b
utto

n
methods

You are here!

30   Chapter 1

keep your stub for re-entry

What you’l l do next
Now comes the fun part: adding the code that makes your game
work. You’ll do it in three stages: first you’ll animate your enemies,
then you’ll let your player interact with the game, and finally
you’ll add polish to make the game look better.

...then you’ll add the gameplay...

...and finally, you’ll
make it look good.

First you’ll animate the enemies...

The first thing you’ll do
is add C# code that
causes enemies to shoot
out across the play
area every time you
click the Start button.

To make the game
work, you’ll need the
progress bar to count
down, the human to
move, and the game
to end when the
enemy gets him or
time runs out.

You used a template
to make the enemies
look like red circles.
Now you’ll update
the template to make
them look like evil
alien heads.

A lot of programmers build their code in small
increments, making sure one piece works before
moving on to the next one. That’s how you’ll build
the rest of this program. You’ll start by creating

a method called AddEnemy() that adds an
animated enemy to the Canvas control. First

you’ll hook it up to the Start button so you can fill
your page up with bouncing enemies. That will lay
the groundwork to build out the rest of the game.

you are here 4   31

start building with c#

Add a method that does something
It’s time to start writing some C# code, and the first thing you’ll do is
add a method—and the IDE can give you a great starting point by
generating code.

When you’re editing a page in the IDE, double-clicking on any of the
controls on the page causes the IDE to automatically add code to your
project. Make sure you’ve got the page designer showing in the IDE,
and then double-click on the Start button. The IDE will add code to
your project that gets run any time a user clicks on the button. You
should see some code pop up that looks like this:

Q: What’s a method?

A: A method is just a named block of code.
We’ll talk a lot more about methods in Chapter 2.

Q: And the IDE generated it for me?

A: Yes...for now. A method is one of the basic
building blocks of programs—you’ll write a lot of
them, and you’ll get used to writing them by hand.

When you double-clicked on the Button control, the
IDE created this method. It will run when a user
clicks the “Start!” button in the running application.

Use the IDE to create your own method
Click between the { } brackets and type this, including the parentheses and semicolon:

Notice the red squiggly line underneath the text you just typed? That’s the IDE telling you that something’s
wrong. If you click on the squiggly line, a blue box appears, which is the IDE’s way of telling you that it
might be able to help you fix the error.

Hover over the blue box and click the icon that pops up. You’ll see a box asking you to generate a
method stub. What do you think will happen if you click it? Go ahead and click it to find out!

The red squiggly line is the IDE telling you
there’s a problem, and the blue box is the
IDE telling you that it might have a solution.

The IDE also added
this to the XAML. See
if you can find it. You’ll
learn more about what
this is in Chapter 2.

32   Chapter 1

intelligent and sensible

Fil l in the code for your method
It’s time to make your program do something, and
you’ve got a good starting point. The IDE generated a
method stub for you: the starting point for a method that
you can fill in with code.

Select this and delete it. You’ll learn
about exceptions in Chapter 12.

Delete the contents of the method stub that the IDE
generated for you.

1

Start adding code. Type the word Content into the method body. The IDE will pop up a window
called an IntelliSense Window with suggestions. Choose ContentControl from the list.

2

Finish adding the first line of code. You’ll get another IntelliSense window after you type new.3

	 C# code must be
added exactly as
you see it here.

It’s really easy to throw
off your code. When

you’re adding C# code to your
program, the capitalization has to
be exactly right, and make sure you
get all of the parentheses, commas,
and semicolons. If you miss one,
your program won’t work!

This line creates a new ContentControl object. You’ll learn about objects and the new keyword in Chapter 3, and reference variables like enemy in Chapter 4.

you are here 4   33

start building with c#

Before you fill in the AddEnemy() method, you’ll need to add a line of code near the top of the file.
Find the line that starts with public sealed partial class MainPage and add this line
after the bracket ({):

4

This is called a field. You’ll learn more about how it works in Chapter 4.

Flip the page to see your program run!

Finish adding the method. You’ll see some squiggly red underlines. The ones
under AnimateEnemy() will go away when you generate its method stub.

5 Do you see a squiggly underline
under playArea? Go back to the
XAML editor and sure you set
the name of the Canvas control
to playArea.

This line adds your
new enemy control
to a collection called
Children. You’ll learn
about collections in
Chapter 8.

If you need to switch between the XAML and C#
code, use the tabs at the top of the window.

Use the blue box and the button to generate a method stub for AnimateEnemy(), just like you
did for AddEnemy(). This time it added four parameters called enemy, p1, p2, and p3. Edit the
top line of the method to change the last three parameters. Change the parameter p1 to from, the
parameter p2 to to, and the parameter p3 to propertyToAnimate. Then change any int types to
double.

6

You’ll learn
about methods and parameters in Chapter 2.

Flip the page to see your program run!
The IDE may generate the method stub
with “int” types. Change them to “double”.
You’ll learn about types in Chapter 4.

34   Chapter 1

ok, that’s pretty cool

Finish the method and run your program
Your program is almost ready to run! All you need to do is finish your
AnimateEnemy() method. Don’t panic if things don’t quite work
yet. You may have missed a comma or some parentheses—when you’re
programming, you need to be really careful about those things!

 Add a using statement to the top of the file.
Scroll all the way to the top of the file. The IDE generated several
lines that start with using. Add one more to the bottom of the list:

1

You’ll need this line to make the next bit of code work. You can use the IntelliSense window to get it right—and don’t forget the semicolon at the end.

You’ll learn about
object initializers
like this in
Chapter 4.

And you’ll learn
about animation
in Chapter 16.

 Add code that creates an enemy bouncing animation.
You generated the method stub for the AnimateEnemy() method on the
previous page. Now you’ll add its code. It makes an enemy start bouncing across
the screen.

2

		 Still seeing red?
The IDE helps
you track down
problems.

If you still have some of those red
squiggly lines, don’t worry! You
probably just need to track down
a typo or two. If you’re still seeing
squiggly red underlines, it just means
you didn’t type in some of the code
correctly. We’ve tested this chapter
with a lot of different people, and we
didn’t leave anything out. All of the
code you need to get your program
working is in these pages.

 Look over your code.
You shouldn’t see any errors, and your Error List window should be
empty. If not, double-click on the error in the Error List. The IDE will
jump your cursor to the right place to help you track down the problem.

3

If you can’t see the Error List window, choose Error List from the View menu to show it. You’ll learn more about using the error window and debugging your code in Chapter 2.

Statements
like these let
you use code
from .NET
libraries that
come with
C#. You’ll
learn more
about them in
Chapter 2.

This using statement lets you use animation code from the .NET Framework in your program to move the enemies on your screen.

This code makes the enemy you created move across playArea. If you change 4 and 6, you can make the enemies move slower or faster.

you are here 4   35

start building with c#

 Start your program.
Find the button at the top of the IDE. This starts your program running.

4

 Now your program is running!
First, a big X will be displayed for a few seconds, and then your main page will be displayed. Click
the “Start!” button a few times. Each time you click it, a circle is launched across your canvas.

5

This button starts your program.

 Stop your program.
Press Alt-Tab to switch back to the IDE. The button in the toolbar has been replaced with to
break, stop, and restart your program. Click the square to stop the program running.

6

This big X is the splash
screen. You’ll make your
own splash screen at the
end of the chapter.

You built something cool! And it didn’t take

long, just like we promised. But there’s more

to do to get it right.

Here’s a hint: if you move too many windows
around your IDE, you can always reset by choosing

Reset Window Layout from the Window menu.

If the enemies aren’t bouncing,
or if they leave the play area,
double-check the code. You may
be missing parentheses or keywords.

36   Chapter 1

what you’ve done, where you’re going

Here’s what you’ve done so far
Congratulations! You’ve built a program that actually does
something. It’s not quite a playable game, but it’s definitely a start.
Let’s look back and see what you built.

Visual Studio can generate code for you, but you
need to know what you want to build BEFORE
you start building it. It won’t do that for you!

We’ve gotten a good start by building the user interface...

…but we still need
the rest of the C#
code to make the app
actually work.

This step is where we write C# code that makes the gameplay run.

.png

Splash
screen

StartGame()

AddEnemy()

AnimateEnemy()

EndTheGame()Ellip
se

XAML Main Page
and Containers Windows UI

Controls

C# Code Deployment
Package

.exe

Program
file

Main p
ag

e

Grid

Canvas

Rectangl
e

Sta
ck

P
an

e
l

Rectangl
e

ProgressB
ar

.xml

App
manifest

Target ti
m

er

Enemy tim
er

Tick event handler

Tick event handler

Click event handler

Start b
utto

n

methods

You are here!

you are here 4   37

start building with c#

Now that you’ve built a user interface, you should have a sense of what some of the controls do, and you’ve used
a lot of different properties to customize them. See if you can work out which property does what, and where in
the Properties window in the IDE you find it.

Content

Height

Rotation

Fill

x:Name

XAML property

Determines how tall the
control should be

Sets the angle that the
control is turned

You use this in your C#
code to manipulate a
specific control

The color of the control

Use this when you want
text or graphics in your
control

What it does
Where to find it

in the Properties
window in the IDE

At the top

solution

Remember how you set the Name of the
Canvas control to “playArea”? That set its
“x:Name” property in the XAML, which will
come in handy in a minute when you write C#
code to work with the Canvas.

Here’s the solution for the “Who Does What” exercise on page 28.
We’ll give you the anwers to the pencil-and-paper puzzles and

exercises, but they won’t always be on the next page.

38   Chapter 1

tick tick tick

Add t imers to manage the gameplay
Let’s build on that great start by adding working gameplay elements. This game adds
more and more enemies, and the progress bar slowly fills up while the player drags the
human to the target. You’ll use timers to manage both of those things.

 Add more lines to the top of your C# code.
Go up to the top of the file where you added that Random line. Add three more lines:

1

The MainPage.Xaml.cs file you’ve been editing
contains the code for a class called MainPage.
You’ll learn about classes in Chapter 3.

Add these three lines
below the one you added
before. These are fields,
and you’ll learn about
them in Chapter 4. Add a method for one of your timers.

Find this code that the IDE generated:

Put your cursor right after the semicolon, hit Enter two times, and type
enemyTimer. (including the period). As soon as you type the dot, an IntelliSense
window will pop up. Choose Tick from the IntelliSense window and type the
following text. As soon as you enter += the IDE pops up a box:

Press the Tab key. The IDE will pop up another box:

Press Tab one more time. Here’s the code the IDE generated for you:

2

The IDE generated
a method for you
called an event
handler. You’ll learn
about event handlers
in Chapter 15.

TickTick
Tick

Timers “tick”
every time
interval by
calling methods
over and over
again. You’ll use
one timer to add
enemies every
few seconds, and
the other to end
the game when
time expires.

you are here 4   39

start building with c#

 Add the EndTheGame() method.
Go to the new targetTimer_Tick() method, delete the line that the IDE generated, and add
the following code. The IntelliSense window might not seem quite right:

Notice how progressBar has an error? That’s OK. We did this on purpose (and we’re not even
sorry about it!) to show you what it looks like when you try to use a control that doesn’t have a
name, or has a typo in the name. Go back to the XAML code (it’s in the other tab in the IDE), find
the ProgressBar control that you added to the bottom row, and change its name to progressBar.

Next, go back to the code window and generate a method stub for EndTheGame(), just like you
did a few pages ago for AddEnemy(). Here’s the code for the new method:

4

 Finish the MainPage() method.
You’ll add another Tick event handler for the other timer, and you’ll add
two more lines of code. Here’s what your finished MainPage() method
and the two methods the IDE generated for you should look like:

3

It’s normal to add parentheses ()
when writing about a method.

If you closed the Designer tab that had the XAML code, double-click on MainPage.xaml in the Solution Explorer window to bring it up.

If gameOverText comes up as an error, it means you didn’t set the name of the “Game Over” TextBlock. Go back and do it now.

Right now your Start button
adds bouncing enemies to the
play area. What do you think
you’ll need to do to make it
start the game instead?

This method ends the
game by stopping the

timers, making the
Start button visible
again, and adding

the GAME OVER text
to the play area.

The IDE generated these lines as placeholders when you pressed Tab to add the Tick event handlers. You’ll replace them with code that gets run every time the timers tick.

Try changing these
numbers once your
game is finished. How
does that change the
gameplay?

Did the IDE
keep trying
to capitalize
the P in
progressBar?
That’s because
there was no
lowercase-P
progressBar,
and the
closest match
it could
find was the
type of the
control.

40   Chapter 1

so close i can taste it

Make the Start button work
Remember how you made the Start button fire circles into the Canvas? Now
you’ll fix it so it actually starts the game.

 Make the Start button start the game.
Find the code you added earlier to make the Start button add an
enemy. Change it so it looks like this:

1

 Add the StartGame() method.
Generate a method stub for the StartGame() method. Here’s the
code to fill into the stub method that the IDE added:

2

 Make the enemy timer add the enemies.
Find the enemyTimer_Tick() method that the IDE added for
you and replace its contents with this:

3

Did you forget to set the names of
the target Rectangle or the human
StackPanel? You can look a few pages
back to make sure you set the right
names for all of the controls.

When you change this line, you make the Start button start the game instead of just adding an enemy to the playArea Canvas.

Ready Bake
Code

We’re giving you a lot of code to
type in.

By the end of the book, you’ll know
what all of this code does—in fact,
you’ll be able to write code just like it
on your own.

For now, your job is to make sure
you enter each line accurately, and
to follow the instructions exactly. This
will get you used to entering code,
and will help give you a feel for the
ins and outs of the IDE.

If you get stuck, you can download
working versions of MainPage.xaml
and MainPage.Xaml.cs or copy and
paste XAML or C# code for each
individual method:
http://www.headfirstlabs.com/hfcsharp.

Once you’re used to working with code, you’ll be good at spotting those missing parentheses, semicolons, etc.

Are you seeing errors in the Error List window that don’t make
sense? One misplaced comma or semicolon can cause two,
three, four, or more errors to show up. Don’t waste your time
trying to track down every typo! Just go to the Head First Labs
web page—we made it really easy for you to copy and paste all
of the code in this program.

http://www.headfirstlabs.com/hfcsharp/

You’ll learn about
IsHitTestVisible in
Chapter 15.

you are here 4   41

start building with c#

What do you think you’ll need to do to get the rest
of your game working?

Alert! Our spies
have reported that the
humans are building up

their defenses!When you press the “Start!” button,
it disappears, clears the enemies, and
starts the progress bar filling up.

When the progress bar at the bottom fills up, the game ends and the Game Over text is displayed.

The play area slowly starts to fill up
with bouncing enemies.

Flip the page to find out!

Run the program to see your progress
Your game is coming along. Run it again to see how it’s shaping up.

The target timer should fill up slowly, and the enemies should appear every two seconds. If the timing is off, make sure you added all of the lines to the MainPage() method.

42   Chapter 1

in any event...

Go to the XAML designer and use the Document Outline window to select human
(remember, it’s the StackPanel that contains a Circle and a Rectangle). Then go to the
Properties window and press the button to switch it to show event handlers. Find
the PointerPressed row and double-click in the empty box.

Now go back and check out what the IDE added to your XAML for the StackPanel:

It also generated a method stub for you. Right-click on human_PointerPressed in
the XAML and choose “Navigate to Event Handler” to jump straight to the C# code:

1

Fill in the C# code:2

Add code to make your controls
interact with the player
You’ve got a human that the player needs to drag to the target, and a
target that has to sense when the human’s been dragged to it. It’s time
to add code to make those things work. You’ll learn more

about the event
handlers in the
Properties window
in Chapter 4.

Double-click in this box.

If you go back to the designer and
click on the StackPanel again, you’ll
see that the IDE filled in the name
of the new event handler method.
You’ll be adding more event handler
methods the same way.

You can use these
buttons to switch
between showing
properties and
event handlers
in the Properites
window.

Make sure you switch back
to the IDE and stop the
app before you make more
changes to the code.

The Document Outline
may have collapsed [Grid], playArea, and other lines. If it did, just expand them to find the human control.

you are here 4   43

start building with c#

Use the Document Outline window to select the Rectangle named target,
then use the event handlers view of the Properties window to add a
PointerEntered event handler. Here’s the code for the method:

3

Make sure you add the right event handler! You added a PointerPressed event handler to the human, but now you’re adding a PointerEntered event handler to the target.

Now you’ll add two more event handlers, this time to the playArea Canvas control. You’ll need to find the
right [Grid] in the Document Outline (there are two of them—use the child grid that’s indented under
the main grid for the page) and set its name to grid. Then you can add these event handlers to playArea:

4

You’ll need to switch your Properties window back
to show properties instead of event handlers.

That’s a lot of parentheses!
Be really careful and get
them right.

These two vertical
bars are a logical
operator. You’ll
learn about them
in Chapter 2.

Make sure you put the right code
in the correct event handler!
Don’t accidentally swap them.

You can make the
game more or

less sensitive by
changing these
3s to a lower or
higher number.

When the Properties
window is in the mode
where it displays event

handlers, double-
clicking on an empty

event handler box
causes the IDE to add

a method stub for it.

44   Chapter 1

you can’t save them all

Dragging humans onto enemies ends the game
When the player drags the human into an enemy, the game should end. Let’s add the code to do that.
Go to your AddEnemy() method and add one more line of code to the end. Use the IntelliSense
window to fill in enemyPointer.PointerEntered from the list:

Choose PointerEntered from the list. (If you choose the wrong one, don’t worry—just backspace
over it to delete everything past the dot. Then enter the dot again to bring up the IntelliSense window.)

Next, add an event handler, just like you did before. Type += and then press Tab:

Then press Tab again to generate the stub for your event handler:

Now you can go to the new method that the IDE generated for you and fill in the code:

Here’s the last line of your
AddEnemy() method. Put your
cursor at the end of the line
and hit Enter to add the
new line of code.

Start typing this line of
code. As soon as you enter
the dot, an IntelliSense
window will pop up. Keep
typing “Pointer” to jump
down to the entries in
the list that start with
“Pointer...”

You’ll learn all about
how event handlers like
this work in Chapter 15.

you are here 4   45

start building with c#

Your game is now playable
Run your game—it’s almost done! When you click the Start button, your play
area is cleared of any enemies, and only the human and target remain. You
have to get the human to the target before the progress bar fills up. Simple at
first, but it gets harder as the screen fills with dangerous alien enemies!

Drag the human to safety!

...but drag too fast, and you’ll lose your human!

Get him to the target before time’s up...

The aliens only spend their time patrolling for moving humans, so the game only ends if you drag a human onto an enemy. Once you
release the human, he’s
temporarily safe from aliens.

Look through the code and find where you set the IsHitTestVisible property on the human. When it’s on, the human intercepts the PointerEntered event because the human’s StackPanel control is sitting between the enemy and the pointer.

46   Chapter 1

 Drag one more Ellipse control out of the toolbox on top of the existing ellipse. Change its fill to
Black, set its width to 25, and set its height to 35. Set the alignment and margins like this:

and add a skew like this:

4

bells whistles aliens

Make your enemies look like aliens
Red circles aren’t exactly menacing. Luckily, you used a template.
All you need to do is update it.

Now your enemies
look a lot more like
human-eating aliens.

 Go to the Document Outline, right-click on the ContentControl,
choose Edit Template, and then Edit Current to edit the template.
You’ll see the template in the XAML window. Edit the XAML code
for the ellipse to set the width to 75 and the fill to Gray. Then add

 to add a black outline, and reset its vertical and
horizontal alignments. Here’s what it should look like (you can delete
any additional properties that may have inadvertently been added
while you worked on it):

1

 Drag another Ellipse control out of the toolbox on top of the existing ellipse. Change its Fill to
black, set its width to 25, and its height to 35. Set the alignment and margins like this:

2

 Use the button in the Transforms section of the Properties window to add a Skew transform:3

	 Seeing events
instead of
properties?

You can toggle the
Properties window

between displaying properties or
events for the selected
control by clicking the
wrench or lightning bolt icons.

You can also “eyeball” it (excuse the pun) by using
the mouse or arrow keys to drag the ellipse into
place. Try using Copy and Paste in the Edit menu to
copy the ellipse and paste another one on top of it.

you are here 4   47

start building with c#

Add a splash screen and a t i le
That big X that appears when you start your program is a splash
screen. And when you go back to the Windows Start page, there it
is again in the tile. Let’s change these things.

Here’s the updated XAML for the
new enemy template that you created.

Expand the folder in the Solution Explorer window and
you’ll see four files. Double-click each of them to edit them in Paint.
Edit SplashScreen.png to create a splash screen that’s displayed when
the game starts. Logo.png and SmallLogo.png are displayed in the Start
screen. And when your app is displayed in the search results (or in the
Windows Store!), it displays StoreLogo.png.

Some editions
of Visual
Studio use
their own
graphics
editors
instead of
MS Paint.

There’s just One more thing you need to do...

Play your game!
And don’t forget to step back and really
appreciate what you built. Good job!

See if you can get creative and change the way the human, target, play area, and enemies look.

Don’t feel like making your own splash
screen or logos? You can download ours:
http://www.headfirstlabs.com/hfcsharp

48   Chapter 1

your app becomes everyone’s app You are here!

.png

Splash
screen

StartGame()

AddEnemy()

Ellip
se

XAML Main Page
and Containers Windows UI

Controls

C# Code
Deployment
Package

.exe

Program
file

Main p
ag

e

Grid

Canvas

Rectangl
e

Sta
ck

P
an

e
l

Rectangl
e

ProgressB
ar

.xml

App
manifest

Target ti
m

er

Enemy tim
er

Tick event handler

Tick event handler

Click event handler

Start b
utto

n

methods

Publish your app
You should be pretty pleased with your app! Now
it’s time to deploy it. When you publish your app
to the Windows Store, you make it available to
millions of potential users. The IDE can help
guide you through the steps to publish your app to
the Windows Store.

Here’s what it takes to get your app out there:

1 Open a Windows Store
developer account.

2 Choose your app’s name, set an
age rating, write a description,
and choose a business model to
determine if your app is free,
ad-supported, or has a price.

3 Test your app using the
Windows App Certification Kit
to identify and fix any problems.

You can learn more about how to publish apps to the Windows Store here:
http://msdn.microsoft.com/en-us/library/windows/apps/jj657972.aspx

Throughout the book we’ll show you where to find
more information from MSDN, the Microsoft
Developer Network. This is a really valuable resource
that helps you keep expanding your knowledge.

4 Submit your app to the
Store! Once it’s accepted,
millions of people around the
world can find and download it. The Store menu in the IDE has all of the

tools you need to publish your app.

In some editions of Visual Studio, the
Windows Store options appear under the
Project menu instead of having their own
top-level Store menu.

you are here 4   49

start building with c#

Use the Remote Debugger to side load your app
Sometimes you want to run your app on a remote machine without publishing it to the
Windows Store. When you install your app on a machine without going through the
Windows Store it’s called sideloading, and one of the easiest ways to do it is to install
the Visual Studio Remote Debugger on another computer.

If you have an odd network setup, you may have trouble running the
remote debugger. This MDSN page can help you get it set up:

http://msdn.microsoft.com/en-us/library/vstudio/bt727f1t.aspx

Here’s how to get your app loaded using the Remote Debugger:

≥≥ Make sure the remote machine is running Windows 8.

≥≥ Go to the Microsoft Download Center (http://www.microsoft.com/en-hk/download/default.aspx) on the
remote machine and search for “Remote Tools for Visual Studio 2012.”

≥≥ Download the installer for your machine’s architecture (x86, x64, ARM) and run it to install the
remote tools.

≥≥ Go to the Start page and launch the Remote Debugger.

≥≥ If your computer’s network configuration needs to change, it may pop up a wizard to help with that.
Once it’s running, you’ll see the Visual Studio Remote Debugging Monitor window:

≥≥ Your remote computer is now running the Visual Studio Remote Debugging Monitor and waiting
for incoming connections from Visual Studio on your development machine.

At the time this is being written, you’ll find “Remote Tools for Visual Studio 2012 Update 2,” but you may find future updates.

This is running on a computer called MY-SURFACE. Take
note of the machine name, because it will come in handy in
a minute.

Flip to get your app up and running on the remote computer!

50   Chapter 1

humans saved for now

Start remote debugging
Once you’ve got a remote computer running the remote debugging monitor, you
can launch the app from Visual Studio to install and run it. This will automatically
sideload your app on the computer, and you’ll be able to run it again from the Start
page any time you want.

 Choose “Remote Machine” from the Debug drop-down.
You can use the Debug drop-down to tell the IDE to run your program on a remote
machine. Take a close look at the button you’ve been using to run your
program—you’ll see a drop-down (). Click it to show the drop-down and choose Remote
Machine:

1

 Run your program on the remote machine.
Now run your program by clicking the button. The IDE will pop up a window asking for the
machine to run on. If it doesn’t detect it in your subnet, you can enter the machine name manually:

2

Don’t forget to change this
back to Simulator when you’re
ready to move on to the next
chapter! You’ll be writing a bunch
of programs, and you’ll need this
button to run them.

Enter the name of the machine running
the Remote Debugging Monitor.

If you need to change the machine
in the future, you can do it in the
project settings. Right-click on

the project name in the Solution
Explorer and choose Properties,

then choose the tab.
If you clear the field
and restart the remote debugger,

the Remote Debugger Connections
window will pop up again.

you are here 4   51

start building with c#

 Enter your credentials.
You’ll be prompted to enter the username and
password of the user on the remote machine.
You can turn off authentication in the Remote
Debugging Monitor if you want to avoid this (but
that’s not a great idea, because then anyone can
run programs on your machine remotely!).

3

 Get your developer license.
You already obtained a free developer license from
Microsoft when you installed Visual Studio. You need
that license in order to sideload apps onto a machine.
Luckily, the Remote Debugging Monitor will pop up a
wizard to get it automatically.

4

 Now...save some humans!
Once you get through that setup, your program will start running on the
remote machine. Since it’s sideloaded, if you want to run it again you can
just run it from the Windows Start page. Congratulations, you’ve built your
first Windows Store app and loaded it onto another computer!

5

Invasion force, full retreat! That’s
an order! These Earthlings are no

pushovers. We’ll need to regroup and
replan our attack.

Congratulations! You’ve
held off the alien
invasion...for now. But we have a feeling that this
isn’t the last we’ve heard of them.

this is a new chapter   53

it’s all just code2

Under the hood

You’re a programmer, not just an IDE user.�
You can get a lot of work done using the IDE. But there’s only so far it

can take you. Sure, there are a lot of repetitive tasks that you do when

you build an application. And the IDE is great at doing those things for

you. But working with the IDE is only the beginning. You can get your

programs to do so much more—and writing C# code is how you do it.

Once you get the hang of coding, there’s nothing your programs can’t do.

One of these days
I’ll figure out
what’s going on
under there…

54   Chapter 2

When you’re doing this…
The IDE is a powerful tool—but that’s all it is, a tool for you to use. Every time
you change your project or drag and drop something in the IDE, it creates code
automatically. It’s really good at writing boilerplate code, or code that can be
reused easily without requiring much customization.

Let’s look at what the IDE does in a typical application development, when you’re…

The Properties window in the IDE is a really easy way to edit a specific chunk of XAML code in MainPage.xaml automatically, and it can save you time. Use the Alt-Enter shortcut to open the Properties window if it’s closed.

at your service

Creating a Windows Store project
There are several kinds of applications the IDE lets
you build. We’ll be concentrating on Windows Store
applications for now—you’ll learn about other kinds of
applications in the next chapter.

1

Dragging a control out of the
toolbox and onto your page, and
then double-clicking it
Controls are how you make things happen in your page.
In this chapter, we’ll use Button controls to explore
various parts of the C# language.

2

Setting a property on your page
The Properties window in the IDE is a really
powerful tool that you can use to change attributes of
just about everything in your program: all visual and
functional properties for the controls on your page,
and even options on your project itself.

3

All of these tasks have to
do with standard actions
and boilerplate code. Those
are the things the IDE is
great for helping with.

In Chapter 1, you created a blank Windows Store project—that told the IDE to create an empty page and add it to your new project.

you are here 4   55

it’s all just code

…the IDE does this

private void startButton_Click(object sender, RoutedEventArgs e)
{

}

MainPage.xaml.cs

Save The Humans
.csproj

MainPage.xaml.cs SplashScreen.png Properties

The IDE knows how to add an empty method
to handle a button click. But it doesn’t know
what to put inside it—that’s your job.

<Button x:Name="startButton"

 Content="Start!"

 HorizontalAlignment="Center"

 VerticalAlignment="Center" Click="startButton_Click"/>

The IDE went into this file…

…and updated this XAML code.

These files are created from a predefined template that contains the basic code to create and display a page.

...the IDE opens the MainPage.xaml file
and updates a line of XAML code.

3

...The IDE adds code to MainPage.xaml that adds a
button, and then adds a method to MainPage.xaml.cs
that gets run any time the button is clicked.

2

...the IDE creates the files and
folders for the project.

1

Every time you make a change in the IDE, it makes a
change to the code, which means it changes the files that
contain that code. Sometimes it just modifies a few lines,
but other times it adds entire files to your project.

MainPage.xaml

MainPage.xaml

MainPage.xaml

56   Chapter 2

Where programs come from
A C# program may start out as statements in a bunch of
files, but it ends up as a program running in your computer.
Here’s how it gets there.

great, the “talk”

Every program starts out as source code f i les
You’ve already seen how to edit a program, and how the IDE saves your program to
files in a folder. Those files are your program—you can copy them to a new folder
and open them up, and everything will be there: pages, resources, code, and anything
else you added to your project.

You can think of the IDE as a kind of fancy file editor. It automatically does the
indenting for you, changes the colors of the keywords, matches up brackets for you,
and even suggests what words might come next. But in the end, all the IDE does is
edit the files that contain your program.

The IDE bundles all of the files for your program into a solution by creating a
solution (.sln) file and a folder that contains all of the other files for the program. The
solution file has a list of the project files (which end in .csproj) in the solution, and the
project files contain lists of all the other files associated with the program. In this
book, you’ll be building solutions that only have one project in them, but you can
easily add other projects to your solution using the IDE’s Solution Explorer.

Build the program to create an executable
When you select Build Solution from the Build menu, the IDE compiles
your program. It does this by running the compiler, which is a tool that
reads your program’s source code and turns it into an executable. The
executable is a file on your disk that ends in .exe—that’s the actual program
that Windows runs. When you build the program, it creates the executable
inside the bin folder, which is inside the project folder. When you publish
your solution, it copies the executable (and any other files necessary) into
into a package that can be uploaded to the Windows Store or sideloaded.

When you select Start Debugging from the Debug menu, the IDE compiles
your program and runs the executable. It’s got some more advanced tools
for debugging your program, which just means running it and being able
to pause (or “break”) it so you can figure out what’s going on.

There’s no reason you
couldn’t build your
programs in Notepad,
but it’d be a lot
more time-consuming.

you are here 4   57

it’s all just code

Your program runs inside the Common Language Runt ime
Every program in Windows 8 runs on an architecture called the Windows Runtime. But
there’s an extra “layer” between the Windows Runtime and your program called the
Common Language Runtime, or CLR. Once upon a time, not so long ago (but before
C# was around), writing programs was harder, because you had to deal with hardware and
low-level machine stuff. You never knew exactly how someone was going to configure his
computer. The CLR—often referred to as a virtual machine—takes care of all that for
you by doing a sort of “translation” between your program and the computer running it.

You’ll learn about all sorts of things the CLR does for you. For example, it tightly manages
your computer’s memory by figuring out when your program is finished with certain pieces
of data and getting rid of them for you. That’s something programmers used to have to do
themselves, and it’s something that you don’t have to be bothered with. You won’t know it
at the time, but the CLR will make your job of learning C# a whole lot easier.

You don’t really have to worry
about the CLR much right
now. It’s enough to know it’s
there, and takes care of
running your program for you
automatically. You’ll learn more
about it as you go.

You can see an overview of .NET for Windows Store apps here:
http://msdn.microsoft.com/en-us/library/windows/apps/br230302.aspx

The .NET Framework gives you the right tools for the job
C# is just a language—by itself, it can’t actually do anything. And that’s where the .NET
Framework comes in. Those controls you dragged out of the toolbox? Those are all part of
a library of tools, classes, methods, and other useful things. It’s got visual tools like the XAML
toolbox controls you used, and other useful things like the DispatcherTimer that made your
Save the Humans game work.

All of the controls you used are part of .NET for Windows Store apps, which contains
an API with grids, buttons, pages, and other tools for building Windows Store apps. But for
a few chapters starting with Chapter 3, you’ll learn all about writing desktop applications,
which are built using tools from the .NET for Windows Desktop (which some people call

“WinForms”). It’s got tools to build desktop applications from windows that hold forms with
checkboxes, buttons, and lists. It can draw graphics, read and write files, manage collections
of things…all sorts of tools for a lot of jobs that programmers have to do every day. The
funny thing is that Windows Store apps need to do those things, too! One of the things
you’ll learn by the end of this book is how Windows Store and Windows Desktop apps do
some of those things differently. That’s the kind of insight and understanding that helps good
programmers become great programmers.

The tools in both the Windows Runtime and the .NET Framework are divided up into
namespaces. You’ve seen these namespaces before, at the top of your code in the “using” lines.
One namespace is called Windows.UI.Xaml.Conrols—it’s where your buttons, checkboxes,
and other controls come from. Whenever you create a new Windows Store project, the IDE will
add the necessary files so that your project contains a page, and those files have the line “using
Windows.UI.Xaml.Controls;” at the top.

An API, or Application
Programming Interface, is
a collection of code tools
that you use to access
or control a system.
Many systems have APIs,
but they’re especially
important for operating
systems like Windows.

58   Chapter 2

The IDE helps you code
You’ve already seen many of the things that the IDE can do.
Let’s take a closer look at some of the tools it gives you, to
make sure you’re starting off with all the tools you need.

The Solution Explorer shows you everything
in your project
You’ll spend a lot of time going back and forth between classes, and the easiest
way to do that is to use the Solution Explorer. Here’s what the Solution Explorer
looked like after creating a blank app called App1:

≥

Use the tabs to switch between open files
Since your program is split up into more than one file, you’ll usually have several
code files open at once. When you do, each one will be in its own tab in the code
editor. The IDE displays an asterisk (*) next to a filename if it hasn’t been saved yet.

≥

When you’re working on a program, you’ll often have two
tabs for it at the same time—one for the designer, and
one to view the code. Use Control-Tab to switch between
open windows quickly.

The Solution
Explorer
shows you the
different files
in the solution
folder.

mother’s little helper

you are here 4   59

it’s all just code

The Error List helps you troubleshoot
compiler errors
If you haven’t already discovered how easy it is to make typos in a C#
program, you’ll find out very soon! Luckily, the IDE gives you a great tool for
troubleshooting them. When you build your solution, any problems that keep it
from compiling will show up in the Error List window at the bottom of the IDE:

Double-click on an error, and the IDE will jump to the problem in the code:

≥

The IDE helps you write code
Did you notice little windows popping up as you typed code into the IDE? That’s
a feature called IntelliSense, and it’s really useful. One thing it does is show you
possible ways to complete your current line of code. If you type random and then a
period, it knows that there are three valid ways to complete that line:

If you select Next and type (, the IDE’s IntelliSense will show you information
about how you can complete the line.

The IDE knows that random
has methods Next, NextBytes,
NextDouble, and four others. If you type N, it selects Next. Type “(”
or space, Tab, or Enter to tell the
IDE to fill it in for you. That can
be a real timesaver if you’re typing
a lot of really long method names.

This means that there are 3 different ways that
you can call the Random.Next() method.

When you use the debugger to
run your program inside the IDE,
the first thing it does is build
your program. If it compiles,
then your program runs. If not,
it won’t run, and will show you
errors in the Error List.

The IDE will show a squiggly
underscore to show you that
there’s an error. Hover over it
to see the same error message
that appears in the Error List.

A missing
semicolon at
the end of a
statement is
one of the most
common errors
that keeps your
program from
building.

≥

60   Chapter 2

Anatomy of a program

Namespace
Class

Method 1
statement
statement

Method 2
statement
statement

Every time you make a new program, you define a namespace for it so that its code is separate from the .NET Framework and Windows Store API classes.

A class has one or more methods. Your methods always have to live
inside a class. And methods are
made up of statements—like the
ones you’ve already seen.

A class contains a piece of your
program (although some very small
programs can have just one class).

The code file starts by using the .NET Framework tools
You’ll find a set of using lines at the top of every program file. They tell C# which parts of the
.NET Framework or Windows Store API to use. If you use other classes that are in other namespaces,
then you’ll add using lines for them, too. Since apps often use a lot of different tools from the .NET
Framework and Windows Store API, the IDE automatically adds a bunch of using lines when it
creates a page (which isn’t quite as “blank” as it appeared) and adds it to your project.

1

Every C# program’s code is structured in exactly the
same way. All programs use namespaces, classes,
and methods to make your code easier to manage.

Let’s take a closer look at your code
Open up the code from your Save the Humans project’s
MainPage.xaml.cs so we can have a closer look at it.

using System;
using System.Collections.Generic;
using System.IO;
using System.Linq;
using Windows.Foundation;
using Windows.Foundation.Collections;
using Windows.UI.Xaml;

These using lines are at the top of every code file. They tell C# to use all of those .NET Framework classes. Each one tells your program that the classes in this particular .cs file will use all of the classes in one specific .NET Framework (System) or Windows Store API namespace.

your program makes a statement

One thing to keep in mind: you don’t actually have to use a using statement. You can always use
the fully qualified name. Back in your Save the Humans app, you added this line:

using Windows.UI.Xaml.Media.Animation;

Try commenting out that line by adding // in front of it, then have a look at the errors that show
up in the error list. You can make one of them go away. Find a Storyboard that the IDE now tells
you has an error, and change it to Windows.UI.Xaml.Media.Animation.Storyboard (but you
should undo the comment you added to make your program work again).

The order of the
methods in the
class file doesn’t
matter—method
2 can just as
easily come
before method 1.

you are here 4   61

it’s all just code

This is the method called StartGame() that gets

called when the user clicks the Start button.

namespace Save_the_Humans

{

 public sealed partial class MainPage : Page

 {

 void startButton_Click(object sender, object e)

 {

 StartGame();

 }

C# programs are organized into classes
Every C# program is organized into classes. A class can do anything, but most classes
do one specific thing. When you created the new program, the IDE added a class called
MainPage that displays the page.

2

Classes contain methods that perform actions
When a class needs to do something, it uses a method. A method takes input, performs some
action, and sometimes produces an output. The way you pass input into a method is by using
parameters. Methods can behave differently depending on what input they’re given. Some
methods produce output. When they do, it’s called a return value. If you see the keyword
void in front of a method, that means it doesn’t return anything.

3

A statement performs one single action
When you filled in the StartGame() method, you added a bunch of statements. Every
method is made up of statements. When your program calls a method, it executes the first
statement in the method, then the next, then the next, etc. When the method runs out of
statements or hits a return statement, it ends, and the program resumes after the statement
that originally called the method.

4

This is a class called MainPage. It contains all of the code to make the page work. The
IDE created it when you told it to create a new blank C# Windows Store project.

This line calls a method named
StartGame(), which the IDE
helped you create when you
asked it to add a method stub.

This method
has two
parameters
called sender
and e.

Look for the
matching pairs
of brackets.
Every { is
eventually
paired up with
a }. Some
pairs can be
inside others.

When you called your program Save the Humans, the IDE created a namespace for it called Save_the_Humans (it converted the spaces to underscores because namespaces can’t have spaces) by adding the namespace keyword at the top of your code file. Everything inside its pair of curly brackets is part of the Save_the_Humans namespace.

 private void StartGame()
 {
 human.IsHitTestVisible = true;
 humanCaptured = false;
 progressBar.Value = 0;
 startButton.Visibility =
 Visibility.Collapsed;
 playArea.Children.Clear();
 playArea.Children.Add(target);
 playArea.Children.Add(human);
 enemyTimer.Start();
 targetTimer.Start();
 }
 }

 }

The StartGame() method contains
nine statements. Each statement
ends with a semicolon.

Here’s the closing bracket at the very
bottom of your MainPage.xaml.cs file.

It’s OK to add extra line breaks to make your statements more readable. They’re ignored when your program builds.

62   Chapter 2

get some answers

Q: What’s with all the curly brackets?

A: C# uses curly brackets (or “braces”) to group statements
together into blocks. Curly brackets always come in pairs. You’ll
only see a closing curly bracket after you see an opening one. The
IDE helps you match up curly brackets—just click on one, and you’ll
see it and its match get shaded darker.

Q: How come I get errors in the Error List window when I try
to run my program? I thought that only happened when I did

“Build Solution.”

A: Because the first thing that happens when you choose Start
Debugging from the menu or press the toolbar button to start your
program running is that it saves all the files in your solution and then
tries to compile them. And when you compile your code—whether
it’s when you run it, or when you build the solution—if there are
errors, the IDE will display them in the Error List instead of running
your program.

A lot of the errors that show up when you try to run your program also show up in the Error List window and as red squiggles under your code.

So the IDE can really

help me out. It generates

code, and it also helps me find

problems in my code.

The IDE helps you build your code right.

A long time ago, programmers had to use simple text
editors like Notepad to edit their code. (In fact, they would
have been envious of some of the features of Notepad, like
search and replace or ^G for “go to line number.”) We had
to use a lot of complex command-line applications to build,
run, debug, and deploy our code.

Over the years, Microsoft (and, let’s be fair, a lot of other
companies, and a lot of individual developers) figured out
a lot of helpful things like error highlighting, IntelliSense,
WYSIWYG click-and-drag page editing, automatic code
generation, and many other features.

After years of evolution, Visual Studio is now one of the
most advanced code-editing tools ever built. And lucky for
you, it’s also a great tool for learning and exploring C# and
app development.

you are here 4   63

it’s all just code

Set properties for a TextBlock control

Match each of these fragments of code generated by the IDE to what it does.
(Some of these are new—take a guess and see if you got it right!)

myGrid.Background =
 new SolidColorBrush(Colors.Violet);

partial class Form1
{ . . .
 this.MaximizeBox = false; . . .
}

helloLabel.Text = "hi there";
helloLabel.FontSize = 24;

public sealed partial class MainPage : Page
{
 private void InitializeComponent()
 { . . . }
}

 // This loop gets executed three times

 /// <summary>
 /// Bring up the picture of Rover when
 /// the button is clicked
 /// </summary>

Nothing—it’s a comment that the
programmer added to explain the code
to anyone who’s reading it

Disable the maximize icon () in the
title bar of the Form1 window

A special kind of comment that the IDE
uses to explain what an entire block of
code does

Change the background color of a Grid
control named myGrid

A method that executes whenever a
program displays its main page

64   Chapter 2

Match each of these fragments of code generated by the IDE to what it does.
(Some of these are new—take a guess and see if you got it right!)

exercise solution

Wait, a window? Not a page?
You’ll start learning about
desktop apps with windows and
forms later in this chapter.

Set properties for a TextBlock controlmyGrid.Background =
 new SolidColorBrush(Colors.Violet);

partial class Form1
{ . . .
 this.MaximizeBox = false; . . .
}

helloLabel.Text = "hi there";
helloLabel.FontSize = 24;

public sealed partial class MainPage : Page
{
 private void InitializeComponent()
 { . . . }
}

 // This loop gets executed three times

 /// <summary>
 /// Bring up the picture of Rover when
 /// the button is clicked
 /// </summary>

Nothing—it’s a comment that the
programmer added to explain the code
to anyone who’s reading it

Disable the maximize icon () in the
title bar of the Form1 window

A special kind of comment that the IDE
uses to explain what an entire block of
code does

Change the background color of a Grid
control named myGrid

A method that executes whenever a
program displays its main page

you are here 4   65

it’s all just code

namespace PetFiler2 {

 class Fish {

 public void Swim() {
 // statements
 }

 }

 partial class Cat {

 public void Purr() {
 // statements
 }

 }
 }

MoreClasses.cs

SomeClasses.cs

namespace PetFiler2 {

 class Dog {

 public void Bark() {
 // statements go here
 }

 }

 partial class Cat {

 public void Meow() {
 // more statements
 }

 }
}

Take a look at these two class files from a
program called PetFiler2. They’ve got
three classes: a Dog class, a Cat class, and
a Fish class. Since they’re all in the same
PetFiler2 namespace, statements in the
Dog.Bark() method can call Cat.Meow()
and Fish.Swim(). It doesn’t matter how
the various namespaces and classes are divided
up between files. They still act the same when
they’re run. When a method is “public”

it means every other
class in the namespace
can access its methods.

Two classes can be in the
same namespace

You can only split a class up into different files
if you use the “partial” keyword. You probably
won’t do that in any of the code you write in
this book, but the IDE used it to split your
page up into two files so it could put the
XAML code into MainPage.xaml and the C#
code into MainPage.xaml.cs.

Since these classes are in the same namespace,
they can all “see” each other—even though
they’re in different files. A class can span
multiple files too, but you need to use the

“partial” keyword when you declare it.

There’s more to namespaces and class declarations, but you
won’t need them for the work you’re doing right now. Flip to #3
in the “Leftovers” appendix to read more.

66   Chapter 2

Declare your variables
Whenever you declare a variable, you tell your program its type and its name.
Once C# knows your variable’s type, it’ll keep your program from compiling
if you make a mistake and try to do something that doesn’t make sense, like
subtract “Fido” from 48353.

			

		 int maxWeight;

		 string message;

		 bool boxChecked;

These are the names of these variables.These are the var
iable types.

These names are for YOU.
Like methods and classes, use
names that make sense and
describe the variable’s usage.

C# uses the variable type to define what data these variables can hold.

your mileage may vary

Your programs use variables to work with data
When you get right down to it, every program is basically a data cruncher.
Sometimes the data is in the form of a document, or an image in a
video game, or an instant message. But it’s all just data. And that’s where
variables come in. A variable is what your program uses to store data.

Variables vary
A variable is equal to different values at different times while your
program runs. In other words, a variable’s value varies. (Which is
why “variable” is such a good name.) This is really important, because
that idea is at the core of every program that you’ve written or will ever
write. So if your program sets the variable myHeight equal to 63:

 int myHeight = 63;

any time myHeight appears in the code, C# will replace it with its
value, 63. Then, later on, if you change its value to 12:

 myHeight = 12;

C# will replace myHeight with 12—but the variable is still called
myHeight.

Whenever your
program needs to
work with numbers,
text, true/false
values, or any other
kind of data, you’ll
use variables to keep
track of them.

	 Are you
already
familiar with
another
language?

If so, you might find that a
few things in this chapter
seem really familiar. Still, it’s
worth taking the time to run
through the exercises anyway,
because there may be a few
ways that C# is different from
what you’re used to.

you are here 4   67

it’s all just code

var-i-a-ble, noun.
an element or feature likely to change.
Predicting the weather would be a whole lot
easier if meterologists didn’t have to take so
many variables into account.

If you write code
that uses a variable
that hasn’t been
assigned a value,
your code won’t
compile. It’s easy to
avoid that error
by combining your
variable declaration
and assignment into
a single statement.

You have to assign values to variables
before you use them
Try putting these statements into a C# program:

 string z;
 string message = "The answer is " + z;

Go ahead, give it a shot. You’ll get an error, and the IDE will
refuse to compile your code. That’s because the compiler
checks each variable to make sure that you’ve assigned it a
value before you use it. The easiest way to make sure you
don’t forget to assign your variables values is to combine
the statement that declares a variable with a statement that
assigns its value:

	 int maxWeight = 25000;

	 string message = "Hi!";

	 bool boxChecked = true;

These values
are assigned to
the variables.

Each declaration has a type,
exactly like before.

Once you’ve assigned a value to your variable, that value can change. So there’s no disadvantage to assigning a variable an initial value when you declare it.

A few useful types
Every variable has a type that tells C# what kind of data it can
hold. We’ll go into a lot of detail about the many different types
in C# in Chapter 4. In the meantime, we’ll concentrate on the
three most popular types. int holds integers (or whole numbers),
string holds text, and bool holds Boolean true/false values.

68   Chapter 2

int number = 15;

number = number + 10;

number = 36 * 15;

number = 12 - (42 / 7);

number += 10;

number *= 3;

number = 71 / 3;

int count = 0;

count ++;

count --;

string result = "hello";

result += " again " + result;

output.Text = result;

result = "the value is: " + count;

result = "";

bool yesNo = false;

bool anotherBool = true;

yesNo = !anotherBool;

operators are standing by

C# uses familiar math symbols
Once you’ve got some data stored in a variable, what can you
do with it? Well, if it’s a number, you’ll probably want to add,
subtract, multiply, or divide it. And that’s where operators come
in. You already know the basic ones. Let’s talk about a few more.
Here’s a block of code that uses operators to do some simple math:

We declared a new
int variable called
number and set it to
15. Then we added 10
to it. After the second
statement, number is
equal to 25.

The third statement changes the
value of number, setting it equal to
36 times 15, which is 540. Then it
resets it again, setting it equal to
12 - (42 / 7), which is 6.

This operator is a little different.
+= means take the value of number
and add 10 to it. Since number is
currently equal to 6, adding 10 to it
sets its value to 16.

The *= operator
is similar to +=,
except it multiplies
the current value of
number by 3, so it
ends up set to 48.

You’ll use int a lot for counting, and when you do, the ++
and -- operators come in handy. ++ increments count
by adding one to the value, and -- decrements count by
subtracting one from it, so it ends up equal to zero.

		� Don’t worry about
memorizing these
operators now.

You’ll get to know them
because you’ll see ’em over and over again.

A bool stores true
or false. The !
operator means NOT.
It flips true to
false, and vice versa.

When you use the + operator
with a string, it just puts
two strings together. It’ll
automatically convert
numbers to strings for you.

This sets the
contents of a
TextBlock control
named output to
“hello again hello”.

The “” is an empty string.
It has no characters.
(It’s kind of like a zero
for adding strings.)

Normally, 71 divided by 3 is 23.666666.... But when you’re
dividing two ints, you’ll always get an int result, so 23.666…
gets truncated to 23.

To programmers, the
word “string” almost
always means a string of
text, and “int” is almost
always short for integer.

you are here 4   69

it’s all just code

Debug this!

Flip the page and keep going!

When you set a breakpoint on a line of code, the line turns red and a red dot appears in the margin of the code editor.

When you debug your code by running it inside the IDE, as soon as your program hits a breakpoint it’ll pause and let you inspect and change the values of all the variables.

The debugger is a great tool for understanding how your programs
work. You can use it to see the code on the previous page in action.

Use the debugger to see your variables change

Create a new Visual C# Windows Store Blank App (XAML) project.
Drag a TextBlock onto your page and give it the name output. Then add a Button and double-click it
to add a method called Button_Click(). The IDE will automatically open that method in the code
editor. Enter all of the code on the previous page into the method.

1

Insert a breakpoint on the first line of code.
Right-click on the first line of code (int number = 15;) and choose Insert Breakpoint from the
Breakpoint menu. (You can also click on it and choose Debug→Toggle Breakpoint or press F9.)

2

Creating a new
Blank App project

will tell the IDE
to create a new

project with a blank
page. You might
want to name it
something like

UseTheDebugger
(to match the
header of this

page). You’ll be
building a whole
lot of programs
throughout the

book, and you may
want to go back to

them later.

Comments (which
either start with two
or more slashes or are
surrounded by /* and
*/ marks) show up
in the IDE as green
text. You don’t have
to worry about what
you type in between
those marks, because
comments are always
ignored by the compiler.

70   Chapter 2

stop bugging me!

Start debugging your program.
Run your program in the debugger by clicking the Start Debugging
button (or by pressing F5, or by choosing Debug→Start Debugging from
the menu). Your program should start up as usual and display the page.

3

Click on the button to trigger the breakpoint.
As soon as your program gets to the line of code that has the breakpoint,
the IDE automatically brings up the code editor and highlights the
current line of code in yellow.

4

Add a watch for the number variable.
Right-click on the number variable (any occurrence of it will do!) and
choose from the menu. The Watch window should appear in
the panel at the bottom of the IDE:

5

Step through the code.
Press F10 to step through the code. (You can also choose Debug→Step Over from
the menu, or click the Step Over button in the Debug toolbar.) The current line
of code will be executed, setting the value of number to 15. The next line of
code will then be highlighted in yellow, and the Watch window will be updated:

6

Adding a
watch can help
you keep track
of the values of
the variables in
your program.
This will really
come in handy
when your
programs get
more complex.

As soon as the number
variable gets a new
value (15), its watch is
updated.

Continue running the program.
When you want to resume, just press F5 (or Debug→Continue), and the
program will resume running as usual.

7

When you’re debugging a
Windows Store app, you can
return to the debugger by
pressing the Windows logo
key+D. If you’re using a touch
screen, swipe from the left
edge of the screen to the
right. Then you can pause or
stop the debugger using the
Debug toolbar or menu items.

IDE Tip: +D

You can also hover over a
variable while you’re debugging
to see its value displayed in
a tooltip…and you can pin
it so it stays open!

you are here 4   71

it’s all just code

That’s a big part of why
Booleans are so important.
A loop uses a test to figure
out if it should keep looping.

Here’s a peculiar thing about most large programs: they almost always
involve doing certain things over and over again. And that’s what
loops are for—they tell your program to keep executing a certain set
of statements as long as some condition is true (or false!).

while (x > 5)

{

 x = x - 3;

}

for (int i = 0; i < 8; i = i + 2)

{

 // Everything between these brackets
 // is executed 4 times

}

Every for loop has three statements. The first sets
up the loop. It will keep looping as long as the second
statement is true. And the third statement gets
executed after each time through the loop.

In a while loop, all of the
statements inside the curly
brackets get executed as
long as the condition in the
parentheses is true.

Use a code snippet to write simple for loops
You’ll be typing for loops in just a minute, and the IDE can help
speed up your coding a little. Type for followed by two tabs,
and the IDE will automatically insert code for you. If you type
a new variable, it’ll automatically update the rest of the snippet.
Press Tab again, and the cursor will jump to the length.

If you change the variable to
something else, the snippet
automatically changes the
other two occurrences of it.

Press Tab to get the cursor to jump to the length. The number of times this loop runs is determined by whatever you set length to. You can change length to a number or a variable.

Loops perform an act ion over and over
If your brackets (or braces—either name
will do) don’t match up, your program
won’t build, which leads to frustrating
bugs. Luckily, the IDE can help with this!
Put your cursor on a bracket, and the
IDE highlights its match:

IDE Tip: Brackets

72   Chapter 2

if/else statements make decisions
Use if/else statements to tell your program to do certain
things only when the conditions you set up are (or aren’t)
true. A lot of if/else statements check if two things are equal.
That’s when you use the == operator. That’s different from the
single equals sign (=) operator, which you use to set a value.

	 Don’t confuse the two equals sign operators!

You use one equals sign (=) to set a variable’s value, but two equals
signs (==) to compare two variables. You won’t believe how many bugs in
programs—even ones made by experienced programmers!—are caused

by using = instead of ==. If you see the IDE complain that you “cannot implicitly
convert type ‘int’ to ‘bool’, that’s probably what happened.

if (someValue == 24)

{

 // You can have as many statements
 // as you want inside the brackets

 message = "The value was 24.";

} else {

 message = "The value wasn’t 24.";

}

string message = "";

if (someValue == 24)

{

 message = "The value was 24.";

}

Every if statement
starts with a
conditional test.

The statement inside
the curly brackets is
executed only if the
test is true.

if/else statements are
pretty straightforward.
If the conditional
test is true, the
program executes the
statements between the
first set of brackets.
Otherwise, it executes
the statements between
the second set.

Always use two equals signs to check if

two things are equal to each othe
r.

on one condition

you are here 4   73

it’s all just code

Build an app from the ground up
The real work of any program is in its statements. You’ve already seen how statements fit into
a page. Now let’s really dig into a program so you can understand every line of code. Start by
creating a new Visual C# Windows Store Blank App project. This time, instead of deleting
the MainPage.xaml file created by the Blank App template, use the IDE to modify it by adding three
rows and two columns to the grid, then adding four Button controls and a TextBlock to the cells. Build this page

You don’t see anything here, but there’s actually a
TextBlock control. It doesn’t have any text, so it’s
invisible. It’s centered and in the bottom row, with
ColumnSpan set to 2 so it spans both columns.

The page has a grid with three rows
and two columns. Each row definition
has its height set to 1*, which gives

it a <RowDefinition/> without any
properties. The column heights work the

same way.

The page has four Button controls, one in
each row. Use the Content property to
set their text to Show a message, If/else,

Another conditional test, and A loop.

Each button is centered in the cell. Use the
Grid.Row and Grid.Column properties to set
the row and column (they default to 0).

The bottom cell has a TextBlock control
named myLabel. Use its Style property

to set the style to BodyTextStyle.

Use the x:Name property to name the buttons
button1, button2, button3, and button4.
Once they’re named, double-click on each of

them to add an event handler method.

When you see these sneakers, it
means that it’s time for you to
come up with code on your own.

If you need to use the Edit Style right-mouse menu to
set this but you’re having trouble selecting the control,
you can right-click on the TextBlock control in the
Document Outline and choose Edit Style from there.

Make sure you choose a sensible name for this project,
because you’ll refer back to it later in the book.

74   Chapter 2

ready, set, code!

Here’s our solution to the exercise. Does
your solution look similar? Are the line
breaks different, or the properties in a
different order? If so, that’s OK!

Here are the row and
column definitions: three
rows and two columns.

This button is in the
second column and
second row, so these
properties are set to 1.

When you double-clicked
on each button, the IDE
generated a method with
the name of the button
followed by _Click.

Why do you think the left column and top row are given the
number 0, not 1? Why is it OK to leave out the Grid.Row
and Grid.Column properties for the top-left cell?

Here’s the <Page>
and <Grid> tags
that the IDE
generated for you
when you created
the blank app.

A lot of programmers don’t use the
IDE to create their XAML—they build
it by hand. If we asked you to type in
the XAML by hand instead of using
the IDE, would you be able to do it?

you are here 4   75

it’s all just code

≥≥ Don’t forget that all your statements
need to end in a semicolon:

	 name = "Joe";

≥≥ You can add comments to your code
by starting them with two slashes:

	 // this text is ignored

≥≥ Variables are declared with a name
and a type (there are plenty of types
that you’ll learn about in Chapter 4):

	 int weight;
	// weight is an integer

≥≥ The code for a class or a method goes
between curly braces:

	 public void Go() {
	 // your code here
	}

≥≥ Most of the time, extra whitespace is
fine:

	 int j = 1234 ;

is the same as:

	 int j = 1234;

private void button1_Click(object sender, RoutedEventArgs e)

{

 // this is a comment

 string name = "Quentin";

 int x = 3;

 x = x * 17;

 double d = Math.PI / 2;

 myLabel.Text = "name is " + name

 + "\nx is " + x

 + "\nd is " + d;

}

A few helpful tips

x is a variable. The “int”
part tells C# that it’s
an integer, and the rest
of the statement sets
its value to 3.

There’s a built-in class called Math, and it’s got a member called PI. Math lives in the System namespace, so the file this code came from needs to have a using System; line at the top.

The \n is an escape sequence
to add a line break to the
TextBlock text.

Make each button do something
Here’s how your program is going to work. Each time you press one
of the buttons, it will update the TextBlock at the bottom (which you
named myLabel) with a different message. The way you’ll do it is
by adding code to each of the four event handler methods that you
had the IDE generate for you. Let’s get started!

Luckily, the IDE generated the using line for you.

This line creates the output of the program: the updated text in the TextBlock named myLabel.

Make button1 update the label.

Go to the code for the button1_Click() method and fill in
the code below. This is your chance to really understand what
every statement does, and why the program will show this output:

Here’s the code for the button:

1

Flip the page to finish your program!

Run your program and make
sure the output matches the
screenshot on this page.

Do this!
When you see a “Do this!”, pop
open the IDE and follow along.
We’ll tell you exactly what to
do, and point out what to look
for to get the most out of
the example we show you.

76   Chapter 2

Set up condit ions and see if they’re true
Use if/else statements to tell your program to do certain
things only when the conditions you set up are (or aren’t) true.

private void button2_Click(object sender, RoutedEventArgs e)
{
 int x = 5;
 if (x == 10)
 {
 myLabel.Text = "x must be 10";
 }
 else
 {
 myLabel.Text = "x isn’t 10";
 }
}

Here’s the output. See if you can tweak one line
of code and get it to say “x must be 10” instead.

the things you can do

Make sure you stop your program before you do this—the IDE won’t let you edit the code while the program’s running. You can stop it by closing the window, using the stop button on the toolbar, or selecting Stop Debugging from the Debug menu.

Use logical operators to check condit ions
You’ve just looked at the == operator, which you use to test whether two
variables are equal. There are a few other operators, too. Don’t worry about
memorizing them right now—you’ll get to know them over the next few
chapters.

≥≥ The != operator works a lot like ==, except it’s true if the two things
you’re comparing are not equal.

≥≥ You can use > and < to compare numbers and see if one is bigger or
smaller than the other.

≥≥ The ==, !=, >, and < operators are called conditional operators.
When you use them to test two variables or values, it’s called
performing a conditional test.

≥≥ You can combine individual conditional tests into one long test using
the && operator for AND and the || operator for OR. So to check if
i equals 3 or j is less than 5, do (i == 3) || (j < 5).

When you use
a conditional
operator to
compare two
numbers, it’s
called a
conditional test.

First we set
up a variable
called x and
make it equal
to 5. Then we check if it’s
equal to 10.

Set a variable and then check its value.

Here’s the code for the second button. It’s an if/else statement
that checks an integer variable called x to see if it’s equal to 10.

2

you are here 4   77

it’s all just code

private void button3_Click(object sender, RoutedEventArgs e)

{

 int someValue = 4;

 string name = "Bobbo Jr.";

 if ((someValue == 3) && (name == "Joe"))

 {

 myLabel.Text = "x is 3 and the name is Joe";

 }

 myLabel.Text = "this line runs no matter what";

}

This line checks someValue to
see if it’s equal to 3, and then
it checks to make sure name
is “Joe”.

Before you click on the button, read through the code and try to figure out what the
TextBlock will show. Then click the button and see if you were right!

private void button4_Click(object sender, RoutedEventArgs e)
{

 int count = 0;

 while (count < 10)
 {
 count = count + 1;
 }

 for (int i = 0; i < 5; i++)
 {
 count = count - 1;
 }

 myLabel.Text = "The answer is " + count;
}

The second part of the for statement is
the test. It says “for as long as i is les

s than

five, the loop should keep on going.” The
test is run before the code block, and

the
block is executed only if the test is tr

ue.

This sets up the loop.
It just assigns a
value to the integer
that’ll be used in it.

This statement gets executed at
the end of each loop. In this case,
it adds one to i every time the
loop executes. This is called the
iterator, and it’s run immediately
after all the statements in the
code block.

This loop keeps
repeating as long as
the count variable
is less than 10.

Add another conditional test.

The third button makes this output. Then change it so someValue is set to 3 instead of 4. The TextBlock
gets updated twice, but it happens so fast that you can’t see it. Put a breakpoint on the first statement and
step through the method, using Alt-Tab to switch to the app and back to make sure the TextBlock gets
updated.

3

Add loops to your program.

Here’s the code for the last button. It’s got two loops. The first is a while loop, which
repeats the statements inside the brackets as long as the condition is true—do something
while this is true. The second one is a for loop. Take a look and see how it works.

4

78   Chapter 2

More about conditional tests
You can do simple conditional tests by checking the value of a variable using a comparison operator. Here’s how you compare two ints, x and y:
 x < y (less than)
 x > y (greater than)
 x == y (equals - and yes, with two equals signs)

These are the ones you’ll use most often.

int result = 0; // this variable will hold the final result

int x = 6; // declare a variable x and

while (x > 3) {

 // execute these statements as long as

 result = result + x; // add x

 x = x - 1; // subtract

}

for (int z = 1; z < 3; z = z + 1) {

 // start the loop by

 // keep looping as long as

 // after each loop,

 result = result + z; //

}

// The next statement will update a TextBlock with text that says

//

myLabel.Text = "The result is " + result;

Let’s get a little more practice with conditional tests and loops. Take a
look at the code below. Circle the conditional tests, and fill in the blanks
so that the comments correctly describe the code that’s being run.

set it to 6
We filled in the
first one for you.

over and over and over and…

you are here 4   79

it’s all just code

Wait up! There’s a flaw in your
logic. What happens to my loop if I

write a conditional test that never
becomes false?

Then your loop runs forever!

Every time your program runs a conditional test, the result
is either true or false. If it’s true, then your program
goes through the loop one more time. Every loop should
have code that, if it’s run enough times, should cause
the conditional test to eventually return false. But if it
doesn’t, then the loop will keep running until you kill the
program or turn the computer off !

Can you think of a reason that you’d want to write a
loop that never stops running?

Here are a few loops. Write down if each loop will repeat forever or
eventually end. If it’s going to end, how many times will it loop?

Loop #1
int count = 5;

while (count > 0) {

 count = count * 3;

 count = count * -1;

}

Loop #2
int i = 0;

int count = 2;

while (i == 0) {

 count = count * 3;

 count = count * -1;

}

Loop #3
int j = 2;
for (int i = 1; i < 100;
 i = i * 2)
{
 j = j - 1;
 while (j < 25)
 {
 j = j + 5;
 }
}

Loop #5
int p = 2;

for (int q = 2; q < 32;

 q = q * 2)

{

 while (p < q)

 {

 p = p * 2;

 }

 q = p - q;

}

Loop #4

while (true) { int i = 1;}

This is sometimes called an infinit
e loop,

and there are actu
ally times when you’ll

want to use one in y
our program.

Remember, a for loop always
runs the conditional test at the
beginning of the block, and the
iterator at the end of the block.

Hint: p starts out equal to 2. Think about when the iterator “p = p * 2” is executed.

For Loop #3, how
many times will this
statement be executed?

For Loop #5, how
many times will this
statement be executed?

80   Chapter 2

int result = 0; // this variable will hold the final result

int x = 6; // declare a variable x and

while (x > 3) {

// execute these statements as long as

result = result + x; // add x

x = x - 1; // subtract

}

for (int z = 1; z < 3; z = z + 1) {

// start the loop by

// keep looping as long as

// after each loop,

result = result + z; //

}

// The next statement will update a TextBlock with text that says

//

myLabel.Text = "The result is " + result;

set it to 6

x is greater than 3

to the result variable

1 from the value of x

declaring a variable z and setting it to 1
z is less than 3

add 1 to z

The result is 18

add the value of z to result

Let’s get a little more practice with conditional tests and loops. Take a
look at the code below. Circle the conditional tests, and fill in the blanks
so that the comments correctly describe the code that’s being run.

Here are a few loops. Write down if each loop will repeat forever or
eventually end. If it’s going to end, how many times will it loop?

Loop #1
This loop executes once

Loop #2
This loop runs forever

Loop #3
This loop executes 7 times

Loop #4
Another infinite loop

Loop #5
This loop
executes 8 times

if only, but only if

This loop runs twice—first with z set to 1, and
then a second time with z set to 2. Once it hits
3, it’s no longer less than 3, so the loop stops.

Take the time to really figure this one out. Here’s a perfect opportunity to try out the debugger on your own! Set a
breakpoint on the statement q = p - q;. Add watches for the variables p and q and step through the loop.

you are here 4   81

it’s all just code

Q: Is every statement always in a class?

A: Yes. Any time a C# program does something, it’s because
statements were executed. Those statements are a part of classes,
and those classes are a part of namespaces. Even when it looks
like something is not a statement in a class—like when you use
the designer to set a property on a control on your page—if you
search through your code you’ll find that the IDE added or changed
statements inside a class somewhere.

Q: Are there any namespaces I’m not allowed to use? Are
there any I have to use?

A: Yes, there are a few namespaces that will technically work, but
which you should avoid. Notice how all of the using lines at the
top of your C# class files always said System? That’s because
there’s a System namespace that’s used by the Windows Store
API and the .NET Framework. It’s where you find all of your important
tools to add power to your programs, like System.Linq, which
lets you manipulate sequences of data, and System.IO, which
lets you work with files and data streams. But for the most part, you
can choose any name you want for a namespace (as long as it only
has letters, numbers, and underscores). When you create a new
program, the IDE will automatically choose a namespace for you based
on the program’s name.

Q: I still don’t get why I need this partial class stuff.

A: Partial classes are how you can spread the code for one class
between more than one file. The IDE does that when it creates
a page—it keeps the code you edit in one file (like MainPage.
xaml), and the code it modifies automatically for you in another file
(MainPage.xaml.cs). You don’t need to do that with a namespace,
though. One namespace can span two, three, or a dozen or more
files. Just put the namespace declaration at the top of the file, and
everything within the curly brackets after the declaration is inside
the same namespace. One more thing: you can have more than one
class in a file. And you can have more than one namespace in a file.
You’ll learn a lot more about classes in the next few chapters.

Q: Let’s say I drag something onto my page, so the IDE
generates a bunch of code automatically. What happens to that
code if I click Undo?

A: The best way to answer this question is to try it! Give it a shot—
do something where the IDE generates some code for you.
Drag a button on a page, change properties. Then try to undo it.
What happens? For most simple things, you’ll see that the IDE is
smart enough to undo it itself. (For some more complex things, like
working with databases, you might be given a warning message that
you’re about to make a change that the IDE can’t undo. You won’t
see any of those in this book.)

Q: So exactly how careful do I have to be with the code that’s
automatically generated by the IDE?

A: You should generally be pretty careful. It’s really useful to
know what the IDE is doing to your code, and once in a while you’ll
need to know what’s in there in order to solve a serious problem. But
in almost all cases, you’ll be able to do everything you need to do
through the IDE.

¢¢ You tell your program to perform actions using
statements. Statements are always part of classes, and
every class is in a namespace.

¢¢ Every statement ends with a semicolon (;).

¢¢ When you use the visual tools in the Visual Studio IDE,
it automatically adds or changes code in your program.

¢¢ Code blocks are surrounded by curly braces { }.
Classes, while loops, if/else statements, and lots of
other kinds of statements use those blocks.

¢¢ A conditional test is either true or false. You use
conditional tests to determine when a loop ends, and
which block of code to execute in an if/else statement.

¢¢ Any time your program needs to store some data, you
use a variable. Use = to assign a variable, and == to
test if two variables are equal.

¢¢ A while loop runs everything within its block (defined
by curly braces) as long as the conditional test is true.

¢¢ If the conditional test is false, the while loop code
block won’t run, and execution will move down to the
code immediately after the loop block.

82   Chapter 2

Output:

This magnet didn’t fall off the fridge…

Answers on page 86.

your code…now in magnet form

Code Magnets
Part of a C# program is all scrambled up on the fridge. Can you rearrange
the code snippets to make a working C# program that produces the
output? Some of the curly braces fell on the floor and they were too small
to pick up, so feel free to add as many of those as you need! (Hint: you’ll
definitely need to add a couple. Just write them in!)

The “” is an empty string—it means the
variable result has no characters in it yet.

string result = "";

output.Text = result;

int x = 3;

while (x > 0)

if (x > 2) {

 result = result
+ "a";

}

x = x - 1;

result = result + "-";

if (x == 2) {

 result = result + "b c";

}

if (x == 1) {
 result = result + "d"; x = x - 1;

}

This is a
TextBlock
named “output”
that the
program updates
by setting its
Text property.

you are here 4   83

it’s all just code

Time to get some practice using if/else statements. Can you build this program?

Build this page.
It’s got a grid with two
rows and two columns.

Add a TextBlock.
It’s almost identical to the one you
added to the bottom of the page in
the last project. This time, name it
labelToChange and set its Grid.
Row property to "1".

Add a Button and a CheckBox.
You can find the CheckBox control in the toolbox,
just below the Button control. Set the Button’s name
to changeText and the CheckBox’s name to
enableCheckbox. Use the Edit Text right-click
menu option to set the text for both controls (hit
Escape to finish editing the text). Right-click on each
control and chose Reset Layout→All, then make
sure both of them have their VerticalAlignment and
HorizontalAlignment set to Center.

Set the TextBlock to this message if the user clicks the button but the box IS
NOT checked.
Here’s the conditional test to see if the checkbox is checked:

 enableCheckbox.IsChecked == true

If that test is NOT true, then your program should execute two statements:

 labelToChange.Text = "Text changing is disabled";
 labelToChange.HorizontalAlignment = HorizontalAlignment.Center;

If the user clicks the button and the box IS checked, change the TextBlock so it
either shows on the lefthand side or on the righthand side.

If the label’s Text property is currently equal to "Right" then the program should change the text to
"Left" and set its HorizontalAlignment property to HorizontalAlignment.Left. Otherwise, set
its text to "Right"and its HorizontalAlignment property to HorizontalAlignment.Right. This
should cause the program to flip the label back and forth when the user presses the button—but only if the
checkbox is checked.

We’ll give you a lot of exercises like this throughout the book. We’ll give you the answer in a couple of pages. If you get stuck, don’t be afraid to peek at the answer—it’s not cheating!

You’ll be creating a lot of applications
throughout this book, and you’ll need to give
each one a different name. We recommend naming
this one “PracticeUsingIfElse”. It helps to put
programs from a chapter in the same folder.

Hint: you’ll put this
code in the else block.

If you create two rows and set one row’s height to 1* in the IDE, it seems to disappear because it’s collapsed to a tiny size. Just set the other row to 1* and it’ll show up again.

84   Chapter 2

Pool Puzzle
Your job is to take code snippets from

the pool and place them into
the blank lines in the code. You
may not use the same snippet
more than once, and you won’t
need to use all the snippets.
Your goal is to make a class

that will compile and run. Don’t
be fooled—this one’s harder than it
looks.

Note: each snippet
from the pool can only
be used once!

poem = poem + " ";
poem = poem + "a";
poem = poem + "n";
poem = poem + "an";

x = x + 1;
x = x + 2;
x = x - 2;
x = x - 1;

x > 0
x < 1
x > 1
x > 3
x < 4

poem = poem + "noys ";
poem = poem + "oise ";
poem = poem + " oyster ";
poem = poem + "annoys";
poem = poem + "noise";

int x = 0;
string poem = "";

while (__________) {

 if (x < 1) {

 }

 if (__________) {

 }
 if (x == 1) {

 }
 if (___________) {

 }

}

output.Text = poem;

Output

this puzzle’s tougher than it looks

We included these Pool Puzzle exercises throughout the book
to give your brain an extra-tough workout. If you’re the kind
of person who loves twisty little logic puzzles, then you’ll love
this one. If you’re not, give it a shot anyway—but don’t be
afraid to look at the answer to figure out what’s going on.
And if you’re stumped by a pool puzzle, definitely move on.

Here’s another TextBlock,
and we also gave it the
name “output”.

you are here 4   85

it’s all just code

Time to get some practice using if/else statements. Can you build this program?

Here’s the XAML code for the grid:
<Grid Background="{StaticResource ApplicationPageBackgroundThemeBrush}">
 <Grid.RowDefinitions>
 <RowDefinition/>
 <RowDefinition/>
 </Grid.RowDefinitions>
 <Grid.ColumnDefinitions>
 <ColumnDefinition/>
 <ColumnDefinition/>
 </Grid.ColumnDefinitions>

 <Button x:Name="changeText" Content="Change the label if checked"
 HorizontalAlignment="Center" Click="changeText_Click"/>

 <CheckBox x:Name="enableCheckbox" Content="Enable label changing"
 HorizontalAlignment="Center" IsChecked="true" Grid.Column="1"/>

 <TextBlock x:Name="labelToChange" Grid.Row="1" TextWrapping="Wrap"
 Text="Press the button to set my text"
 HorizontalAlignment="Center" VerticalAlignment="Center"
 Grid.ColumnSpan="2"/>
</Grid>

And here’s the C# code for the button’s event handler method:
private void changeText_Click(object sender, RoutedEventArgs e)
{
 if (enableCheckbox.IsChecked == true)
 {
 if (labelToChange.Text == "Right")
 {
 labelToChange.Text = "Left";
 labelToChange.HorizontalAlignment = HorizontalAlignment.Left;
 }
 else
 {
 labelToChange.Text = "Right";
 labelToChange.HorizontalAlignment = HorizontalAlignment.Right;
 }
 }
 else
 {
 labelToChange.Text = "Text changing is disabled";
 labelToChange.HorizontalAlignment = HorizontalAlignment.Center;
 }
}

We added line breaks as usual to make it easier to read on the page.

If you double-clicked the button in the designer before you set its name, it may have created a Click event handler method called Button_Click_1() instead of changeText_Click().

86   Chapter 2

introducing a different kind of app

This magnet didn’t fall off the fridge…

Code Magnets
Solution

string result = "";

output.Text = result;

int x = 3;

while (x > 0)

if (x > 2) {

 result = result
+ "a";

}

x = x - 1;

result = result + "-";

if (x == 2) {

 result = result + "b c";

}

if (x == 1) {
 result = result + "d"; x = x - 1;

}

The first time through the
loop, x is equal to 3, so this
conditional test will be true.

This statement
makes x equal
to 2 the first
time through
the loop, and
1 the second
time through.

Pool Puzzle
Solution

int x = 0;
string poem = "";

while (x < 4) {

 poem = poem + "a";
 if (x < 1) {
 poem = poem + " ";
 }
 poem = poem + "n";

 if (x > 1) {

 poem = poem + " oyster";

 x = x + 2;
 }
 if (x == 1) {

 poem = poem + "noys ";
 }
 if (x < 1) {

 poem = poem + "oise ";
 }

 x = x + 1;
}
output.Text = poem;

Did you get a different solution? Type it into
the IDE and see if it works! There’s more than
one correct solution to the pool puzzle.

If you want a real challenge, see if you can figure out what that other solution is! Here’s a
hint: there’s another solution that keeps the word fragments in order. If you came up with
that solution instead of the one on this page, see if you can figure out why this one works too.

you are here 4   87

it’s all just code

Windows Desktop apps are easy to build
Windows 8 brought Windows Store apps, and that gave everyone a totally new way
to use software on Windows. But that’s not the only kind of program that you can
create with Visual Studio. You can use Visual Studio for Windows Desktop to build
Windows Desktop applications that run in windows on your Windows 8 desktop.

Windows Desktop apps are an effective learning tool

We’ll spend the next several chapters building programs using Visual Studio
for Windows Desktop before coming back to Windows Store apps. The
reason is that in many ways, Windows Desktop apps are simpler. They may
not look as slick, and more importantly, they don’t integrate with Windows
8 or provide the great, consistent user interface that you get with Windows
Store apps. But there are a lot of important, fundamental concepts that
you need to understand in order to build Windows Store apps effectively.
Windows Desktop programming is a great tool for exploring those
fundamental concepts. We’ll return to programming Windows Store
apps once we’ve laid down that foundation.

This sounds fishy.

Why do I need to learn

more than one way to

build programs?

Another great reason to
learn Windows Desktop
programming is that you
get to see the same thing done more than one way. That’s a really quick way to get concepts into your brain. Flip the page to
see what we mean...

We’ll use Visual Studio
for Windows Desktop
to build programs that
run in windows on your
Windows 8 desktop.

88   Chapter 2

Rebuild your app for Windows Desktop
Start up Visual Studio 2012 for Windows Desktop and create a new project. This
time, you’ll see different options than before. Click on Visual C# and Windows,
and create a new Windows Forms Application project.

When you create a new
project in Visual Studio 2012
Express for Windows Desktop,
you get these options. Choose
Windows Forms Application.

Do this!

Windows Forms Apps start with a form that you can resize.
Your Windows Forms Application has a main window that you design using the designer in the IDE.
Start by resizing it to 500×130. Find the handle on the form in the Designer window and drag to resize
it. As you drag it, keep an eye on the changing numbers in the status bar in the IDE that show you the
new size. Keep dragging until you see in the status bar.

1

Keep dragging these handles
until your form is the right size.

Here’s what your
form should look
like after you
resize it.

this looks oddly familiar

Normally you
should choose
a better name
than “Chapter
2 - Program
4,” but we’re
specifically using
a name with
spaces and a
hyphen for this
project so you
can see what
it does to the
namespace.

you are here 4   89

it’s all just code

	 Make sure you’re
using the right
Visual Studio

If you’re using the
Express edition of Visual Studio
2012, you’ll need to install two
versions. You’ve been using Visual
Studio 2012 for Windows 8 to build
Windows Store apps. Now you’ll
need to use Visual Studio 2012
for Windows Desktop. Luckily,
both Express editions are available
for free from Microsoft.

Change the title of your form.
Right now the form has the default title (“Form1”). You can
change that by clicking on the form to select it, and then
changing the Text property in the Properties window.

2

Add a button, checkbox, and label.
Open up the toolbox and drag a Button, CheckBox, and
Label control onto your form.

3

You can expand the toolbox by choosing “Toolbox” from
the View menu, or by clicking on the Toolbox tab on the
side of the IDE. You can keep it from disappearing by
clicking the pushpin icon () on the Toolbox window. You
can also drag the window title so that it floats over the IDE.

On the next page you’ll use the Properties window
to change the text on each control, and to set the
CheckBox control’s state to checked. See if you can
figure out how to do that before you flip the page!

These spacer lines help you position your controls as you drag them around.

The IDE helps you align your controls by displaying alignment lines as you drag them around the form.

Hint: you’ll need to use the AutoSize property
to get the Label control to look right.

90   Chapter 2

Add the event handler method for your button.
Double-click on the button to make the IDE add an event handler method. Here’s the code:

5

When you double-clicked on the
button, the IDE generated this
event handler and named it
changeText_Click() to match your
button’s name, changeText.

Here’s the code
for the event
handler method.
Take a careful
look—can you see
what’s different
from the similar
code you added
for the exercise?

Use the Properties window to set up the controls.
Click on the Button control to select it. Then go to the Properties window and set its Text property:

Change the Text property for the CheckBox control and the Label control so they match the screenshot on
the next page, and set the CheckBox’s Checked property to True. Then select the Label control and set the

TextAlign control to MiddleCenter. Use the Properties window to
set the names of your controls. Name the Button changeText,
set the CheckBox control’s name to enableCheckbox, and
name the Label control labelToChange. Look at the code below
carefully and see if you can see how those names are used in the code.

Change the AutoSize property on the Label control to False.
Labels normally resize themselves based on their contents. Disabling
AutoSize to true causes the drag handles to show up. Drag it so
it’s the entire width of the window.

4

déjà vu

you are here 4   91

it’s all just code

using System;
using System.Linq;
using System.Text;
using System.Windows.Forms;

namespace SomeNamespace

{

	 class MyClass {

		 public static void DoSomething() {

			 MessageBox.Show("This is a message");

		 }

	 }

}

Fill in the annotations so they describe the lines in this C# file
that they’re pointing to. We’ve filled in the first one for you. Can
you guess what the last annotation should say?

C# classes have these “using”
lines to add methods from
other namespaces

Solution on page 95

Here’s a hint. You haven’t seen MessageBox yet, but
it’s something that a lot of desktop apps use. Like
most classes and methods, it has a sensible name.

Debug your program in the IDE.

When you do, the IDE will build your
program and run it, which pops up the
main window that you built. Try clicking
the button and checkbox.

When label changing is
enabled, the label shows
either Left or Right
with matching alignment.
If it’s disabled, it shows
a message that’s centered.

Click the
checkbox to
enable or
disable label
changing.

92   Chapter 2

Your desktop app knows
where to start

using System;
using System.Collections.Generic;
using System.Linq;
using System.Threading.Tasks;
using System.Windows.Forms;

namespace Chapter_2___Program_4
{
 static class Program
 {
 /// <summary>
 /// The main entry point for the application.

 /// </summary>
 [STAThread]
 static void Main()
 {
 Application.EnableVisualStyles();

 Application.SetCompatibleTextRenderingDefault(false);

 Application.Run(new Form1());
 }
 }
}

When you created the new Windows Forms
Application project, one of the files the IDE added
was called Program.cs. Go to the Solution Explorer and
double-click on it. It’s got a class called Program, and
inside that class is a method called Main(). That
method is the entry point, which means that it’s the
very first thing that’s run in your program.

This statement creates and
displays the form, and ends the
program when the form’s closed.

I do declare!
The first part of every class or method is called a declaration.

Remember, this is just a starting point for you to dig into the code. But before you do, you’ll need to know what you’re looking at.

a closer look

1

2

3

4

5

Your Code Up Close

The IDE generated this namespace based on

the project name. We named ours “Chapter

2 - Program 4,” so this is the namespace the

IDE generated for us. We chose a name with

spaces and a hyphen to show you how the IDE

converts them to underscores in the namespace.

Every time you run your program, it starts here, at the entry point.

Here’s some code the IDE built for you
automatically in the last chapter. You’ll
find it in Program.cs.

Lines that begin with two or more slashes are comments, which you can add anywhere you want. The slashes tell C# to ignore them.

		 Desktop apps are different,
and that’s good for learning.

Windows Desktop applications
are a lot less slick than Windows

Store apps because it’s much harder (but not
impossible) to build the kinds of advanced user
interfaces that Windows Store apps give you. And
that’s a good thing for now! Beacuse they’re simple
and straightforward, desktop apps are a great
tool for learning the core C# concepts, and that
will make it much easier for you to understand
Windows Store apps when we return to them later.

you are here 4   93

it’s all just code

Every desktop app must
have exactly one method
called Main. That method
is the entry point for
your code.
When you run your code,
the code in your Main()
method is executed FIRST.

Namespaces let you use the same name in different programs, as long as those programs aren’t also in the same namespace.

C# and .NET have lots of built-in features.

You’ll find lines like this at the top of almost every C# class file.
System.Windows.Forms is a namespace. The using
System.Windows.Forms line makes everything in that
namespace available to your program. In this case, that namespace
has lots of visual elements in it, like buttons and forms.

1

The IDE chose a namespace for your code.

Here’s the namespace the IDE created for you—it chose a
namespace based on your project’s name. All of the code in your
program lives in this namespace.

2

Your code is stored in a class.

This particular class is called Program. The IDE created it
and added the code that starts the program and brings up the
form called Form1.

3

This code has one method, and it
contains several statements.

A namespace has classes in it, and classes have methods.
Inside each method is a set of statements. In this
program, the statements handle starting up the form.
You already know that methods are where the action
happens—every method does something.

4

Each desktop app has a special kind
of method called the entry point.

Every desktop app must have exactly one method
called Main. Even though your program has a lot
of methods, only one can be the first one that gets
executed, and that’s your Main method. C# checks
every class in your code for a method that reads
static void Main(). Then, when the program
is run, the first statement in this method gets executed,
and everything else follows from that first statement.

5

You can have multiple
classes in a single namespace.

Your programs will use more and more
namespaces like this one as you learn
about C# and .NET’s other built-in
features throughout the book.

Technically, a program can have more
than one Main() method, and you can

tell C# which one is the entry point…

but you won’t need to do that now.

If you didn’t specify the “using” line,
you’d have to explicitly type out System.
Windows.Forms every time you use
anything in that namespace.

These are some of the “nuts and bolts” of desktop apps. You’ll play with them on the next few pages
so you can see what’s going on behind the scenes. But most of the work you do on desktop apps will
be done by dragging controls out of the toolbox and onto a form—and, obviously, editing C# code.

94   Chapter 2

You can change your
program’s entry point
As long as your program has an entry point, it doesn’t matter
which class your entry point method is in, or what that method
does. There’s nothing magical or mysterious about how it works,
or how your desktop app runs. You can prove it to yourself by
changing your program’s entry point.

Now let’s create a new entry point. Add a new class called AnotherClass.cs. You add a
class to your program by right-clicking on the project name in the Solution Explorer and
selecting “Add→Class…”. Name your class file AnotherClass.cs. The IDE will add a class to
your program called AnotherClass. Here’s the file the IDE added:

2

Add a new using line to the top of the file: using System.Windows.Forms;
Don’t forget to end the line with a semicolon!

3

class AnotherClass
{
 public static void Main()
 {
 MessageBox.Show("Pow!");
 }
}

using System;

using System.Collections.Generic;

using System.Linq;

using System.Text;

using System.Threading.Tasks;

namespace Chapter_2___Program_4

{

 class AnotherClass

 {

 }

}

These four standard using lines
were added to the file.

The IDE automatically named the class based on the filename.

This class is in the same
namespace that the IDE
added when you first
created the project.

Add this method to the AnotherClass class by typing it in between the curly brackets:4

MessageBox is a class that lives
in the System.Windows.Forms
namespace, which is why you had
to add the using line in step #3.
Show() is a method that’s part of
the MessageBox class.

classy things

Do this!

Right-click on the
project in Properties
and select “Add” and
“Class…”

C# is case-sensitive! Make sure your upper- and lowercase letters match the example code.

Go back to the program you just wrote. Edit Program.cs and change the
name of the Main() method to NotMain(). Now try to build and
run your program. What happens? Can you guess why it happened?

1

you are here 4   95

it’s all just code

using System;
using System.Linq;
using System.Text;
using System.Windows.Forms;

namespace SomeNamespace

{

	 class MyClass {

		 public static void DoSomething() {

			 MessageBox.Show("This is a message");

		 }

	 }

}

Now run it!

So what happened?
Instead of popping up the app you wrote, your program
now shows this message box. When you made the new
Main() method, you gave your program a new entry
point. Now the first thing the program does is run the
statements in that method—which means running that
MessageBox.Show() statement. There’s nothing else
in that method, so once you click the OK button, the
program runs out of statements to execute and then it ends.

Figure out how to fix your program so it pops up the app again.5 Hint: you only have
to change two lines in
two files to do it.

Fill in the annotations so they describe the lines in this C# file
that they’re pointing to. We’ve filled in the first one for you.

C# classes have these “using”
lines to add methods from
other namespaces.

All of the code lives in
classes, so the program
needs a class here.

This is a statement.
When it’s executed,
it pops up a little
window with a
message inside of it.

This class has one method.
Its name is “DoSomething,”
and when it’s called it pops
up a MessageBox.

Solution

Desktop apps use MessageBox.Show() to
pop up windows with messages and alerts.

96   Chapter 2

The IDE is great at writing visual code for you. But don’t
take our word for it. Open up Visual Studio, create a new
Windows Forms Application project, and see for yourself.

Open up the designer code.
Open the Form1.Designer.cs file in the IDE. But this time, instead of opening it in the
Form Designer, open up its code by right-clicking on it in the Solution Explorer and
selecting View Code. Look for the Form1 class declaration:

1

partial class Form1
Notice how it’s a partial class? We’ll talk about that in a minute.

Find and expand the designer-generated code for the PictureBox.
Then go back to the Form1.Designer.cs tab in the IDE. Scroll down and look for this line in the code:

Click on the + on the lefthand side of the line to expand the code. Scroll down and find these lines:

3

//

// pictureBox1

//

this.pictureBox1.Image = ((System.Drawing.Image)(resources.GetObject("pictureBox1.Image")));

this.pictureBox1.Location = new System.Drawing.Point(416, 160);

this.pictureBox1.Name = "pictureBox1";

this.pictureBox1.Size = new System.Drawing.Size(141, 147);

this.pictureBox1.TabIndex = 0;

this.pictureBox1.TabStop = false;

Don’t worry if the numbers in
your code for the Location and
Size lines are a little different
than these. They’ll vary depending
on where you dragged your
PictureBox control.

let’s dig in

When you change things in the IDE,
you’re also changing your code

Do this!

Click on the plus sign.

Open up the Form designer and add a PictureBox to your form.
Get used to working with more than one tab. Go to the Solution Explorer and open up the Form designer
by double-clicking on Form1.cs. Drag a new PictureBox control out of the toolbox and onto the form. A
PictureBox control displays a picture, which you can import from an image file.

2

You can choose the image for the PictureBox by selecting
it and clicking the “Choose Image...” link in the Properties
window to pop up a window that lets you select the image
to load. Choose any image file on your computer!

Select “Local resource” and
click the Import... button
to pop up a dialog to find
the image file to import.

If you double-click on Form1.resx in the Solution Explorer, you’ll see the image that you
imported. The IDE imported our image and named it “pictureBox1.Image”—and here’s the
code that it generated to load that image into the PictureBox control so it’s displayed.

you are here 4   97

it’s all just code

/// <summary>
/// Required method for Designer support - do not modify
/// the contents of this method with the code editor.
/// </summary>

There’s nothing more attractive to a kid than a big sign that says, “Don’t touch
this!” Come on, you know you’re tempted…let’s go modify the contents of that
method with the code editor! Add a button to your form called button1
(you’ll need to switch back to the designer), and then go ahead and do this:

Change the code that sets the BUTTON1.TEXT
property. What do you think it will do to the
Properties window in the IDE?
Give it a shot—see what happens! Now go back to the form designer and
check the Text property. Did it change?

Stay in the designer, and use the Properties
window to change the NAME property to
something else.
See if you can find a way to get the IDE to change the Name property. It’s in
the Properties window at the very top, under “(Name)”. What happened to
the code? What about the comment in the code?

Go back to the designer, and change the button’s
BACKCOLOR property to something else.
Look closely at the Form1.Designer.cs code. Were any lines added?

You don’t have to save the
form or run the program
to see the changes. Just
make the change in the code
editor, and then click on
the tab labeled “Form1.cs
[Design]” to flip over to the
form designer—the changes
should show up immediately.

It’s always easier to use the IDE to change your form’s designer‑generated
code. But when you do, any change you make in the IDE ends up as a change
to your project’s code.

Wait, wait ! What did that say?
Scroll back up for a minute. There it is, at the top of the Windows
Form Designer–generated code section: Most comments only start

with two slashes (//).
But the IDE sometimes
adds these three-slash
comments.

These are XML comments,
and you can use them to
document your code. Flip to
“Leftovers” section #2 in the
Appendix of this book to learn
more about them.

Q: I don’t quite get what the entry point is. Can you
explain it one more time?

A: Your program has a whole lot of statements in it, but
they’re not all run at once. The program starts with the first
statement in the program, executes it, and then goes on to the

next one, and the next one, etc. Those statements are usually
organized into a bunch of classes. So when you run your
program, how does it know which statement to start with?

That’s where the entry point comes in. The compiler will not build
your code unless there is exactly one method called Main(),
which we call the entry point. The program starts running with the
first statement in Main().

1

2

4

Change the code that sets the LOCATION
property to (0,0) and the Size property to make
the button really big.
Did it work?

3

98   Chapter 2

this.BackColor = Color.FromArgb(c, 255 - c, c);

Application.DoEvents();

Here’s the form
to build.

1

Make the form background go all
psychedelic!
When the button’s clicked, make the form’s background
color cycle through a whole lot of colors! Create a loop that
has a variable c go from 0 to 253. Here’s the block of code
that goes inside the curly brackets:

2

Make it slower.
Slow down the flashing by adding this line after the
Application.DoEvents() line:

3

I’m tickled pink!
The .NET Framework has a bunc

h

of predefined
colors like Blue and

Red, but it also
 lets you make

your own colors using t
he Color.

FromArgb() method, by spec
ifying

three numbers: a red valu
e, a

green value, an
d a blue value.

This line tells the program to stop your loop momentarily and do the other things it needs to do, like refresh the form, check for mouse clicks, etc. Try taking out this line and see what happens. The form doesn’t redraw itself, because it’s waiting until the loop is done before it deals with those events.

System.Threading.Thread.Sleep(3); This statement inserts a 3 millisecond

delay in the loop. It’s a part
of the

.NET Framework, and it’s in the
System.Threading namespace.

Here’s a hint for this exercise: if you declar
e a variable inside

a for loop—for (int c = 0; …)—then that variable’s only valid

inside the loop’s curly brackets. So if you h
ave two for loops that

both use the variable, you’ll either declare
it in each loop or have

one declaration outside the loop. And if the variable c is already

declared outside of the loops, you can’t us
e it in either one.

ooh, pretty!

Desktop apps aren’t nearly as easy to animate as Windows Store apps,
but it’s definitely possible! Let’s build something flashy to prove it.
Start by creating a new Windows Forms Application.

For now, you’ll use Application.DoEvents() to make sure
your form stays responsive while it’s in a loop, but it’s
kind of a hack. You shouldn’t use this code outside of a
toy program like this. Later on in the book, you’ll learn
about a much better way to let your programs do more
than one thing at a time!

Make the button bigger
by clicking on a corner
handle and dragging it.

you are here 4   99

it’s all just code

Make it smoother.
Let’s make the colors cycle back to where they started. Add another loop that has
c go from 254 down to 0. Use the same block of code inside the curly brackets.

4

Keep it going.
Surround your two loops with another loop that continuously executes and doesn’t
stop, so that when the button is pressed, the background starts changing colors and
then keeps doing it. (Hint: the while (true) loop will run forever!)

5 When one loop is inside another
one, we call it a “nested” loop.

Make it stop.
Make the loop you added in step #5 stop when the program is
closed. Change your outer loop to this:

 while (Visible)

Now run the program and click the X box in the corner. The
window closes, and then the program stops! Except…there’s a
delay of a few seconds before the IDE goes back to edit mode.

6

Uh oh! The program doesn’t stop!
Run your program in the IDE. Start it looping. Now close the window. Wait a
minute—the IDE didn’t go back into edit mode! It’s acting like the program
is still running. You need to actually stop the program using the square stop
button in the IDE (or select Stop Debugging from the Debug menu).

Can you figure out what’s causing that
delay? Can you fix it so the program ends
immediately when you close the window?

Hint: the && operator means “AND.” It’s how you string a bunch of conditional tests together into one big test that’s true only if the first test is true AND the second is true AND the third, etc. And it’ll come in handy to solve this problem.

When you’re checking a Boolean value like Visible in an if statement or a loop, sometimes it’s tempting to test for (Visible == true). You can leave off the “== true”—it’s enough to include the Boolean.

When you’re working with a
form or control, Visible is
true as long as the form or
control is being displayed. If
you set it to false, it makes
the form or control disappear.

Remember, to create a Windows Forms
Application you need to be using Visual
Studio for Windows Desktop.

100   Chapter 2

private void button1_Click(object sender, EventArgs e) {

 while (Visible) {

 for (int c = 0; c < 254 && Visible; c++) {

 this.BackColor = Color.FromArgb(c, 255 - c, c);

 Application.DoEvents();

 System.Threading.Thread.Sleep(3);

 }

 for (int c = 254; c >= 0 && Visible; c--) {

 this.BackColor = Color.FromArgb(c, 255 - c, c);

 Application.DoEvents();

 System.Threading.Thread.Sleep(3);

 }

 }

}

Sometimes we won’t show you the entire code in the solution, just the bits that changed. All of the logic in the FlashyThing project is in this button1_Click() method that the IDE added when you double-clicked the button in the form designer.

Was your code a little different than ours? There’s more than one way to
solve any programming problem (e.g., you could have used while loops instead
of for loops). If your program works, then you got the exercise right!

We fixed the extra delay by
using the && operator to make
each of the for loops also check
Visible. That way the loop ends
as soon as Visible turns false.

The outer loop
keeps running as
long as the form
is visible. As soon
as it’s closed,
Visible is false,
and the while
will stop looping.

The first for loop makes the colors cycle one way, and the second for loop reverses them so they look smooth.

When the IDE added this method, it added an extra
return before the curly bracket. Sometimes we’ll put the
bracket on the same line like this to save space—but C#
doesn’t care about extra space, so this is perfectly valid.

Can you figure out what’s causing that
delay? Can you fix it so the program ends
immediately when you close the window?

The delay happens because the for loops need to finish before the
while loop can check if Visible is still true. You can fix it by
adding && Visible to the conditional test in each for loop.

We used &&
Visible instead
of && Visible
== true. It’s
just like saying
“if it’s visible”
instead of “if
it’s true that
it’s visible”—they
mean the same
thing.

Consistency is generally really important to make it easy
for people to read code. But we’re purposefully showing you
different ways, because you’ll need to get used to reading
code from different people using different styles.

exercise solution

this is a new chapter   101

objects: get oriented!3

Making code make sense

Every program you write solves a problem.�
When you’re building a program, it’s always a good idea to start by thinking about what

problem your program’s supposed to solve. That’s why objects are really useful. They

let you structure your code based on the problem it’s solving, so that you can spend your

time thinking about the problem you need to work on rather than getting bogged down in

the mechanics of writing code. When you use objects right, you end up with code that’s

intuitive to write, and easy to read and change.

...and that’s
why my Husband

class doesn’t have a
HelpOutAroundTheHouse()

method or a
PullHisOwnWeight()

method.

102   Chapter 3

How Mike thinks about his problems
Mike’s a programmer about to head out to a job
interview. He can’t wait to show off his C# skills, but
first he has to get there—and he’s running late!

This is Frank Loudly
with your eye-in-the-sky shadow
traffic report. It looks like a
three-car pileup on Liberty has
traffic backed up all the way to

32nd Street.

I’ll take the
31st Street bridge, head

up Liberty Avenue, and go
through Bloomfield.

No problem. If
I take Route 28

instead, I’ll
still be on time!

Mike figures out the route he’ll take to get to the interview.1

Good thing he had his radio on. There’s
a huge traffic jam that’ll make him late!

2

Mike comes up with a new route to get
to his interview on time.

3

Mike sets his destination, then comes up with a route.

Mike gets new
information about a

street he needs to
 avoid.

Now he can come up
with a new route to
the interview.

mike’s going places

you are here 4   103

objects: get oriented!

How Mike’s car navigat ion system thinks about his problems
Mike built his own GPS navigation system, which he
uses to help him get around town.

Navigator

SetCurrentLocation()
SetDestination()
ModifyRouteToAvoid()
ModifyRouteToInclude()
GetRoute()
GetTimeToDestination()
TotalDistance()

SetDestination("Fifth Ave & Penn Ave");

string route;

route = GetRoute();

"Take 31st Street Bridge to Liberty Avenue to Bloomfield"

string route;

route = GetRoute();

"Take Route 28 to the Highland Park Bridge to Washington Blvd"

ModifyRouteToAvoid("Liberty Ave");

The navigation system sets
a destination and comes up
with a route.

Mike’s navigation system solves the street
navigation problem the same way he does.

The navigation system gets new information about a street it needs to avoid.

Now it can come up with a new

route to the dest
ination.

Here’s the output from the
GetRoute() method—it’s
a string that contains the
directions Mike should follow.

GetRoute() gives a new route that doesn’t include the
street Mike wants to avoid.

Here’s a diagram of a class
in Mike’s program. It shows
the name on top, and the
methods on the bottom.

104   Chapter 3

Some methods have a return value
Every method is made up of statements that do things. Some methods just execute
their statements and then exit. But other methods have a return value, or a value
that’s calculated or generated inside the method, and sent back to the statement that
called that method. The type of the return value (like string or int) is called the
return type.

The return statement tells the method to immediately exit. If your method doesn’t
have a return value—which means it’s declared with a return type of void—then
the return statement doesn’t need any values or variables (“return;”), and you
don’t always have to have one in your method. But if the method has a return type,
then it must use the return statement.

Here’s a statement that calls a method to multiply two numbers. It returns an int:

Mike’s Navigator class has methods to set and modify routes
Mike’s Navigator class has methods, which are where the action happens. But unlike the
button_Click() methods in the forms you’ve built, they’re all focused around a single
problem: navigating a route through a city. That’s why Mike stuck them together into one
class, and called that class Navigator.

Mike designed his Navigator class so that it’s easy to create and modify routes. To get a
route, Mike’s program calls the SetDestination() method to set the destination, and
then uses the GetRoute() method to put the route into a string. If he needs to change the
route, his program calls the ModifyRouteToAvoid() method to change the route so that
it avoids a certain street, and then calls the GetRoute() method to get the new directions.

class Navigator {

 public void SetCurrentLocation(string locationName) { ... }

 public void SetDestination(string destinationName) { ... }

 public void ModifyRouteToAvoid(string streetName) { ... }

 public string GetRoute() { ... }

} This is the return type of the method. It means that the statement calling the GetRoute() method can use it to set a string variable that will contain the directions. When it’s void, that means the method doesn’t return anything.
string route =
 GetRoute();

Mike chose method
names that would make
sense to someone who
was thinking about how
to navigate a route
through a city.

public int MultiplyTwoNumbers(int firstNumber, int secondNumber) {

 int result = firstNumber * secondNumber;

 return result;

}

int myResult = MultiplyTwoNumbers(3, 5);

Here’s an example of a method
that has a return type—it
returns an int. The method uses
the two parameters to calculate
the result.

Methods can take values
like 3 and

5. But you can also use var
iables to

pass values to a method.

set methods and modify routes

This return statement passes the value back
to the statement that called the method.

you are here 4   105

objects: get oriented!

Create a new Windows Forms Application project in the IDE. Then add a class file to it
called Talker.cs by right-clicking on the project in the Solution Explorer and selecting “Class…”
from the Add menu. When you name your new class file “Talker.cs,” the IDE will automatically
name the class in the new file Talker. Then it’ll pop up the new class in a new tab inside the IDE.

1

Use what you’ve learned to build a program that uses a class
Let’s hook up a form to a class, and make its button call a method inside that class. Do this!

Add using System.Windows.Forms; to the top of the class file. Then add code to the class:

class Talker {
 public static int BlahBlahBlah(string thingToSay, int numberOfTimes)
 {
 string finalString = "";
 for (int count = 0; count < numberOfTimes; count++)
 {
 finalString = finalString + thingToSay + "\n";
 }
 MessageBox.Show(finalString);
 return finalString.Length;
 }
}

2

The BlahBlahBlah() method’s return value is an
integer that has the total length of the message it
displayed. You can add “.Length” to any string to
figure out how long it is.

This line of code adds the
contents of thingToSay and a line break (“\n”) onto the end of it to the finalString variable.

This is called a property. Every string
has a property called Length. When it
calculates the length of a string, a line
break (“\n”) counts as one character.

This statement
declares a finalString
variable and sets it
equal to an empty
string.

Flip the page to keep going!

¢¢ Classes have methods that contain statements that perform actions. You can design a class that is easy to use by
choosing methods that make sense.

¢¢ Some methods have a return type. You set a method’s return type in its declaration. A method with a declaration that starts
“public int” returns an int value. Here’s an example of a statement that returns an int value: return 37;

¢¢ When a method has a return type, it must have a return statement that returns a value that matches a return type. So if
you’ve got a method that’s declared “public string” then you need a return statement that returns a string.

¢¢ As soon as a return statement in a method executes, your program jumps back to the statement that called the method.

¢¢ Not all methods have a return type. A method with a declaration that starts “public void” doesn’t return anything at
all. You can still use a return statement to exit a void method: if (finishedEarly) { return; }

106   Chapter 3

introducing objects

Make your project’s form look like this.

Then double-click on the button and have it run this code that calls BlahBlahBlah() and assigns its return
value to an integer called len:

private void button1_Click(object sender, EventArgs e)
{
 int len = Talker.BlahBlahBlah(textBox1.Text, (int)numericUpDown1.Value);
 MessageBox.Show("The message length is " + len);
}

3

This is a NumericUpDown control. Set its Minimum property to 1, its Maximum property to 10, and its Value property to 3.

Set the default
text of this
TextBox control to
“Hello!” using its Text
property.

Now run your program! Click the button and watch it pop up two
message boxes. The class pops up the first message box, and the
form pops up the second one.

4

The BlahBlahBlah() method
pops up this message box
based on what’s in its
parameters.

When the
method returns
a value, the form
pops it up in this
message box.

So what did you just build?
The new class has one method called BlahBlahBlah() that takes two parameters. The first
parameter is a string that tells it something to say, and the second is the number of times to say
it. When it’s called, it pops up a message box with the message repeated a number of times.
Its return value is the length of the string. The method needs a string for its thingToSay
parameter and a number for its numberOfTimes parameter. It’ll get those parameters
from a form that lets the user enter text using a TextBox control and a number using a
NumericUpDown control.

Now add a form that uses your new class!

You can add a class to your project and share
its methods with the other classes in the project.

To turn off
the minimize

and maximize
buttons, set
the form’s

MaximizeBox
and

MinimizeBox
properties to

False.

The length is 21 because “Hello!”
is six characters, plus the \n
counts as another character,
which gives 7 x 3 = 21.

you are here 4   107

objects: get oriented!

It’d be great if I
could compare a few

routes and figure out
which is fastest....

Mike gets an idea
The interview went great! But the traffic
jam this morning got Mike thinking about
how he could improve his navigator.

Navigator

SetCurrentLocation()
SetDestination()
ModifyRouteToAvoid()
ModifyRouteToInclude()
GetRoute()
GetTimeToDestination()
TotalDistance()

Navigator2

SetCurrentLocation()
SetDestination()
ModifyRouteToAvoid()
ModifyRouteToInclude()
GetRoute()
GetTimeToDestination()
TotalDistance()

Navigator3

SetCurrentLocation()
SetDestination()
ModifyRouteToAvoid()
ModifyRouteToInclude()
GetRoute()
GetTimeToDestination()
TotalDistance()

He could create three different Navigator classes…
Mike could copy the Navigator class code and paste it into two more
classes. Then his program could store three routes at once.

Whoa, that can’t be right!
What if I want to change a
method? Then I need to go

back and fix it in three places.

Right! Maintaining three copies of the same code
is really messy. A lot of problems you have to solve need a
way to represent one thing a bunch of different times. In this case,
it’s a bunch of routes. But it could be a bunch of people, or aliens,
or music files, or anything. All of those programs have one thing in
common: they always need to treat the same kind of thing in the
same way, no matter how many of the thing they’re dealing with.

This box is a class diagram. It lists
all of the methods in a class, and
it’s an easy way to see everything
that it does at a glance.

108   Chapter 3

for instance…

new Navigator()

new
 Na

vig
ato

r()

Navigator obj
e c

tnavigator3

Mike can use objects to solve his problem
Objects are C#’s tool that you use to work with
a bunch of similar things. Mike can use objects
to program his Navigator class just once, but
use it as many times as he wants in a program.

Navigator obj
e c

tnavigator1

Navigator obj
e c

t

navigator2

new Navigator()

Navigator

SetCurrentLocation()
SetDestination()
ModifyRouteToAvoid()
ModifyRouteToInclude()
GetRoute()
GetTimeToDestination()
TotalDistance()

Navigator navigator1 = new Navigator();

navigator1.SetDestination("Fifth Ave & Penn Ave");

string route;

route = navigator1.GetRoute();

All you need to create an
object is the new keyword
and the name of a class.

Now you can use the object! When you
create an object from a class, that object
has all of the methods from that class.

This is the Navigator class

in Mike’s program. It lists

all of the methods that a

Navigator object
can use.

Mike needed to compare
three different routes
at once, so he used
three Navigator objects
at the same time.

you are here 4   109

objects: get oriented!

House object

House object

House object

A class is like a blueprint for an object. If you wanted to build
five identical houses in a suburban housing development, you
wouldn’t ask an architect to draw up five identical sets of
blueprints. You’d just use one blueprint to build five houses.

You use a class to build an object

When you define a class, you define
its methods, just like a blueprint
defines the layout of the house.

You can use one blueprint to
make any number of houses,
and you can use one class to
make any number of objects.

House

GiveShelter()
GrowLawn()
MailDelivered()
ClogDrainPipes()
AccruePropertyTaxes()
NeedRepairs()

An object gets its methods from its class
Once you build a class, you can create as many objects as you want from
it using the new statement. When you do, every method in your class
becomes part of the object.

115 Maple
Drive

38 Pine
Street

26A Elm
Lane

110   Chapter 3

objects improve your code

House object

115 Maple
Drive

When you create a new object from a class,
i t’s called an instance of that class

Check it out for yourself!

Open any project that uses a button called button1,
and use the IDE to search the entire project for the
text “button1 = new”. You’ll find the code that
the IDE added to the form designer to create the
instance of the Button class.

in-stance, noun.
an example or one occurrence of
something. The IDE search-and-
replace feature finds every instance
of a word and changes it to another.

Do this!

Guess what…you already know this stuff ! Everything in the toolbox
is a class: there’s a Button class, a TextBox class, a Label
class, etc. When you drag a button out of the toolbox, the IDE
automatically creates an instance of the Button class and calls
it button1. When you drag another button out of the toolbox,
it creates another instance called button2. Each instance of
Button has its own properties and methods. But every button acts
exactly the same way, because they’re all instances of the same class.

Before: here’s a picture of your
computer’s memory when your
program starts.

After: now it’s
got an instance
of the House
class in memory.

House mapleDrive115 = new House();

Your program executes a new statement.

you are here 4   111

objects: get oriented!

Navigator obj
e c

tnavigator3

4.2 miles

Navigator obj
e c

tnavigator1

3.5 miles

Navigator obj
e c

t

navigator2

3.8 miles

Navigator obj
e c

tnavigator1

3.5 miles

A better solut ion…brought to you by objects!
Mike came up with a new route comparison program that uses objects to find
the shortest of three different routes to the same destination. Here’s how he
built his program.

string destination = textBox1.Text;

Navigator navigator1 = new Navigator();

navigator1.SetDestination(destination);

route = navigator1.GetRoute();

Navigator

SetCurrentLocation()
SetDestination()
ModifyRouteToAvoid()
ModifyRouteToInclude()
GetRoute()
GetTimeToDestination()
TotalDistance()

He created a Navigator object and set its destination.2

Mike set up a GUI with a textbox—textBox1 contains the destination for the three routes.
Then he added textBox2, which has a street that one of the routes should avoid; and
textBox3, which contains a different street that the third route has to include.

1

Then he added a second Navigator object called navigator2. He
called its SetDestination() method to set the destination, and
then he called its ModifyRouteToAvoid() method.

3

The third Navigator object is called navigator3. Mike set its
destination, and then called its ModifyRouteToInclude() method.

4

The SetDestination(),

ModifyRouteToAvoid(), and

ModifyRouteToInclude()

methods all take a st
ring as a

parameter.

Now Mike can call each object’s TotalDistance() method to figure
out which route is the shortest. And he only had to write the code once,
not three times!

5

Any time you
create a new
object from a
class, it’s called
creating an
instance of
that class.

GUI stands for Graphical User Interface, which is what you’re building when you make a form in the form designer.

The navigator1
object is an
instance of the
Navigator class.

112   Chapter 3

a little head first secret sauce

Wait a minute! You
didn’t give me nearly enough

information to build the
navigator program.

That’s right, we didn’t. A geographic navigation program is
a really complicated thing to build. But complicated programs follow
the same patterns as simple ones. Mike’s navigation program is an
example of how someone would use objects in real life.

Theory and pract ice
Speaking of patterns, here’s a pattern that you’ll see over and over again
throughout the book. We’ll introduce a concept or idea (like objects) over the
course of a few pages, using pictures and short code excerpts to demonstrate the
idea. This is your opportunity to take a step back and try to understand what’s
going on without having to worry about getting a program to work.

House object

115 Maple
DriveWhen we’re introducing a new concept

(like objects), keep your eyes open for
pictures and code excerpts like this.

House mapleDrive115 = new House();

After we’ve introduced a concept, we’ll give you a chance to get it into your
brain. Sometimes we’ll follow up the theory with a writing exercise—like the
Sharpen your pencil exercise on the next page. Other times, we’ll jump straight
into code. This combination of theory and practice is an effective way to get
these concepts off of the page and stuck in your brain.

A lit t le adv ice for the code exercises
If you keep a few simple things in mind, it’ll make the code exercises go
smoothly:

≥≥ It’s easy to get caught up in syntax problems, like missing parentheses
or quotes. One missing bracket can cause many build errors.

≥≥ It’s much better to look at the solution than to get frustrated with a
problem. When you’re frustrated, your brain doesn’t like to learn.

≥≥ All of the code in this book is tested and definitely works in Visual
Studio 2012! But it’s easy to accidentally type things wrong (like
typing a one instead of a lowercase L).

≥≥ If your solution just won’t build, try downloading it from the Head
First Labs website: http://www.headfirstlabs.com/hfcsharp

When you run into
a problem with
a coding exercise,
don’t be afraid
to peek at the
solution. You can
also download the
solution from the
Head First Labs
website.

you are here 4   113

objects: get oriented!

Follow the same steps that Mike followed earlier in the chapter to write
the code to create Navigator objects and call their methods.

string destination = textBox1.Text;

string route2StreetToAvoid = textBox2.Text;

string route3StreetToInclude = textBox3.Text;

Navigator navigator1 = new Navigator();

navigator1.SetDestination(destination);

int distance1 = navigator1.TotalDistance();

1. Create the navigator2 object, set its destination, call its ModifyRouteToAvoid() method, and
use its TotalDistance() method to set an integer variable called distance2.

We gave you a head start. Here’s the code Mike wrote to get the destination and street names from the text boxes.

int shortestDistance = Math.Min(distance1, Math.Min(distance2, distance3));

The Math.Min() method built into the .NET Framework compares two numbers and
returns the smallest one. Mike used it to find the shortest distance to the destination.

2. Create the navigator3 object, set its destination, call its ModifyRouteToInclude() method,
and use its TotalDistance() method to set an integer variable called distance3.

And here’s the code to create the
navigator object, set its destination,
and get the distance.

Navigator navigator2 =

navigator2.

navigator2.

int distance2 =

114   Chapter 3

string destination = textBox1.Text;

string route2StreetToAvoid = textBox2.Text;

string route3StreetToInclude = textBox3.Text;

Navigator navigator1 = new Navigator();

navigator1.SetDestination(destination);

int distance1 = navigator1.TotalDistance();

Follow the same steps that Mike followed earlier in the chapter to write
the code to create Navigator objects and call their methods.

1. Create the navigator2 object, set its destination, call its ModifyRouteToAvoid() method, and
use its TotalDistance() method to set an integer variable called distance2.

int shortestDistance = Math.Min(distance1, Math.Min(distance2, distance3));

2. Create the navigator3 object, set its destination, call its ModifyRouteToInclude() method,
and use its TotalDistance() method to set an integer variable called distance3.

Navigator navigator2 =

navigator2.

navigator2.

int distance2 =

new Navigator()

SetDestination(destination);

ModifyRouteToAvoid(route2StreetToAvoid);

navigator2.TotalDistance();

Navigator navigator3 = new Navigator()

navigator3.SetDestination(destination);

navigator3.ModifyRouteToInclude(route3StreetToInclude);

int distance3 = navigator3.TotalDistance();

The Math.Min() method built into the .NET Framework compares two numbers and
returns the smallest one. Mike used it to find the shortest distance to the destination.

And here’s the code to create the
navigator object, set its destination,
and get the distance.

We gave you a head start. Here’s the code Mike wrote to get the destination and street names from the text boxes.

you are here 4   115

objects: get oriented!

Yes! That’s why you used the static keyword in your methods.

Take another look at the declaration for the Talker class you built a few pages ago:

 class Talker
 {
 public static int BlahBlahBlah(string thingToSay, int numberOfTimes)
 {
 string finalString = "";

When you called the method, you didn’t create a new instance of Talker. You just did this:

 Talker.BlahBlahBlah("Hello hello hello", 5);

That’s how you call static methods, and you’ve been doing that all along. If you take away
the static keyword from the BlahBlahBlah() method declaration, then you’ll have to
create an instance of Talker in order to call the method. Other than that distinction, static
methods are just like object methods. You can pass parameters, they can return values, and
they live in classes.

There’s one more thing you can do with the static keyword. You can mark your whole
class as static, and then all of its methods must be static too. If you try to add a nonstatic
method to a static class, it won’t compile.

I’ve written a few classes now, but I
haven’t used “new” to create an instance
yet! So does that mean I can call methods

without creating objects?

Q: When I think of something that’s “static,” I think of
something that doesn’t change. Does that mean nonstatic
methods can change, but static methods don’t? Do they
behave differently?

A: No, both static and nonstatic methods act exactly the
same. The only difference is that static methods don’t require
an instance, while nonstatic methods do. A lot of people have
trouble remembering that, because the word “static” isn’t really
all that intuitive.

Q: So I can’t use my class until I create an instance of
an object?

A: You can use its static methods. But if you have methods
that aren’t static, then you need an instance before you can
use them.

Q: Then why would I want a method that needs an
instance? Why wouldn’t I make all my methods static?

A: Because if you have an object that’s keeping track of
certain data—like Mike’s instances of his Navigator
class that each kept track of a different route—then you can
use each instance’s methods to work with that data. So when
Mike called his ModifyRouteToAvoid() method
in the navigator2 instance, it only affected the route
that was stored in that particular instance. It didn’t affect the
navigator1 or navigator3 objects. That’s how he
was able to work with three different routes at the same time—
and his program could keep track of all of it.

Q: So how does an instance keep track of data?

A: Turn the page and find out!

116   Chapter 3

An instance uses f ie lds to keep track of things
You change the text on a button by setting its Text property in the
IDE. When you do, the IDE adds code like this to the designer:

 button1.Text = "Text for the button";

Now you know that button1 is an instance of the Button class.
What that code does is modify a field for the button1 instance.
You can add fields to a class diagram—just draw a horizontal line in
the middle of it. Fields go above the line, methods go underneath it.

Technically, it’s setting a property. A property is very similar to a field—but we’ll get into all that a little later on.

Class

Field1
Field2
Field3

Method1()
Method2()
Method3()

Methods are what an object does. Fields are what the object knows.
When Mike created three instances of Navigator classes, his program created three objects.
Each of those objects was used to keep track of a different route. When the program created the
navigator2 instance and called its SetDestination() method, it set the destination for that
one instance. But it didn’t affect the navigator1 instance or the navigator3 instance.

An object’s behavior is defined by its methods,
and it uses fields to keep track of its state.

This is where a class
diagram shows the
fields. Every instance
of the class uses
them to keep track
of its state.

Add this line to
separate the fields from the methods.

Navigator

Destination
Route

SetCurrentLocation()
SetDestination()
ModifyRouteToAvoid()
ModifyRouteToInclude()
GetRoute()
GetTimeToDestination()
TotalDistance()

Every instance of Navigator knows
its destination and its route.

What a Navigator object does is let you set a destination, modify its route, and get information about that route.

an object’s state of affairs

you are here 4   117

objects: get oriented!

Clown

Name
Height

TalkAboutYourself()

Let’s create some instances!
It’s easy to add fields to your class. Just declare
variables outside of any methods. Now every
instance gets its own copy of those variables.

class Clown {

 public string Name;

 public int Height;

 public void TalkAboutYourself() {

 MessageBox.Show("My name is "

 + Name + " and I’m "

 + Height + " inches tall.");

 }

}

Write down the contents of each message box that will be displayed
after the statement next to it is executed.

Clown oneClown = new Clown();

oneClown.Name = "Boffo";

oneClown.Height = 14;

oneClown.TalkAboutYourself();

Clown anotherClown = new Clown();

anotherClown.Name = "Biff";

anotherClown.Height = 16;

anotherClown.TalkAboutYourself();

Clown clown3 = new Clown();

clown3.Name = anotherClown.Name;

clown3.Height = oneClown.Height - 3;

clown3.TalkAboutYourself();

anotherClown.Height *= 2;

anotherClown.TalkAboutYourself();

“My name is _______ and I’m ______ inches tall.”

“My name is _______ and I’m ______ inches tall.”

“My name is _______ and I’m ______ inches tall.”

“My name is _______ and I’m ______ inches tall.”

Remember, when you see “void” in front of a method, it means that it doesn’t return any value.

When you want to create instances
of your class, don’t use the static
keyword in either the class declaration or the method declaration.

Remember, the *= operator tells C#
to take whatever’s on the left of the
operator and multiply it by whatever’s
on the right.

118   Chapter 3

Write down the contents of each message box that will be displayed
after the statement next to it is executed.

Clown oneClown = new Clown();

oneClown.Name = "Boffo";

oneClown.Height = 14;

oneClown.TalkAboutYourself();

Clown anotherClown = new Clown();

anotherClown.Name = "Biff";

anotherClown.Height = 16;

anotherClown.TalkAboutYourself();

Clown clown3 = new Clown();

clown3.Name = anotherClown.Name;

clown3.Height = oneClown.Height - 3;

clown3.TalkAboutYourself();

anotherClown.Height *= 2;

anotherClown.TalkAboutYourself();

“My name is _______ and I’m ______ inches tall.”

“My name is _______ and I’m ______ inches tall.”

“My name is _______ and I’m ______ inches tall.”

“My name is _______ and I’m ______ inches tall.”

Each of these new statements creates an instance of the Clown class by reserving a chunk of memory on the heap for that object and filling it up with the object’s data.

Boffo

Biff

Biff

Biff

14

16

11

32

Thanks for the memory
When your program creates an object, it lives in a part of the
computer’s memory called the heap. When your code creates an
object with a new statement, C# immediately reserves space in the
heap so it can store the data for that object.

Let’s take a closer look at what happened here

Here’s a picture of the heap before the
project starts. Notice that it’s empty.

When your program creates a new object, it gets added to the heap.

toss it in the heap

you are here 4   119

objects: get oriented!

Clown object
 #

 3

“Biff”

11

Clown object
 #

 2

“Biff”

32

Clown object
 #

 1
“Boffo”

14

Clown object
 #

 3

“Biff”

11

Clown object
 #

 2

“Biff”

16

Clown object
 #

 1

“Boffo”

14

Clown object
 #

 2

“Biff”

16

Clown object
 #

 1

“Boffo”

14

Clown object
 #

 1

Clown oneClown = new Clown();

oneClown.Name = "Boffo";

oneClown.Height = 14;

oneClown.TalkAboutYourself();

1

Clown anotherClown = new Clown();

anotherClown.Name = "Biff";

anotherClown.Height = 16;

anotherClown.TalkAboutYourself();

2

Clown clown3 = new Clown();

clown3.Name = anotherClown.Name;

clown3.Height = oneClown.Height - 3;

clown3.TalkAboutYourself();

3

anotherClown.Height *= 2;

anotherClown.TalkAboutYourself();

4

What’s on your program’s mind
Here’s how your program creates a new instance of the
Clown class:

 Clown myInstance = new Clown();

That’s actually two statements combined into one. The
first statement declares a variable of type Clown (Clown
myInstance;). The second statement creates a new
object and assigns it to the variable that was just created
(myInstance = new Clown();). Here’s what the heap
looks like after each of these statements:

The first objec
t

is created, an
d its

fields are set
.

These statements create
the second object and fill it
with data.

Then the third Clown object is

created and populated.

There’s no “new” statement, which
means these statements don’t create a
new object. They’re just modifying one
that’s already in memory.

This object is an instance of the
Clown class.

“Boffo”

14

120   Chapter 3

You can use class and method
names to make your code intuit i ve
When you put code in a method, you’re making a choice about how to structure
your program. Do you use one method? Do you split it into more than one? Or do
you even need a method at all? The choices you make about methods can make your
code much more intuitive—or, if you’re not careful, much more convoluted.

int t = m.chkTemp();

if (t > 160) {

 T tb = new T();

 tb.clsTrpV(2);

 ics.Fill();

 ics.Vent();

 m.airsyschk();

}

Here’s a nice, compact chunk of code. It’s from a control program that
runs a machine that makes candy bars.

1

Those statements don’t give you any hints about why the code’s doing what it’s doing. In this case, the
programmer was happy with the results because she was able to get it all into one method. But making
your code as compact as possible isn’t really useful! Let’s break it up into methods to make it easier to
read, and make sure the classes are given names that make sense. But we’ll start by figuring out what the
code is supposed to do.

2

General Electronics Type 5 Candy Bar Maker

Specification Manual

The nougat temperature must be checked every 3 minutes by an

automated system. If the temperature exceeds 160°C, the candy

is too hot, and the system must perform the candy isolation

cooling system (CICS) vent procedure.

•	 Close the trip throttle valve on turbine #2.

•	 Fill the isolation cooling system with a solid stream of water.

•	 Vent the water.

•	 Verify that there is no evidence of air in the system.

How do you figure out what

your code is supposed to
 do?

Well, all code is written for

a reason. So it’s up to y
ou to

figure out that reason!
In this

case, we can look up the page

in the specification manual
that the programmer followed.

Take a second and look at that code. Can you figure out what it does?

The clsTrpV()
method has one
parameter, but we
don’t know what
it’s supposed to be.

The chkTemp() method returns an integer…but what does it do?

making methods make sense

“tb”, “ics”, and “m”
are terrible names!
We have no idea
what they do. And
what’s that T class
for?

Great developers
write code
that’s easy to
understand.
Comments can
help, but nothing
beats choosing
intuitive names
for your methods,
classes, variables,
and fields.

you are here 4   121

objects: get oriented!

public void DoCICSVentProcedure() {

 Turbine turbineController = new Turbine();

 turbineController.CloseTripValve(2);

 IsolationCoolingSystem.Fill();

 IsolationCoolingSystem.Vent();

 Maker.CheckAirSystem();

}

public boolean IsNougatTooHot() {

 int temp = Maker.CheckNougatTemperature();

 if (temp > 160) {

 return true;

 } else {

 return false;

 }

}

That page from the manual made it a lot easier to understand the code. It also gave us some great
hints about how to make our code easier to understand. Now we know why the conditional test checks
the variable t against 160—the manual says that any temperature above 160°C means the nougat
is too hot. And it turns out that m was a class that controlled the candy maker, with static methods
to check the nougat temperature and check the air system. So let’s put the temperature check into a
method, and choose names for the class and the methods that make the purpose obvious.

3

You can make your code easier to read and write by thinking about
the problem your code was built to solve. If you choose names for your
methods that make sense to someone who understands that problem,
then your code will be a lot easier to decipher...and develop!

What does the specification say to do if the nougat is too hot? It tells us to perform the candy isolation
cooling system (or CICS) vent procedure. So let’s make another method, and choose an obvious name
for the T class (which turns out to control the turbine) and the ics class (which controls the isolation
cooling system, and has two static methods to fill and vent the system):

4

Now the code’s a lot more intuitive! Even if you don’t know that the CICS vent procedure needs to
be run if the nougat is too hot, it’s a lot more obvious what this code is doing:

5

if (IsNougatTooHot() == true) {

 DoCICSVentProcedure();

}

This method’s return type is
Boolean, which means it returns a
true or false value.

A void return type means the method doesn’t return any value at all.

The IsNougatTooHot()
method’s return type By naming the class “Maker” and the

method “CheckNougatTemperature”,
we make the code a lot easier to
understand.

122   Chapter 3

Give your classes a natural structure
Take a second and remind yourself why you want to make your methods intuitive:
because every program solves a problem or has a purpose. It might not
be a business problem—sometimes a program’s purpose (like FlashyThing) is just to
be cool or fun! But no matter what your program does, the more you can make your
code resemble the problem you’re trying to solve, the easier your program will be to
write (and read, and repair, and maintain…).

CandyController

DoMaintenanceTests()
DoCICSVentProcedure()
IsNougatTooHot()

Let’s build a class diagram
Take another look at the if statement in #5 on the previous page. You already know that statements
always live inside methods, which always live inside classes, right? In this case, that if statement was
in a method called DoMaintenanceTests(), which is part of the CandyController class.
Now take a look at the code and the class diagram. See how they relate to each other?

class CandyController {

 public void DoMaintenanceTests() {

 ...

 if (IsNougatTooHot() == true) {

 DoCICSVentProcedure();

 }

 ...

 }

 public void DoCICSVentProcedure() ...

 public boolean IsNougatTooHot() ...

}

Use class diagrams to plan out your classes
A class diagram is a simple way to draw your
classes out on paper. It’s a really valuable tool
for designing your code BEFORE you start
writing it.
Write the name of the class at the top of
the diagram. Then write each method in the
box at the bottom. Now you can see all of the
parts of the class at a glance!

ClassName

Method()

Method()

Method()

.

.

.

classes au naturale

you are here 4   123

objects: get oriented!

t

Turbine

The code for the candy control system we built on the previous
page called three other classes. Flip back and look through the
code, and fill in their class diagrams.

Fill()

We filled in the class name for this one. What method goes here?

One of the classes had
a method called Fill().
Fill in its class name
and its other method.

There was one other class in the code on the previous page. Fill in its name and method.

124   Chapter 3

t

Turbine

CloseTripValve()
Fill()

IsolationCoolingSystem

Vent()

Maker

CheckNougatTemperature()

CheckAirSystem()

picture your classes

The code for the candy control system we built on the
previous page called three other classes. Flip back and
look through the code, and fill in their class diagrams.

Class diagrams help you organize your
classes so they make sense
Writing out class diagrams makes it a lot easier to spot potential problems in your
classes before you write code. Thinking about your classes from a high level before
you get into the details can help you come up with a class structure that will make
sure your code addresses the problems it solves. It lets you step back and make sure
that you’re not planning on writing unnecessary or poorly structured classes or
methods, and that the ones you do write will be intuitive and easy to use.

Dishwasher

CleanDishes()
AddDetergent()
SetWaterTemperature()
ParkTheCar()

Dishwasher

CleanDishes()
AddDetergent()
SetWaterTemperature()

The class is called
Dishwasher, so all the

methods should be about
washing dishes. But one

method—ParkTheCar()—
has nothing to do with dishes,
so it should be taken out and

put in another class.

You could figure out that
Maker is a class because it
appears in front of a dot in
Maker.CheckAirSystem().

you are here 4   125

objects: get oriented!

v

DeliveryGuy

AddAPizza()
PizzaDelivered()
TotalCash()
ReturnTime()

Each of these classes has a serious design flaw. Write down what
you think is wrong with each class, and how you’d fix it.

Class23

CandyBarWeight()
PrintWrapper()
GenerateReport()
Go()

These two classes are part of a system that a pizza parlor uses to
track the pizzas that are out for delivery.

This class is part of the candy manufacturing system from earlier.

CashRegister

MakeSale()
NoSale()
PumpGas()
Refund()
TotalCashInRegister()
GetTransactionList()
AddCash()
RemoveCash()

The CashRegister class is part of a program that’s used by an
automated convenience store checkout system.

DeliveryGirl

AddAPizza()
PizzaDelivered()
TotalCash()
ReturnTime()

126   Chapter 3

Here’s how we corrected the classes. We show just one
possible way to fix the problems—but there are plenty of other ways
you could design these classes depending on how they’ll be used.

create a class

CandyMaker

CandyBarWeight()
PrintWrapper()
GenerateReport()
MakeTheCandy()

These two classes are part of a system that a pizza parlor uses to
track the pizzas that are out for delivery.

This class is part of the candy manufacturing system from earlier.

CashRegister

MakeSale()
NoSale()
Refund()
TotalCashInRegister()
GetTransactionList()
AddCash()
RemoveCash()

The CashRegister class is part of a program that’s used by an
automated convenience store checkout system.

DeliveryPerson

Gender

AddAPizza()
PizzaDelivered()
TotalCash()
ReturnTime()

The class name doesn’t describe what the class does. A programmer

who sees a line of code that calls Class23.Go() will have no idea what

that line does. We’d also rename the method to something that’s more

descriptive—we chose MakeTheCandy(), but it could be anything.

It looks like the DeliveryGuy class and the DeliveryGirl class

both do the same thing—they track a delivery person who’s out

delivering pizzas to customers. A better design would replace

them with a single class that adds a field for gender.

All of the methods in the class do stuff that has to do with

a cash register—making a sale, getting a list of transactions,

adding cash…except for one: pumping gas. It’s a good idea to pull

that method out and stick it in another class.

We added the Gender field because we
assumed there was a reason to track delivery
guys and girls separately, and that’s why
there were two classes for them.

you are here 4   127

objects: get oriented!

x == 3
x == 4

x < 4
x < 5
x > 0
x > 1

public partial class Form1 : Form {
 public Form1() {
 InitializeComponent();
 }
 private void button1_Click(object sender, EventArgs e) {
 string result = "";

 Echo e1 = new Echo();

 int x = 0;

 while (___________) {

 result = result + e1.Hello() + "\n";

 if (____________) {

 e2.count = e2.count + 1;

 }

 if (____________) {

 e2.count = e2.count + e1.count;

 }

 x = x + 1;

 }
 MessageBox.Show(result + "Count: " + e2.count);
 }
}
class ____________ {
 public int _________ = 0;

 public string ___________ {

 return "helloooo...";
 }
}

Output

e1 = e1 + 1;
e1 = count + 1;
e1.count = count + 1;
e1.count = e1.count + 1;

e2 = e1;
Echo e2;
Echo e2 = e1;
Echo e2 = new Echo();

x
y
e2
count

Echo
Tester
Echo()
Count()
Hello()

Bonus Question!

If the last line of output was
24 instead of 10, how would
you complete the puzzle?
You can do it by changing
just one statement.

Answers on page 138.

Pool
Puzzle
Your job is to take
code snippets

from the pool and
place them into the blank

lines in the code. You may use the same
snippet more than once, and you won’t
need to use all the snippets. Your goal is to
make classes that will compile and run and
produce the output listed.

Note: each
snippet from the
pool can be used
more than once!

There are two possible solutions to this puzzle. Can you find them both?

128   Chapter 3

Build a class to work with some guys
Joe and Bob lend each other money all the time. Let’s create a class to
keep track of them. We’ll start with an overview of what we’ll build.

Guy object #
 2

Guy object #
 1

Guy

Name
Cash

GiveCash()
ReceiveCash()

The new statements
that create the two
instances live in the
code that gets run as
soon as the form is
created. Here’s what
the heap looks like
after the form is
loaded.

We’ll create a Guy class and add two instances of it to a form.
The form will have two fields, one called joe (to keep track of the first object),
and the other called bob (to keep track of the second object).

1

We’ll set each Guy object’s cash and name fields.
The two objects represent different guys, each with his own name and a
different amount of cash in his pocket.

2

Guy object #
 2

“Bob”

50

Guy object #
 1

“Joe”

100

We’ll give cash to the guys and take cash from them.
We’ll use each guy’s ReceiveCash() method to increase a guy’s cash,
and we’ll use his GiveCash() method to reduce it.

3

Guy object #
2

“Bob”

75

Each guy has a Name
field that keeps track of
his name, and a Cash field
that has the number of
bucks in his pocket.

When you take an instance
of Guy and call its
ReceiveCash() method, you
pass the amount of cash
the guy will take as a
parameter. So calling bob.
ReceiveCash(25) tells Bob
to receive 25 bucks and
add them to his wallet.

The form calls the object’s ReceiveCash()
method. It’s called ReceiveCash() because
he’s receiving the cash.

The method returns the
number of bucks that the guy
added to his Cash field.

working class guys

Guy object #
2

“Bob”

50 bob.ReceiveCash(25);

We chose names for the
methods that make sense.
You call a Guy object’s
GiveCash() method to tell
him to give up some of his
cash, and his ReceiveCash()
method when you want him
to take some cash back.
We could have called them
GiveCashToSomeone() and
ReceiveCashFromSomeone(),
but that would have been
very long!

you are here 4   129

objects: get oriented!

Do this!

class Guy {
 public string Name;
 public int Cash;

 public int GiveCash(int amount) {
 if (amount <= Cash && amount > 0) {
 Cash -= amount;
 return amount;
 } else {
 MessageBox.Show(
 "I don’t have enough cash to give you " + amount,
 Name + " says...");
 return 0;
 }
 }

 public int ReceiveCash(int amount) {
 if (amount > 0) {
 Cash += amount;
 return amount;
 } else {
 MessageBox.Show(amount + " isn’t an amount I’ll take",
 Name + " says...");
 return 0;
 }
 }

}

Create a project for your guys
Create a new Windows Forms Application project (because we’ll
be using a form). Then use the Solution Explorer to add a new
class to it called Guy. Make sure to add “using System.
Windows.Forms;” to the top of the Guy class file. Then fill
in the Guy class. Here’s the code for it:

The Guy class has two fields. The Name field is
a string, and it’ll contain the guy’s name (“Joe”).
And the Cash field is an int, which will keep
track of how many bucks are in his pocket.

The GiveCash() method has one parameter
called amount that you’ll use to tell the
guy how much cash to give you.

He uses an if statement to check
whether he has enough cash—if he
does, he takes it out of his pocket and
returns it as the return value.

The guy makes
sure that you’re
asking him for a
positive amount of
cash—otherwise,
he’d add to his
cash instead of
taking away from
it.

If the guy doesn’t have enough cash, he’ll tell you so with a message box, and then he’ll make GiveCash() return 0.

Be careful with your curly brackets. It’s easy to have the wrong number—make sure that every opening bracket has a matching closing bracket. When they’re all balanced, the IDE will automatically indent them for you when you type the last closing bracket.

The ReceiveCash() method works just like
the GiveCash() method. It’s passed an
amount as a parameter, checks to make
sure that amount is greater than zero,
and then adds it to his cash.

If the amount was positive, then the
ReceiveCash() method returns the amount
added. If it was zero or negative, the guy
shows a message box and then returns 0.

What happens if you pass a
negative amount to a Guy object’s
ReceiveCash() or GiveCash() method?

130   Chapter 3

Build a form to interact with the guys
The Guy class is great, but it’s just a start. Now put together a form that uses two
instances of the Guy class. It’s got labels that show you their names and how much cash
they have, and buttons to give and take cash from them. They have to get their money
from somewhere before they can lend it to each other, so we’ll also need to add a bank. Build this!

Add two buttons and three labels to your form.
The top two labels show how much cash each guy has. We’ll also add a field called bank to the
form—the third label shows how much cash is in it. We’re going to have you name some of the
labels that you drag onto the forms. You can do that by clicking on each label that you want
to name and changing its “(Name)” row in the Properties window. That’ll make your code a
lot easier to read, because you’ll be able to use “joesCashLabel” and “bobsCashLabel” instead of

“label1” and “label2”.

1

Add fields to your form.
Your form will need to keep track of the two guys, so you’ll need a field for each of them. Call
them joe and bob. Then add a field to the form called bank to keep track of how much money
the form has to give to and receive from the guys.

namespace Your_Project_Name {

 public partial class Form1 : Form {

 Guy joe;

 Guy bob;

 int bank = 100;

 public Form1() {

 InitializeComponent();

 }

2

Since we’re using
Guy objects to
keep track of
Joe and Bob,
you declare
their fields in
the form using
the Guy class.

The amount of cash in the form’s bank
field goes up and down depending on how much money the form gave to and received from the Guy objects.

Name the top label
joesCashLabel, the label
underneath it bobsCashLabel, and the bottom label
bankCashLabel. You can
leave their Text properties
alone; we’ll add a method to
the form to set them.

This button will call
the Joe object’s
ReceiveCash() method,
passing it 10 as
the amount, and
subtracting from the
form’s bank field the
cash that Joe receives.

This button will call the Bob
object’s GiveCash() method,
passing it 5 as the amount, and
adding the cash that Bob gives
to the form’s bank field.

joe says, “where’s my money?”

you are here 4   131

objects: get oriented!

Add a method to the form to update the labels.
The labels on the righthand side of the form show how much cash each guy has and how much
is in the bank field. So add the UpdateForm() method to keep them up to date—make sure
the return type is void to tell C# that the method doesn’t return a value. Type this method
into the form right underneath where you added the bank field:

 public void UpdateForm() {

 joesCashLabel.Text = joe.Name + " has $" + joe.Cash;

 bobsCashLabel.Text = bob.Name + " has $" + bob.Cash;

 bankCashLabel.Text = "The bank has $" + bank;

 }

3

Double-click on each button and add the code to interact with the objects.
Make sure the lefthand button is called button1, and the righthand button is called button2.
Then double-click each of the buttons—when you do, the IDE will add two methods called
button1_Click() and button2_Click() to the form. Add this code to each of them:

 private void button1_Click(object sender, EventArgs e) {

 if (bank >= 10) {

 bank -= joe.ReceiveCash(10);

 UpdateForm();

 } else {

 MessageBox.Show("The bank is out of money.");

 }

 }

 private void button2_Click(object sender, EventArgs e) {

 bank += bob.GiveCash(5);

 UpdateForm();

 }

4

The “Receive $5 from Bob” button
doesn’t need to check how much is
in the bank, because it’ll just add
whatever Bob gives back. If Bob’s out of money,

GiveCash() will return zero.

When the user clicks the “Give $10 to Joe” button, the form calls the Joe object’s ReceiveCash() method—but only if the bank has enough money.

The bank needs at least $10 to give to
Joe. If there’s not enough, it’ll pop up
this message box.

This new method
is simple. It just
updates the three
labels by setting
their Text properties.
You’ll have each
button call it to keep
the labels up to date.

Start Joe out with $50 and start Bob out with $100.
It’s up to you to figure out how to get Joe and Bob to start out with their Cash and
Name fields set properly. Put it right underneath InitializeComponent() in the form.
That’s part of that designer-generated method that gets run once, when the form is first initialized.
Once you’ve done that, click both buttons a number of times—make sure that one button takes
$10 from the bank and adds it to Joe, and the other takes $5 from Bob and adds it to the bank.

 public Form1() {
 InitializeComponent();

 // Initialize joe and bob here!

 }

5

Add the lines of code here to create the two objects and set their Name and Cash fields.

Notice how the labels
are updated using the
Guy objects’ Name and
Cash fields.

You already
know that
you can
choose

names for
controls.

Are
button1

and
button2
really the

best names
we can find?
What names
would you

choose
for these
buttons?

132   Chapter 3

Make sure you save the
project now—we’ll come
back to it in a few pages.

It’s up to you to figure out how to get Joe and Bob to start out with their Cash and
Name fields set properly. Put it right underneath InitializeComponent() in the
form.

public Form1() {
 InitializeComponent();

 bob = new Guy();
 bob.Name = "Bob";
 bob.Cash = 100;

 joe = new Guy();
 joe.Name = "Joe";
 joe.Cash = 50;

 UpdateForm();
}

Here’s where we set up the first
instance of Guy. The first line
creates the object, and the next
two set its fields.

Q: Why doesn’t the solution start with “Guy bob = new
Guy()”? Why did you leave off the first “Guy”?

A: Because you already declared the bob field at the top of the
form. Remember how the statement “int i = 5;” is the same
as the two statements “int i” and “i = 5;”? This is the same
thing. You could try to declare the bob field in one line like this:

“Guy bob = new Guy();”. But you already have the first
part of that statement (“Guy bob;”) at the top of your form. So
you only need the second half of the line, the part that sets the bob
field to create a new instance of Guy().

Q: OK, so then why not get rid of the “Guy bob;” line at
the top of the form?

A: Then a variable called bob will only exist inside that special
“public Form1()” method. When you declare a variable
inside a method, it’s only valid inside the method—you can’t access
it from any other method. But when you declare it outside of your
method but inside the form or a class that you added, then you’ve
added a field accessible from any other method inside the form.

Q: What happens if I don’t leave off that first “Guy”? What if
it’s Guy bob = new Guy() instead of bob = new Guy()?

A: You’ll run into problems—your form won’t work, because it
won’t ever set the form’s bob variable. If you have this code at the
top of your form:

 public partial class Form1 : Form {
 Guy bob;

and then you have this code later on, inside a method:

 Guy bob = new Guy();

then you’ve declared two variables. It’s a little confusing, because
they both have the same name. But one of them is valid throughout
the entire form, and the other one—the new one you added—is only
valid inside the method. The next line (bob.Name = "Bob";)
only updates that local variable, and doesn’t touch the one in the
form. So when you try to run your code, it’ll give you a nasty error
message (“NullReferenceException not handled”), which just means
you tried to use an object before you created it with new.

Then we do the same for the
second instance of the Guy class.

Make sure you call UpdateForm() so
the labels look right when the form
first pops up.

exercise solution

you are here 4   133

objects: get oriented!

There’s an easier way to init ialize objects
Almost every object that you create needs to be initialized in some way.
And the Guy object is no exception—it’s useless until you set its Name
and Cash fields. It’s so common to have to initialize fields that C# gives
you a shortcut for doing it called an object initializer. And the IDE’s
IntelliSense will help you do it.

joe = new Guy();
joe.Name = "Joe";
joe.Cash = 50;

joe = new Guy() { Cash = 50, Name = "Joe" };

joe = new Guy() {

joe = new Guy() { Cash = 50,

Delete the second two lines and the semicolon after “Guy(),” and add a right curly bracket.2

Here’s the original code that you
wrote to initialize Joe’s Guy object.

1

Press space. As soon as you do, the IDE pops up an IntelliSense window that shows you all of
the fields that you’re able to initialize.

3

joe = new Guy() { Cash = 50
Press Tab to tell it to add the Cash field. Then set it equal to 50.4

Type in a comma. As soon as you do, the other field shows up.5

Finish the object initializer. Now you’ve saved yourself two lines of code!6

Object initializers
save you time and
make your code
more compact
and easier to
read…and the
IDE helps you
write them.

This new declaration does exactly the same
thing as the three lines of code you wrote
originally. It’s just shorter and easier to read.

joe = new Guy() {

You used an object
initializer in your

“Save the Humans”
game. Flip back and

see if you can spot it!

134   Chapter 3

Navigator obj
e c

tbestRoute

obj Object

myInst

± �You’re building your program to solve a problem.
Spend some time thinking about that problem. Does it break down into pieces
easily? How would you explain that problem to someone else? These are good
things to think about when designing your classes.

A few ideas for designing intuitive classes

± �What real-world things will your program use?
A program to help a zookeeper track her animals’ feeding schedules might have
classes for different kinds of food and types of animals.

± �Use descriptive names for classes and methods.
Someone should be able to figure out what your classes and methods do just by
looking at their names.

± �Look for similarities between classes.
Sometimes two classes can be combined into one if they’re really similar. The candy
manufacturing system might have three or four turbines, but there’s only one
method for closing the trip valve that takes the turbine number as a parameter.

It’d be great if I
could compare a few

routes and figure out
which is fastest...

BlockedRoad
Name
Duration

FindDetour()

ClosedRoad
StreetName
ReasonItsClosed

CalculateDelay()

Detour
Name
Duration
ReasonItsClosed

FindDetour()
CalculateDelay()

a few helpful tips

you are here 4   135

objects: get oriented!

Use an object initializer to initialize Bob’s
instance of Guy.
You’ve already done it with Joe. Now make Bob’s instance work with an object
initializer too.

1

Add two more buttons to your form.
The first button tells Joe to give 10 bucks to Bob, and the second tells Bob to give 5
bucks back to Joe. Before you double-click on the button, go to the Properties
window and change each button’s name using the “(Name)” row—it’s at the top of
the list of properties. Name the first button joeGivesToBob, and the second one
bobGivesToJoe.

2

This button tells Joe to
give 10 bucks to Bob, so
you should use the “(Name)”
row in the Properties
window to name it
joeGivesToBob.

This button tells Bob to give 5 bucks to Joe. Name it bobGivesToJoe.

Make the buttons work.
Double-click on the joeGivesToBob button in the designer. The IDE will add a
method to the form called joeGivesToBob_Click() that gets run any time the
button’s clicked. Fill in that method to make Joe give 10 bucks to Bob. Then double-
click on the other button and fill in the new bobGivesToJoe_Click() method
that the IDE creates so that Bob gives 5 bucks to Joe. Make sure the form updates itself
after the cash changes hands.

3

Add buttons to the “Fun with Joe and Bob” program to make the guys give each other cash.

If you already clicked the button, just delete it, add it back to your form, and rename it. Then delete the old button3_Click() method that the IDE added before, and use the new method it adds now.

Here’s a tip for designing your forms. You can use these buttons on the IDE’s
toolbar in the form designer to align controls, make them equal sizes, space

them evenly, and bring them to the front or back.

136   Chapter 3

exercise solution

Add buttons to the “Fun with Joe and Bob” program to make the guys give each other cash.

public partial class Form1 : Form {
 Guy joe;
 Guy bob;
 int bank = 100;

 public Form1() {
 InitializeComponent();
 bob = new Guy() { Cash = 100, Name = "Bob" };
 joe = new Guy() { Cash = 50, Name = "Joe" };
 UpdateForm();
 }

 public void UpdateForm() {
 joesCashLabel.Text = joe.Name + " has $" + joe.Cash;
 bobsCashLabel.Text = bob.Name + " has $" + bob.Cash;
 bankCashLabel.Text = "The bank has $" + bank;
 }

 private void button1_Click(object sender, EventArgs e) {
 if (bank >= 10) {
 bank -= joe.ReceiveCash(10);
 UpdateForm();
 } else {
 MessageBox.Show("The bank is out of money.");
 }
 }

 private void button2_Click(object sender, EventArgs e) {
 bank += bob.GiveCash(5);
 UpdateForm();
 }

 private void joeGivesToBob_Click(object sender, EventArgs e) {
 bob.ReceiveCash(joe.GiveCash(10));
 UpdateForm();
 }

 private void bobGivesToJoe_Click(object sender, EventArgs e) {
 joe.ReceiveCash(bob.GiveCash(5));
 UpdateForm();
 }

}

Here are the object initializers for the two instances of the Guy class. Bob gets initialized with 100 bucks and his name.

The trick here is
thinking through
who’s giving the
cash and who’s
receiving it.

Take a close look at
how the Guy methods
are being called. The
results returned
by GiveCash() are
pumped right into
ReceiveCash() as its
parameter.

To make Joe give cash
to Bob, we call Joe’s
GiveCash() method and
send its results into
Bob’s ReceiveCash()
method.

Before you go on, take a minute and flip to #2 in the “Leftovers” appendix,
because there’s some basic syntax that we haven’t covered yet. You won’t
need it to move forward, but it’s a good idea to see what’s there.

you are here 4   137

objects: get oriented!

Objectcross
It’s time to give your left brain a break, and put that
right brain to work: all the words are object‑related
and from this chapter.

1

2 3 4 5 6

7

8 9

10

11

12

13

14 15

Across

2. If a method's return type is _____, it doesn't return
anything.
7. An object's fields define its _______
9. A good method __________ makes it clear what the
method does.
10. Where objects live
11. What you use to build an object
13. What you use to pass information into a method
14. The statement you use to create an object
15. A special kind of field that's used by the form
controls

Down

1. This form control lets the user choose a number
from a range you set.
3. It's a great idea to create a class ________ on paper
before you start writing code
4. What an object uses to keep track of what it knows
5. These define what an object does
6. An object's methods define its ________
7. Don't use this keyword in your class declaration if
you want to be able to create instances of it
8. An object is an ______________ of a class
12. This statement tells a method to immediately exit,
and specifies the value that should be passed back to
the statement that called the method.

Across

2. If a method’s return type is _____, it doesn’t return anything

7. An object’s fields define its _______

9. A good method __________ makes it clear what the method
does

10. Where objects live

11. What you use to build an object

13. What you use to pass information into a method

14. The statement you use to create an object

15. Used to set an attribute on controls and other classes

Down

1. This form control lets the user choose a number from a range
you set

3. It’s a great idea to create a class ________ on paper before
you start writing code

4. An object uses this to keep track of what it knows

5. These define what an object does

6. An object’s methods define its ________

7. Don’t use this keyword in your class declaration if you want to
be able to create instances of it

8. An object is an ______________ of a class

12. This statement tells a method to immediately exit, and can
specify the value that should be passed back to the statement
that called the method

138   Chapter 3

public partial class Form1 : Form {
 public Form1() {
 InitializeComponent();
 }
 private void button1_Click(object sender, EventArgs e) {
 string result = "";

 Echo e1 = new Echo();

 int x = 0;

 while (___________) {

 result = result + e1.Hello() + "\n";

 if (____________) {

 e2.count = e2.count + 1;

 }

 if (____________) {

 e2.count = e2.count + e1.count;

 }

 x = x + 1;

 }
 MessageBox.Show(result + "Count: " + e2.count);
 }
}
class ____________ {
 public int _________ = 0;

 public string ___________ {

 return "helloooo...";
 }
}

puzzle solutions

That’s the correct answer.

And here’s the bonus answer!

Pool Puzzle Solution
Your job was to take code snippets from

the pool and place them into the
blank lines in the code. Your goal
was to make classes that will
compile and run and produce the
output listed.

Echo e2 = new Echo();

x < 4

e1.count = e1.count + 1;

x > 0

x ==3

Echo
count

Echo e2 = e1;

Hello()

The alternate solution has
this in the fourth blank:

x == 4
and this in the fifth:

x < 4

you are here 4   139

objects: get oriented!

N
1

U

M V
2

O I D
3

F
4

M
5

B
6

E I I E S
7

T A T E

R I
8

N
9

A M E T T H

I N G L H
10

E A P A

C
11

L A S S R D O T V

U T A R
12

D I I

P P
13

A R A M E T E R S C O

D N T R

O C U

W N
14

E W P
15

R O P E R T Y

N N

Across

2. If a method's return type is _____, it doesn't return
anything. [void]
7. An object's fields define its _______ [state]
9. A good method __________ makes it clear what the
method does. [name]
10. Where objects live [heap]
11. What you use to build an object [class]
13. What you use to pass information into a method
[parameters]
14. The statement you use to create an object [new]
15. A special kind of field that's used by the form
controls [property]

Down

1. This form control lets the user choose a number
from a range you set. [numericupdown]
3. It's a great idea to create a class ________ on paper
before you start writing code [diagram]
4. What an object uses to keep track of what it knows
[field]
5. These define what an object does [methods]
6. An object's methods define its ________ [behavior]
7. Don't use this keyword in your class declaration if
you want to be able to create instances of it [static]
8. An object is an ______________ of a class
[instance]
12. This statement tells a method to immediately exit,
and specifies the value that should be passed back to
the statement that called the method. [return]

Objectcross Solution

Flip the page to see what else you'll learn in Head First C#...

Jenny

Andrew

Thanks for reading the first
three chapters of our book.

We hope it gave you a nice
preview...

…because
we know you’re
going to have
a great time

learning C#.

I’m still hungry
for more!

The fun's just beginning!

Get C# programming into your brain... fast!
Head First C# is a complete learning experience for programming with C#, XAML, the

.NET Framework, and Visual Studio. Built for your brain, this book keeps you engaged

from the first chapter. You'll learn about classes and object-oriented programming, draw

graphics and animation, query your data with LINQ, and serialize it to files. And you'll

do it all by building games, solving puzzles, and doing hands-on projects. By the time

you're done you'll be a solid C# programmer, and you'll have a great time along the way!

Do you want to be a great C# developer? Are you looking for a fun and engaging way to get C# concepts into your brain? Head First C# is the fastest and most effective way to learn C#, XAML, and the .NET Framework. Have a look through the next few pages for a sample of what you'll find in the book...

You'll learn all about objects and
references, and how they help make
your data make sense in the real world.

You'll put
object oriented
programming
theory into practice
and get it into
your brain fast
by building games,
doing projects, and
solving puzzles.

Effective programming means getting a handle on your data.
You'll learn to model your data, manage it in memory, write
it to files, and get into the bits and bytes.

Harness the power of XAML to build sleek, modern apps.
You'll learn how to create a modern user interface with
graphics, animation, pinch-to-zoom, and more.

Advanced
concepts like
MVVM and
design patterns
are made simple
with examples,
projects, and
straightforward
explanations.

You'll build full-featured,
exciting video games! We'll
keep your brain engaged,
and give you the practice
that you need to become a
solid C# programmer.

Head First C#
by Andrew Stellman and Jennifer Greene

Available in print, e-book, on Safari, and at
book retailers everywhere. Learn more at
http://www.headfirstlabs.com/hfcsharp

	Intro
	Who is this book for?
	We know what you’re thinking.
	And we know what your brain is thinking.
	Metacognition: thinking about thinking
	Here’s what WE did
	Here’s what YOU can do tobend your brain into submission
	What you need for this book
	Read me
	The technical review team
	Acknowledgments

	Chapter 1: Start building with c#: Build something cool, fast!
	Why you should learn C#
	C# and the Visual Studio IDE make lots of things easy
	What you do in Visual Studio…
	What Visual Studio does for you…
	Aliens attack!
	Only you can help save the Earth
	Here’s what you’re going to build
	Start with a blank application
	Set up the grid for your page
	Add controls to your grid
	Use properties to change how the controls look
	Controls make the game work
	You’ve set the stage for the game
	What you’ll do next
	Add a method that does something
	Fill in the code for your method
	Finish the method and run your program
	Here’s what you’ve done so far
	Add timers to manage the gameplay
	Make the Start button work
	Run the program to see your progress
	Add code to make your controls interact with the player
	Dragging humans onto enemies ends the game
	Your game is now playable
	Make your enemies look like aliens
	Add a splash screen and a tile
	Publish your app
	Use the Remote Debugger to sideload your app
	Start remote debugging

	Chapter 2: It’s all just code: Under the hood
	When you’re doing this…
	…the IDE does this
	Where programs come from
	The IDE helps you code
	Anatomy of a program
	Two classes can be in the same namespace
	Your programs use variables to work with data
	C# uses familiar math symbols
	Use the debugger to see your variables change
	Loops perform an action over and over
	if/else statements make decisions
	Build an app from the ground up
	Make each button do something
	Set up conditions and see if they’re true
	Windows Desktop apps are easy to build
	Rebuild your app for Windows Desktop
	Your desktop app knowswhere to start
	You can change your program’s entry point
	When you change things in the IDE, you’re also changing your code

	Chapter 3: Objects: Get oriented!Making code make sense
	How Mike thinks about his problems
	How Mike’s car navigation system thinks about his problems
	Mike’s Navigator class has methods to set and modify routes
	Use what you’ve learned to build a program that uses a class
	Mike gets an idea
	Mike can use objects to solve his problem
	You use a class to build an object
	When you create a new object from a class,it’s called an instance of that class
	A bet ter solution…brought to you by objects!
	An instance uses fields to keep track of things
	Let’s create some instances!
	Thanks for the memory
	What’s on your program’s mind
	You can use class and methodnames to make your code intuitive
	Give your classes a natural structure
	Class diagrams help you organize yourclasses so they make sense
	Build a class to work with some guys
	Create a project for your guys
	Build a form to interact with the guys
	There’s an easier way to initialize objects
	A few ideas for designing intuitive classes

	Chapter 4: Types and References: It's 10:00. Do you know where your data is?
	C# Lab: A Day at the Races
	Chapter 5: Encapsulation: Keep your privates...private
	Chapter 6: Inheritance: Your object's family tree
	Chapter 7: Interfaces and Abstract Classes: Making classes keep their promises
	Chapter 8: Enums and Collections: Storing lots of data
	Chapter 9: Reading and Writing Files: Save the last byte for me!
	C# Lab: The Quest
	Chapter 10: Designing Windows Store Apps with XAML: Taking your apps to the next level
	Chapter 11: Async, Await, and Data Contract Serialization: Pardon the interruption
	Chapter 12: Exception Handling: Putting out fires gets old
	Chapter 13: Captain Amazing: The Death of the Object
	Chapter 14: Querying Data and Building Apps with LINQ: Get control of your data
	Chapter 15: Events and Delegates: What your code does when you're not looking
	Chapter 16: Architecting Apps witht he MVVM Pattern: Great apps on the inside and outside
	C# Lab: Invaders
	Chapter 17: Build a Windows Phone app

