A Brain-Friendly Guide %%

%

A Learner’s Guide to

Boss your Real-World Programming
objects with C#, XAML, and .NET

1 around with
. abstraction

~ and inheritance Unravel the e

mysteries of the D
Model-View-ViewModel gﬂf’ ~
(MVVM) pattern °

Build a fully
functional

retro classic
arcade game ‘é \

Learn how »
asynchronous See how Jimmy used
programming collections and LINQ

helped Sue keep

to wrangle an unruly
her users thrilled

comic book collection

Andrew Stellman

O REILLY" & Jennifer Greene

Head First C#

Programming/C#/ NET

What will you learn from this book? “Tf you want to learn

Head First C#is a complete learning experience for programming C# in depth and have
with C#, XAML, the NET Framework, and Visual Studio. Built for fun doing it, this is

your brain, this book keeps you engaged from the first chapter, THE book for you.”

where you'll build a fully functional video game. After that, you’ll
learn about classes and object-oriented programming, draw graph-
ics and animation, query your data with LINQ, and serialize it to
files. And you’ll do it all by building games, solving puzzles, and
doing hands-on projects. By the time you're done you’ll be a solid

—Andy Parkes,
[fledgling C# programmer

“Head First C# will
guide beginners of all
sorts to a long and
productive relation-
ship with C# and the
.NET Framework.”

—Chris Burrows,
Developer on Microsoft’s
C# Compiler team

C# programmer, and you'll have a great time along the way!

l Understand the difference between

. M ‘ - /— tlasses and obJ'cd‘{:S-

Exevtise Yyour C#
dels by building an
invaders game...
...and Crca{:mg a rolc—?la\/lng
game with deadly cncmcs

“Head First C# got
me up to speed in

Learn how to 3&, {:hc IDE to

do Your srun{: work for You.

® Inheritance) .
Build sa‘cnsf\/mg . no time for my first
and fun proy jeets | Encapsul.atlon large scale C#
from the very Abstraction development project
«CWS‘C chaPJw Master the printiples of—" at work—I highly
object—oriented programming, Polymorphism recommend it.”

Why does this book look so different? — Shalewa Odusanyc,

Technical Account Manager,
We think your time is too valuable to spend struggling with new Google
concepts. Using the latest research in cognitive science and learning)
theory to craft a multi-sensory learning experience, Head First C# uses a
visually rich format designed for the way your brain works, not a text-
heavy approach that puts you to sleep.

twitter.com/headfirstlabs
facebook.com/HeadFirst

O’REILLY"

oreilly.com
headfirstlabs.com

US $49.99 CAN $52.99
ISBN: 978-1-449-34350-7

NCHRVIRIN MO

1449

Advance Praise for Head First C#

“Head First C# is a great book, both for brand new developers and developers like myself coming from
a Java background. No assumptions are made as to the reader’s proficiency yet the material builds up
quickly enough for those who are not complete newbies—a hard balance to strike. This book got me up
to speed in no time for my first large scale C# development project at work—1I highly recommend it.”

— Shalewa Odusanya, Technical Account Manager, Google

“Head Furst C# 1s an excellent, simple, and fun way of learning C#. It’s the best piece for C# beginners
I’ve ever seen—the samples are clear, the topics are concise and well written. The mini-games that guide
you through the different programming challenges will definitely stick the knowledge to your brain. A
great learn-by-doing book!”

— Johnny Halife, Chief Architect, Mural.ly

“Head First C# is a comprehensive guide to learning C# that reads like a conversation with a friend. The
many coding challenges keep it fun, even when the concepts are tough.”

— Rebeca Duhn-Krahn, founding partner at Semphore Solutions

“I’'ve never read a computer book cover to cover, but this one held my interest from the first page to the
last. If you want to learn C# in depth and have fun doing it, this is THE book for you.”

— Andy Parker, fledgling C# programmer

“It’s hard to really learn a programming language without good engaging examples, and this book is full
of them! Head First C# will guide beginners of all sorts to a long and productive relationship with C#
and the .NET Framework.”

—Chris Burrows, developer for Microsoft’s C# Compiler team

“With Head First C#, Andrew and Jenny have presented an excellent tutorial on learning C#. It is very
approachable while covering a great amount of detail in a unique style. If you’ve been turned off by
more conventional books on C#, you’ll love this one.”

—Jay Hilyard, software developer, co-author of C# 3.0 Cookbook

“I’d reccomend this book to anyone looking for a great introduction into the world of programming and
C#. IFrom the first page onwards, the authors walks the reader through some of the more challenging
concepts of C# in a simple, easy-to-follow way. At the end of some of the larger projects/labs, the
reader can look back at their programs and stand in awe of what they’ve accomplished.”

—David Sterling, developer for Microsoft’s Visual C# Compiler team

“Head First C# is a highly enjoyable tutorial, full of memorable examples and entertaining exercises. Its
lively style is sure to captivate readers—from the humorously annotated examples, to the Fireside Chats,
where the abstract class and interface butt heads in a heated argument! For anyone new to programming,
there’s no better way to dive in.”

—Joseph Albahari, C# Design Architect at Egton Medical Information Systems,
the UK’s largest primary healthcare software supplier,
co-author of C# 3.0 in a Nutshell

“|Head First C#] was an easy book to read and understand. I will recommend this book to any developer
wanting to jump into the C# waters. I will recommend it to the advanced developer that wants to
understand better what is happening with their code. [I will recommend it to developers who| want to
find a better way to explain how C# works to their less-seasoned developer friends.”

—Giuseppe Turitto, C# and ASP.NET developer for Cornwall Consulting Group
“Andrew and Jenny have crafted another stimulating Head First learning experience. Grab a pencil, a
computer, and enjoy the ride as you engage your left brain, right brain, and funny bone.”
—Bill Mietelski, software engineer
“Going through this Head First C# book was a great experience. I have not come across a book series

which actually teaches you so well.... This is a book I would definitely recommend to people wanting to
learn C#”

—Krishna Pala, MCP

Praise for other Head First books

“I feel like a thousand pounds of books have just been lifted off of my head.”
—Ward Cunningham, inventor of the Wiki and founder of the Hillside Group

“Just the right tone for the geeked-out, casual-cool guru coder in all of us. The right reference for
practical development strategies—gets my brain going without having to slog through a bunch of tired
stale professor-speak.”

—Travis Kalanick, Founder of Scour and Red Swoosh
Member of the MIT TR100

“There are books you buy, books you keep, books you keep on your desk, and thanks to O’Reilly and the
Head First crew, there 1s the penultimate category, Head First books. They’re the ones that are dog-
eared, mangled, and carried everywhere. Head First SOL is at the top of my stack. Heck, even the PDF I
have for review is tattered and torn.”

— Bill Sawyer, ATG Curriculum Manager, Oracle

“This book’s admirable clarity, humor and substantial doses of clever make it the sort of book that helps
even non-programmers think well about problem-solving.”

— Cory Doctorow, co-editor of Boing Boing
Author, Down and Out in the Magic Kingdom
and Someone Comes to Town, Someone Leaves Town

Praise for other Head First books
“I received the book yesterday and started to read it...and I couldn’t stop. This is definitely tres ‘cool.” It
is fun, but they cover a lot of ground and they are right to the point. I'm really impressed.”

— Erich Gamma, IBM Distinguished Engineer, and co-author of
Design Patterns

“One of the funniest and smartest books on software design I've ever read.”

— Aaron LaBerge, VP Technology, ESPN.com

“What used to be a long trial and error learning process has now been reduced neatly into an engaging
paperback.”

— Mike Davidson, CEO, Newsvine, Inc.

“Elegant design is at the core of every chapter here, each concept conveyed with equal doses of
pragmatism and wit.”

— Ken Goldstein, Executive Vice President, Disney Online

“Usually when reading through a book or article on design patterns, I'd have to occasionally stick myself
in the eye with something just to make sure I was paying attention. Not with this book. Odd as it may
sound, this book makes learning about design patterns fun.

“While other books on design patterns are saying ‘Bueller... Bueller... Bueller...’ this book is on the float
belting out ‘Shake it up, baby!”

— Eric Wuehler

“I literally love this book. In fact, I kissed this book in front of my wife.”

— Satish Kumar

Other related books from O’Reilly
Programming C# 4.0
C# 4.0 in a Nutshell
C# Essentials

C# Language Pocket Reference

Other books in O’Reilly’s Head First series
Head First Java
Head First Object-Oriented Analysis and Design (OOA&D)
Head Rush Ajax
Head First HTML with CSS and XHTML
Head First Design Patterns
Head First Servlets and JSP
Head First EJB
Head First PMP
Head First SQL
Head First Software Development
Head First JavaScript
Head First Ajax
Head First Statistics
Head First Physics
Head First Programming
Head First Ruby on Rails
Head First PHP & MySQL
Head First Algebra
Head First Data Analysis
Head First Excel

Head First C#

Third Edition

WOULDN'T IT BE DREAMY IF
THERE WAS A C# BOOK THAT WAS
MORE FUN THAN MEMORIZING
A PHONE BOOK? IT'S PROBABLY
NOTHING BUT A FANTASY ...

Andrew Stellman
Jennifer Greene

O’REILLY"

Beijing < Cambridge < Kdin * Sebastopol * Tokyo

Head First C#
Third Edition

by Andrew Stellman and Jennifer Greene

Copyright © 2013 Andrew Stellman and Jennifer Greene. All rights reserved.
Printed in the United States of America.
Published by O’Reilly Media, Inc., 1005 Gravenstein Highway North, Sebastopol, CA 95472.

O’Reilly Media books may be purchased for educational, business, or sales promotional use. Online editions are also
available for most titles (http://my.safaribooksonline.com). For more information, contact our corporate/institutional sales
department: (800) 998-9938 or corporate@oreilly.com.

Series Creators: Kathy Sierra, Bert Bates

Cover Designers: Louise Barr, Karen Montgomery
Production Editor: Melanie Yarbrough

Proofreader: Rachel Monaghan

Indexer: Ellen Troutman-Zaig

Page Viewers: Quentin the whippet and Tequila the pomeranian

Printing History:

November 2007: First Edition.
May 2010: Second Edition.
August 2013: Third Edition.

The O’Reilly logo is a registered trademark of O’Reilly Media, Inc. The Head First series designations, Head First C#,
and related trade dress are trademarks of O’Reilly Media, Inc.

Microsoft, Windows, Visual Studio, MSDN, the .NET logo, Visual Basic and Visual C# are registered trademarks of
Microsoft Corporation.

Many of the designations used by manufacturers and sellers to distinguish their products are claimed as trademarks.
Where those designations appear in this book, and O’Reilly Media, Inc., was aware of a trademark claim, the
designations have been printed in caps or initial caps.

While every precaution has been taken in the preparation of this book, the publisher and the authors assume no
responsibility for errors or omissions, or for damages resulting from the use of the information contained herein.

No bees, space aliens, or comic book heroes were harmed in the making of this book.

ISBN: 978-1-449-34350-7
(M]

This book is dedicated to the loving memory of Sludgie the Whale,
who swam to Brooklyn on April 17, 2007.

You were only in our canal for a day,
but you’ll be in our hearts forever.

the authors

THANKS FOR BUYING OUR BOOK! WE
REALLY LOVE WRITING ABOUT THIS
STUFF, AND WE HOPE YOU GET A
KICK OUT OF READING IT.--

Andvew

This photo (and the photo of the
Gowanus Canal) by Nisha Sondhe ~—>

Andrew Stellman, despite being raised a
New Yorker, has lived in Minneapolis, Geneva,
and Pittsburgh... twice. The first time was when
he graduated from Carnegie Mellon’s School of
Computer Science, and then again when he and

---BECAUSE

Jenny were starting their consulting business and
writing their first book for O’Reilly.

Andrew’s first job after college was building
software at a record company, EMI-Capitol
Records—which actually made sense, as he went
to LaGuardia High School of Music & Art and
the Performing Arts to study cello and jazz bass
guitar. He and Jenny first worked together at

a company on Wall Street that built financial
software, where he was managing a team of
programmers. Over the years he’s been a Vice
President at a major investment bank, architected
large-scale real-time back end systems, managed
large international software teams, and consulted
for companies, schools, and organizations,
including Microsoft, the National Bureau of
Economic Research, and MI'T. He’s had the
privilege of working with some pretty amazing
programmers during that time, and likes to think
that he’s learned a few things from them.

When he’s not writing books, Andrew keeps
himself busy writing useless (but fun) software,
playing both music and video games, practicing
taiji and aikido, and owning a Pomeranian.

Jcm\\/ and Andrew have been build'mg software and wri{ing about

WE KNOW YOU'RE
GOING TO HAVE
A GREAT TIME

LEARNING C#-

Jennifer Greene studied philosophy in college
but, like everyone else in the field, couldn’t find
a job doing it. Luckily, she’s a great software
engineer, so she started out working at an online
service, and that’s the first time she really got a
good sense of what good software development
looked like.

She moved to New York in 1998 to work on
software quality at a financial software company.
She’s managed a teams of developers, testers and
PMs on software projects in media and finance
since then.

She’s traveled all over the world to work with
different software teams and build all kinds of
cool projects.

She loves traveling, watching Bollywood movies,
reading the occasional comic book, playing PS3
games, and hanging out with her huge siberian
cat, Sascha.

software engineering together since they Fiest

met in 1998. Their fivst book, Applied Software Project Management, was published by O'Reilly in 2005. Other

Stellman and évccne books for OJRei”\/ intlude Beau

sevies, Head First PMP (2007]).

They founded Stellman ¢ Greene Consulting
hevbicide exposure in Vietnam vets. [n addition

tompanies and s?okcn at tonferentes and mcc{'jngs of

fiful Teams (2009, and their Livst book in the Head First

in 2003 to build a veally neat software project for stientists studying
£o building software and writing books, they've eonsulted for
sofbwave engincers, avehitetts and project managers.

Vil 0y ek out their bloo, Building Better Software: http://www.stellman—greene.com
Follow @AndrewStellman and @Jcnnyércene on Twitter

table of contents

Table of Contents (Summary)

Intro XXX1
1 Start building with C#: Building something cool, fast! 1
2 It’s All Just Code: Under the hood 33
3 Objects: Get Oriented: Making code make sense 101
4 Types and References: 1t’s 10:00. Do you know where your data is? 141

C# Lab 1: 4 Day at the races 187
5 Encapsulation: Keep your privates. .. private 197
6 Inheritance: Your object’s family tree 237
7 Interfaces and abstract classes: Making classes keep their promises 293
8 Enums and collections: Storing lots of data 351
9 Reading and Writing Files: Save the last byte for me! 409

C# Lab 2: The Quest 465
10 Designing Windows Store Apps with XAML:

Taking your apps to the next level 487
11 XAML, File, I70, and Data Contract Serialization: Wiiting files right 535
12 Exception Handling: Putting out fires gets old 569
13 Captain Amazing: The Death of the Object 611
14 Querying Data and Building Apps with LINQ: Get control of your data 649
15 Events and Delegates: What your code does when you’re not looking 701
16 Architecting Apps with the MVVM Pattern:

Great apps on the inside and outside 745

C# Lab 3: Invaders 807
17 Bonus Project! Build a Windows Phone app 831

Leftovers: The top 11 things we wanted to include in this book 845

Table of Contents (the real thing)
Intro

Your brain on C#. You're sitting around trying to learn something, but
your brain keeps telling you all that learning isn’t important. Your brain’s saying,
“Better leave room for more important things, like which wild animals to avoid and
whether nude archery is a bad idea” So how do you trick your brain into thinking

that your life really depends on learning C#?

Who is this book for? XXXl
We know what you’re thinking. xxxiii
Metacognition: thinking about thinking XXXV
Here’s what YOU can do to bend your brain into submission XXXVl
What you need for this book XXXV
Read me XXXIX
The technical review team x1
Acknowledgments xli

table of contents

start building with C#

Build something cool, fast!

Want to build great apps really fast?

With C#, you've got a great programming language and a valuable tool at
your fingertips. With the Visual Studio IDE, you’ll never have to spend hours
writing obscure code to get a button working again. Even better, you'll be able to
build really cool software, rather than remembering which bit of code was for
the name of a button, and which one was for its label. Sound appealing? Turn

the page, and let’s get programming.
Avoid These Why you should learn C#
C# and the Visual Studio IDE make lots of things easy

o

Ny
=)

2#%.000

==,

What you do in Visual Studio...
What Visual Studio does for you...
Aliens attack!

Only you can help save the Earth
Here’s what you're going to build
Start with a blank application

Set up the grid for your page

Add controls to your grid

Use properties to change how the controls look

Controls make the game work

Uh oh! Aliens You've set the stage for the game
are beaming up What you’ll do next
humans. Not 5°°d~’ Add a method that does something

Fill in the code for your method

Finish the method and run your program
Here’s what you've done so far

Add timers to manage the gameplay
Make the Start button work

Run the program to see your progress

Add code to make your controls interact with the player

Dragging humans onto enemies ends the game

Your game is now playable
Make your enemies look like aliens
Add a splash screen and a tile

Publish your app

Use the Remote Debugger to sideload your app

Start remote debugging

© o B B~ N

10

18
20
22
24
29
30
31
32
34
36
38
40
41
42
44
45
46
47
48
49
50

table of contents

it’s all just code
Under the hood

You’re a programmer, not just an IDE user.

You can get a lot of work done using the IDE. But there’s only so far it
can take you. Sure, there are a lot of repetitive tasks that you do when
you build an application. And the IDE is great at doing those things for
you. But working with the IDE is only the beginning. You can get your
programs to do so much more—and writing C# code is how you do it.

Once you get the hang of coding, there’s nothing your programs can’t do.

When you'e doing this... 54
...the IDE does this 55
Where programs come from 56
The IDE helps you code 58
Anatomy of a program 60
o [int number = 15 Two classes can be in the same namespace 65
number = number + 18; Your programs use variables to work with data 66
number = 36 * 15;

number = 12 - (42 / 7) C# uses familiar math symbols 68

number += 1@;)
number = 3; Use the debugger to see your variables change 69
number = 71 / 3; Loops perform an action over and over 71
Ngm—b if/else statements make decisions 72
Build an app from the ground up 73
Locals| Watch 1 Make each button do something 75
Set up conditions and see if theyre true 76
Windows Desktop apps are easy to build 87
Rebuild your app for Windows Desktop 88
Your desktop app knows where to start 92

EVCV‘

Y time k .

i(:hcinc .;;a,g::?;i fc:_ xtjaﬁ?lﬁm You can change your program’s entry point 94
Separa

parate trom the NET Framework and ‘When you change things in the IDE,

Windows Store AP/ ¢lasses. K
/ you’re also changing your code 96

A elass contains a viece of your

Change the |abel if checked Enable label changing

coovam (although some very small (
‘\:\—ograms tan ha%c just one Llasi/_\> CLASS
METHOD 1
i STATEMENT
A ¢elass has one or move methods (STATEMENT
Your methods always have 4o live Press the button to change my text
inside a ¢lass. And methods ave METHOD 2
made up of statements—like the STATEMENT
ones You've alveady seen. STATEMENT

Xi

table of contents

objects: get oriented!
Making Code Make Sense

Every program you write solves a problem.

When you’re building a program, it's always a good idea to start by thinking about what
problem your program’s supposed to solve. That's why objects are really useful. They
let you structure your code based on the problem it's solving, so that you can spend your
time thinking about the problem you need to work on rather than getting bogged down in
the mechanics of writing code. When you use objects right, you end up with code that's

intuitive to write, and easy to read and change.

How Mike thinks about his problems 102
How Mike’s car navigation system thinks about his problems 103
Mike’s Navigator class has methods to set and modify routes 104
Use what you've learned to build a program that uses a class 105
Mike gets an idea 107
Mike can use objects to solve his problem 108
You use a class to build an object 109
Navigator X
Pp—— When you create a new object from a class,
SZtD::ﬁe:aﬁsﬁ?)lono it’s called an instance of that class 110
ModifyRouteToAvoid() A better solution...brought to you by objects! 111
ModifyRouteTolnclude()
GetRoute() An instance uses fields to keep track of things 116
GetTmeToDestnation(Let’s create some instances! 117
TotalDistance()
Thanks for the memory 118
What’s on your program’s mind 119

You can use class and method names to make your code intuitive 120

Give your classes a natural structure 122
Class diagrams help you organize your classes so they make sense 124

Build a class to work with some guys 128
When You define a tlass, you define)
its methods, just like a blueprint Create a project for your guys 129
defines the layout of the house

Build a form to interact with the guys 130
There’s an easier way to initialize objects 133
mun
| [E

You ¢an use one blueprint 4o
make any number of houses,

and you ean use one tlass to
make any rumber of objeets

TN
% B oA

xii

table

types and references

contents

It’s 10:00. Do you know where your data is?

Data type, database, Lieutenant Commander Data...

it’s all important stuff. without data, your programs are useless. You

need information from your users, and you use that to look up or produce new

information to give back to them. In fact, almost everything you do in programming

involves working with data in one way or another. In this chapter, you'll learn the

ins and outs of C#'s data types, see how to work with data in your program, and

even figure out a few dirty secrets about objects (pssst...objects are data, too).

Dog fido;
Dog lucky = new Dog() ;
~
X
Oog ob}@“*
fido = new Dog() ;
Y
g X
) 2Ot 009 ob'e'c\
99 ob\¢ ¥
lucky = null; \\ /
S~—
poof! — v
8} q c\%
/ v\ 99 ob\e

The variable’s type determines what kind of data it can store
A variable is like a data to-go cup

10 pounds of data in a 5-pound bag

Even when a number is the right size, you can’t just assign it to any variable

When you cast a value that’s too big, C# will adjust it automatically
C# does some casting automatically

When you call a method, the arguments must be compatible
with the types of the parameters

Debug the mileage calculator

Combining = with an operator

Objects use variables, too

Refer to your objects with reference variables

References are like labels for your object

If there aren’t any more references, your object gets garbage-collected
Multiple references and their side effects

Two references means TWO ways to change an object’s data

A special case: arrays

Arrays can contain a bunch of reference variables, too
Welcome to Sloppy Joe’s Budget House o’ Discount Sandwiches!
Objects use references to talk to each other

Where no object has gone before

Build a typing game

Controls are objects, just like any other object

142
144
145
146
147
148

149
153
154
155
156
157
158
160
165
166
167
168
170
171
176
180

xiii

ontents

C# Lab 1
A Day at the Races

Joe, Bob, and Al love going to the track, but they’re

tired of losing all their money. They need you to build a
simulator for them so they can figure out winners before
they lay their money down. And, if you do a good job,
they’ll cut you in on their profits.

The spec: build a racetrack simulator 188

The Finished Product 196

Betting Parlor
Minimum bet - 5 bucks

table of contents

encapsulation
Keep your privates... private

Ever wished for a little more privacy?

Sometimes your objects feel the same way. Just like you don’t want anybody you

don’t trust reading your journal or paging through your bank statements, good objects

don'’t let other objects go poking around their fields. In this chapter, you're going to

learn about the power of encapsulation. You’ll make your object’s data private, and

add methods to protect how that data is accessed.

e

/0,496‘(\ Encapsulation means keeping some of the data in a class private

Kathleen is an event planner

What does the estimator do?

You’re going to build a program for Kathleen
Kathleen test drive

Each option should be calculated individually

It’s easy to accidentally misuse your objects

Use encapsulation to control access to your class’s methods and fields
But 1s the RealName field REALLY protected?

Private fields and methods can only be accessed from inside the class
Encapsulation keeps your data pristine

Properties make encapsulation easier

Build an application to test the Farmer class

Use automatic properties to finish the class

What if we want to change the feed multiplier?
Use a constructor to initialize private fields

15 4 9@(\\

Fancy
Decorations
(415 per person
+50 decorating
fee)

Juice and soda.1
(45 per person +

1 Ves)| 9% discount on \ _
total cost)

number of Healthy L_—

people. r__; Choice?
Food (¢25 per .

decorations?

——

Norwal

erson) 1
! No Aleohol, /, Vecorations
(620 per (6750 per
person) person +30
i decorating fee.

198
199
200
206
208
210
211
212
213
214
222
223
224
225
226
227

XV

table of contents

Canine
Eat()
Sleep()
Dog
Wolf MakeNoise()
MakeNoise()
P
f Y

xvi

inheritance
Your object’s family tree

Sometimes you DO want to be just like your parents.

Ever run across an object that almost does exactly what you want your object to do?
Found yourself wishing that if you could just change a few things, that object would
be perfect? Well, that's just one reason that inheritance is one of the most powerful
concepts and techniques in the C# language. Before you're through with this chapter,
you’ll learn how to subclass an object to get its behavior, but keep the flexibility to
make changes to that behavior. You'll avoid duplicate code, model the real world

more closely, and end up with code that’s easier to maintain.

Kathleen does birthday parties, too 238
We need a BirthdayParty class 239
Build the Party Planner version 2.0 240
One more thing...can you add a $§100 fee for parties over 12? 247

When your classes use inheritance, you only need to write your code once 248

Build up your class model by starting general and getting more specific 249
How would you design a zoo simulator? 250
Use inheritance to avoid duplicate code in subclasses 251
Different animals make different noises 252
Think about how to group the animals 253
Create the class hierarchy 254
Every subclass extends its base class 255
Use a colon to inherit from a base class 256

We know that inheritance adds the base class fields, properties,
and methods to the subclass... 259

A subclass can override methods to change or replace methods it inherited 260

Any place where you can use a base class,

you can use one of its subclasses instead 261
A subclass can hide methods in the superclass 268
Use the override and virtual keywords to inherit behavior 270
P A subclass can access its base class using the base keyword 272
When a base class has a constructor, your subclass needs one, too 273
Now you're ready to finish the job for Kathleen! 274
Build a beehive management system 279
How you’ll build the beehive management system 280

table of contents

interfaces and abstract classes
Making classes keep their promises

Actions speak louder than words.

Sometimes you need to group your objects together based on the things they can

do rather than the classes they inherit from. That’'s where interfaces come in—they

let you work with any class that can do the job. But with great power comes great
responsibility, and any class that implements an interface must promise to fulfill all of

its obligations...or the compiler will break their kneecaps, see?

x I heritance Let’s get back to bee-sics 294
nhnermanc

*

* We can use inheritance to create classes for different types of bees 295

An interface tells a class that it must implement

* . certain methods and properties 296
Abstraction
Use the interface keyword to define an interface 297
. * Now you can create an instance of NectarStinger that does both jobs 298
Encapsulation . 4 .
Classes that implement interfaces have to include
- ALL of the interface’s methods 299
Pol i * Get a little practice using interfaces 300
olymorphism
ymorp You can’t instantiate an interface, but you can reference an interface 302
Interface references work just like object references 303
— You can find out if a class implements a certain interface with “is” 304
ocation
e Interfaces can inherit from other interfaces 305

Exits
Description

The RoboBee 4000 can do a worker bee’ job without using valuable honey 306

/(/ \x A CofteeMaker is also an Appliance 308
Room Outside Upcasting works with both objects and interfaces 309
%ZZ;;ZZK;Z"Q bl Downcasting lets you turn your appliance back into a coffee maker 310
Upcasting and downcasting work with interfaces, too 311

There’s more than just public and private 315

Access modifiers change visibility 316

| Dining Some classes should never be instantiated 319

Living Room Room R .
—_ An abstract class is like a cross between a class and an interface 320

Front Yard .

Kitchen I\ Like we said, some classes should never be instantiated 322
Backard | An abstract method doesn’t have a body 323
The Deadly Diamond of Death! 328
Polymorphism means that one object can take many different forms 331

xvii

table of contents

enums and collections
Storing lots of data

When it rains, it pours.

In the real world, you don’t get to handle your data in tiny little bits and pieces.
No, your data’s going to come at you in loads, piles, and bunches. You'll need
some pretty powerful tools to organize all of it, and that's where collections
come in. They let you store, sort, and manage all the data that your programs
need to pore through. That way, you can think about writing programs to work

with your data, and let the collections worry about keeping track of it for you.

Strings don’t always work for storing categories of data 352
Enums let you work with a set of valid values 353
Enums let you represent numbers with names 354
&! Arrays are hard to work with 358
Lists make it easy to store collections of...anything 359
Lists are more flexible than arrays 360
Lists shrink and grow dynamically 363
Generics can store any type 364
Collection initializers are similar to object initializers 368
Lists are easy, but SORTING can be tricky 370
IComparable<Duck> helps your list sort its ducks 371
Use IComparer to tell your List how to sort 372
Create an instance of your comparer object 373
IComparer can do complex comparisons 374
Opverriding a ToString() method lets an object describe itself 377
Update your foreach loops to let your Ducks and Cards print themselves 378
When you write a foreach loop, youre using IEnumerable<T> 379
You can upcast an entire list using IEnumerable 380
You can build your own overloaded methods 381
Use a dictionary to store keys and values 387
The dictionary functionality rundown 388
Build a program that uses a dictionary 389
And yet MORE collection types... 401
A queue is FIFO—TFirst In, First Out 402
A stack is LIFO—Last In, First Out 403

xviii Qg ’b b b

table of contents

reading and writing files
Save the last byte for me!

Sometimes it pays to be a little persistent.

So far, all of your programs have been pretty short-lived. They fire up, run for

a while, and shut down. But that's not always enough, especially when you're
dealing with important information. You need to be able to save your work. In
this chapter, we'll look at how to write data to a file, and then how to read that
information back in from a file. You'll learn about the .NET stream classes,

and also take a look at the mysteries of hexadecimal and binary.

NET uses streams to read and write data 410
Different streams read and write different things 411
A FileStream reads and writes bytes to a file 412
Write text to a file in three simple steps 413
The Swindler launches another diabolical plan 414
Reading and writing using two objects 417
Data can go through more than one stream 418
Use built-in objects to pop up standard dialog boxes 421
Dialog boxes are just another WinForms control 422

Use the built-in File and Directory classes to work with files and directories 424

Use file dialogs to open and save files (all with just a few lines of code) 427
IDisposable makes sure your objects are disposed of properly 429
Avoid filesystem errors with using statements 430
Use a switch statement to choose the right option 437
Add an overloaded Deck() constructor that reads a deck of cards
69 117 114 101 107 97 33 in from a file 439
Eureka! —>» IGIGIG !@lg “G‘E ! When an object is serialized, all of the objects it refers to get serialized, too...443
e rrE Serialization lets you read or write a whole object graph all at once 444
NET uses Unicode to store characters and text 449
C# can use byte arrays to move data around 450
) ON Use a BinaryWriter to write binary data 451
%\S}’eam 0\6\6 You can read and write serialized files manually, too 453
1171 14 101 10797+ Find where the files differ; and use that information to alter them 454
. ‘><. . " Working with binary files can be tricky 455
’%;S‘O(’T Use file streams to build a hex dumper 456
Zeam 005 Use Stream.Read() to read bytes from a stream 458

Xix

ontents

C# Lab 3
The Quest

Your job is to build an adventure game where a mighty
adventurer is on a quest to defeat level after level of
deadly enemies. You’ll build a turn-based system, which
means the player makes one move and then the enemies
make one move. The player can move or attack, and then
each enemy gets a chance to move and attack. The game
keeps going until the player either defeats all the enemies
on all seven levels or dies.

The spec: build an adventure game 466
The fun’s just beginning! 486

table of contents

designing windows store apps with xaml
Taking your apps to the next level

You’re ready for a whole new world of app development.
Using WinForms to build Windows Desktop apps is a great way to learn important C#
concepts, but there’s so much more you can do with your programs. In this chapter,
you’ll use XAML to design your Windows Store apps, you'll learn how to build pages
to fit any device, integrate your data into your pages with data binding, and use
Visual Studio to cut through the mystery of XAML pages by exploring the objects
created by your XAML code.

The grid is made up of 20-pixel

squares called units.

Each unit is broken down

into 5-pixel sub-units Brian’s running Windows 8 488

Windows Forms use an object graph set up by the IDE 494

Use the IDE to explore the object graph 497

Windows Store apps use XAML to create UI objects 498

. Redesign the Go Fish! form as a Windows Store app page 500

@ G O F | S Page layout starts with controls 502
Rows and columns can resize to match the page size 504

B B A B R A A Use the grid system to lay out app pages 506
YO ur N ame Data binding connects your XAML pages to your classes 512

XAML controls can contain text...and more 514

Use data binding to build Sloppy Joe a better menu 516

Use static resources to declare your objects in XAML 522

Use a data template to display objects 524

INotifyPropertyChanged lets bound objects send updates 526

Modify MenuMaker to notify you when the
GeneratedDate property changes 527

BINDING £ ’%_/O
ItemsSource="{Binding}" _t—_.
o N
& . & o)
Sf@o X o‘O\QJ Ser'VClb\E‘\ O XXi

table of contents

xaml, Yile /0, and data contract serialization
Writing files right

Nobody likes to be kept waiting...especially not users.
Computers are good at doing lots of things at once, so there’s no reason your apps
shouldn’t be able to as well. In this chapter, you'll learn how to keep your apps responsive
by building asynchronous methods. You'll also learn how to use the built-in file
pickers and message dialogs and asynchronous file input and output without
freezing up your apps. Combine this with data contract serialization, and you’'ve got the

makings of a thoroughly modern app.

Brian runs into file trouble 536
Windows Store apps use await to be more responsive 538
| Use the FileIO class to read and write files 540
Build a slightly less simple text editor 542
A data contract is an abstract definition of your object’s data 547
Use async methods to find and open files 548
Knownlolders helps you access high-profile folders 550
The whole object graph is serialized to XML 351
Stream some Guy objects to your app’s local folder 552
Take your Guy Serializer for a test drive 556
Use a Task to call one async method from another 557
o Build Brian a new Excuse Manager app 558
rreto. Separate the page, excuse, and Excuse Manager 559
? |AppendLinE5ﬂx5}rnc - Create the main page for the Excuse Manager 560
@ AppendTedisync .
© Equals Add the app bar to the main page 561
© ReadBufferAsync Build the ExcuseManager class 562
® ReadLinesAsync Add the code-behind for the page 564
T Simple Text Editor
) ReferenceEquals
@ WriteBufferAsync STalToCeptainAmering txt
@ WriteByteshsync - Fom Commissoner@objeciilsnet

Subject: Can you save the day... again?

We've discovered the Swindler’s plan:
The plan -> How I'll defeat Captain Amazing
The plan -> Ancther genius secret plan by The Swindler

The plan -> I'll create an army of clones and unleash them upon the citizens of Objectville.
The plan -> Clone #0 attacks the mall

The plan -> Clone #1 attacks downtown

The plan -> Clone #2 attacks the mall

The plan -> Clone #3 attacks downtown

The plan -> Clone #4 attacks the mall

The plan -> Clone #5 attacks downtown

The plan -> Clone #6 attacks the mall

Can you help us?

XXii

table of contents

exception handling

Putting out fires gets old

Programmers aren’t meant to be firefighters.

You've worked your tail off, waded through technical manuals and a few engaging
Head First books, and you've reached the pinnacle of your profession. But you're
still getting panicked phone calls in the middle of the night from work because your
program crashes, or doesn’t behave like it's supposed to. Nothing pulls you
out of the programming groove like having to fix a strange bug...but with exception
handling, you can write code to deal with problems that come up. Better yet, you

can even react to those problems, and keep things running.

Brian needs his excuses to be mobile 570
When your program throws an exception,
NET generates an Exception object 574
WOW, THIS PROGRAM’S REALLY STABLE!
Q Brian’s code did something unexpected 576
(o s,
o o your Prodram’s more rop, All exception objects inherit from Exception 578
= St/
The debugger helps you track down
% and prevent exceptions in your code 579
Use the IDE’s debugger to ferret out exactly
what went wrong in the Excuse Manager 580
your °"‘?ss’ now Yv'th Uh oh—the code’s still got problems... 583
user exception handling o
Handle exceptions with try and catch 585
What happens when a method you want to call is risky? 586
o UH OH! WHAT Use the debugger to follow the try/catch flow 588
0 THE HECK If you have code that ALWAYS should run, use a finally block 590
?
HAPPENED? Use the Exception object to get information about the problem 595
<
4%_ Use more than one catch block to handle
Ject multiple types of exceptions 596
One class throws an exception that a method
in another class can catch 597
int[] anArray = {3, 4, 1, 11}; An easy way to avoid a lot of problems:
int avalue = anArray[15]; using gives you try and finally for free 601

Exception avoidance: implement IDisposable to do your own cleanup 602

The worst catch block EVER: catch-all plus comments 604

qz‘epr,-o" g \05‘ A few simple ideas for exception handling 606
B Xx
Value &

Watch 1
Name
a
@ [System.IndexOutOfRangebxception] {"Index was cutside the bounds of the array."}
& Data {System.Collections.ListDictionarylnternal}

 Helplink

{"Index was outside the bounds of the array."}

null

& HResult -2146233080
& Innerfxception null

5 Message "Index was outside the bounds of the array.” G, =

& Source "ConsoleApplicationl” Q-

K StackTrace " at ConsoleApplication1.Program Main(tring & =
& TargetSite {Void Main(System.String[]}} XXI11

#5 Static members
@ Mon-Public members

Locals | Watch 1

table of contents

XXiv

Your last chance to DO something...your object’ finalizer
When EXACTLY does a finalizer run?

Dispose() works with using; finalizers work with garbage collection
Finalizers can’t depend on stability

Make an object serialize itself in its Dispose()

A struct looks like an object...
...butisn’t an object

Values get copied; references get assigned

Structs are value types; objects are reference types

The stack vs. the heap: more on memory

Use out parameters to make a method return more than one value
Pass by reference using the ref modifier

Use optional parameters to set default values

Use nullable types when you need nonexistent values

Nullable types help you make your programs more robust
“Captain” Amazing...not so much

Extension methods add new behavior to EXISTING classes

Extending a fundamental type: string

i -I Wm@ fa
Objectville

Home of Polymanpticom

618
619
620
622
623
627
627
628
629
631
634
635
636
637
638
641
642
644

table of contents

querying data and building apps with LINQ,
Get control of your data

It’s a data-driven world...it’s good to know how to live in it.
Gone are the days when you could program for days, even weeks, without dealing

with loads of data. Today, everything is about data. And that's where LINQ comes in.
LINQ not only lets you query data in a simple, intuitive way, but it lets you group data
and merge data from different data sources. And once you've wrangled your data

into manageable chunks, your Windows Store apps have controls for navigating

data that let your users navigate, explore, and even zoom into the details.

Jimmy’s a Captain Amazing super-fan... 650
,,,,,,, ...but his collection’s all over the place 651
LINQ) can pull data from multiple sources 652
.NET collections are already set up for LINQ 653
LINQ makes queries easy 654
LINQ is simple, but your queries don’t have to be 655
Jimmy could use some help 658
Start building Jimmy an app 660
Use the new keyword to create anonymous types 663
LINQ is versatile 666
Add the new queries to Jimmy’s app 668
LINQ) can combine your results into groups 673
Combine Jimmy’ values into groups 674
Use join to combine two collections into one sequence 677
Jimmy saved a bunch of dough 678
Use semantic zoom to navigate your data 684
Add semantic zoom to Jimmy’s app 686
You made Jimmy’s day 691

The IDE’s Split App template helps you build apps
for navigating data 692

;\& Xxv

table of contents

events and delegates
What your code does when you’re not looking

Your objects are starting to think for themselves.

You can’t always control what your objects are doing. Sometimes things...happen. And
when they do, you want your objects to be smart enough to respond to anything that
pops up. And that’'s what events are all about. One object publishes an event, other
objects subscribe, and everyone works together to keep things moving. Which is great,

until you want your object to take control over who can listen. That's when callbacks will

come in handy.

Ever wish your objects could think for themselves? 702
But how does an object KNOW to respond? 702
When an EVENT occurs...objects listen 703
Border sets handled
oft B One object raises its event, others listen for it... 704
T ——— Then, the other objects handle the event 705
off | Connecting the dots 706
Ellipse sets handled The IDE generates event handlers for you automatically 710
The rectangle was pressed off l
i Generic EventHandlers let you define your own event types 716
The grid was pressed Rectangle sets handled
- . Windows Forms use many different events 717
e border was pressed off l
The panel was pressed One event, multiple handlers 718
Windows Store apps use events for
New IsHitTestVisible value process lifetime management 720
on i Add process lifetime management to Jimmy’s comics 721
XAML controls use routed events 724
Create an app to explore routed events 725
Connecting event senders with event listeners 730
A delegate STANDS IN for an actual method 731
Delegates in action 732
BallinPlay evep An object can subscribe to an event... 735
(Use a callback to control who’s listening 736
%// . A callback is just a way to use delegates 738
Qem_ ACS Justa way g
You can use callbacks with MessageDialog commands 740
Use delegates to use the Windows settings charm 742

table of contents

architecting apps With the mvvm pattern
Great apps on the inside and outside

Your apps need to be more than just visually stunning.

When you think of design, what comes to mind? An example of great building architecture?
A beautifully-laid-out page? A product that's as aesthetically pleasing as it is well
engineered? Those same principles apply to your apps. In this chapter you'll learn about
the Model-View-ViewModel pattern and how you can use it to build well-architected,
loosely coupled apps. Along the way you'll learn about animation and control templates
for your apps’ visual design, how to use converters to make data binding easier, and how

to pull it all together to lay a solid C# foundation to build any app you want.

The Head First Basketball Conference needs an app 746
But can they agree on how to build it? 747
Do you design for binding or for working with data? 748
MVVM lets you design for binding and data 749
Use the MVVM pattern to start building
the basketball roster app 750
User controls let you create your own controls 753
The ref needs a stopwatch 761
MVVM means thinking about the state of the app 762
Start building the stopwatch app’s Model 763
Events alert the rest of the app to state changes 764
Build the view for a simple stopwatch 765
Add the stopwatch ViewModel 766
Converters automatically convert values for binding 770
Converters can work with many different types 772
Visual states make controls respond to changes 778
Use DoubleAnimation to animate double values 779
Use object animations to animate object values 780
Build an analog stopwatch using the same ViewModel 781
UI controls can be instantiated with C# code, too 786
C# can build “real” animations, too 788
- Create a user control to animate a picture 789
w\ Make your bees fly around a page 790
oL . & Use ItemsPanel Template to bind controls to a Canvas 793
Congratulations! (But you’re not done yet...) 806

XXVii

table of contents

C# Lab 3

Invaders

In this lab you’ll pay homage to one of the most popular,
revered and replicated icons in video game history, a
game that needs no further introduction. It’s time to
build Invaders.

The grandfather of video games 808
And yet there’s more to do... 829

table of contents

bonus project!
uild a Windows Phone app

You’re already able to write Windows Phone apps.

Classes, objects, XAML, encapsulation, inheritance, polymorphism, LINQ, MVVM...
you’ve got all of the tools you need to build great Windows Store apps and desktop
apps. But did you know that you can use these same tools to build apps for
Windows Phone? It's true! In this bonus project, we’ll walk you through creating a
game for Windows Phone. And if you don’t have a Windows Phone, don’t worry—

you'll still be able to use the Windows Phone emulator to play it. Let’s get started!

Bee Attack! 832

Before you begin... 833

XXix

table of contents

appencli’x: leftovers

The top 11 things we wanted to include
in this book
The fun’s just beginning!

We’ve shown you a lot of great tools to build some really powerful software with C#. But

there’s no way that we could include every single tool, technology, or technique in this
book—there just aren’t enough pages. We had to make some really tough choices about
what to include and what to leave out. Here are some of the topics that didn’t make the
cut. But even though we couldn’t get to them, we still think that they’re important and

useful, and we wanted to give you a small head start with them.

#1. There’s so much more to Windows Store 846

#2. The Basics 848

Smethieiod ! #3. Namespaces and assemblies 854

et #4. Use BackgroundWorker to make your Winkorms responsive 858
EZEZZ:;:D:;g::;ﬂhwmvm sting tex) #5. The Type class and GetType() 861
#6. Equality, IEquatable, and Equals() 862

- - #7. Using yield return to create enumerable objects 865

#8. Refactoring 868

#9. Anonymous types, anonymous methods, and lambda expressions 870

b BackgroundWorker Example = B #10. LINQ to XML 879

= #11. Windows Presentation Foundation 874

o BackgroundWorker example [s559) Did you know that C# and the .NET Framework can... 875

[] Use BackgroundWorker

Go! Cancel

EN Developer Command Prompt for V52012

UserssPublicwDocuments>type HellolWorld.cs
F‘backglcund\-\"crker‘l w=ing System;
laszs Hellolorld {
public static void Maind{stringl]l args> {
s Console .WriteLine<{"Hello Yorld">;

sUzerssPublicsDocuments>csc HelloWorld.cs

icrosoft (R> Uiswal CH Compiler version 4.0.360317.17929
or Microszoft (RH> _NET Framework 4.5

opyright <G> Microsoft Corporation. All rights reserved.

sUserssPublicsDocuments>He 1loWorld.exe
ello World

sUserssPublicsDocuments >

XXX

how to use this book

Intro

I CAN'T BELIEVE
THEY PUT 7447 N A
C# PROGRAMMING

ev the burning O\ucs{',iont

C#: Yrog‘ramm'ms book?"

[n this settion, we answ

“So why _D_H‘) they put that in a

XXXi

how to use this

Who is this book for?

If you can answer “yes” to all of these:

@ Do you want to learn C#? -

Do you like to tinker—do you learn by doing, rather than
just reading?

Do you prefer stimulating dinner party conversation
to dry, dull, academic lectures?

this book is for you.

Who should probably back away from this book?
If you can answer “yes” to any of these:

Does the idea of writing a lot of code make you bored
and a little twitchy?

Are you a kick-butt C++ or Java programmer looking for
a reference book?

Are you afraid to try something different? Would
you rather have a root canal than mix stripes with
plaid? Do you believe that a technical book can’t be
serious if C# concepts are anthropomorphized?

this book is not for you.

L—No{:c \c\rom markc‘l:mg ‘{:hIS book 1S
for anyone with a evedit eard.]

XXXii

Do you know another
programming language,
and now you need to ramp
up on C#?

Are you already a good C#
developer, but you want to
learn more about XAML,
Model-View-ViewModel
(MVVM), or Windows Store
app development?

Do you want to get
practice writing lots of
code?

If so, then lots of people
just like you have used
this book to do exactly
those things!

No programming experiente

is rct\unrcd 4o use this book...
us{‘, euriosity and intevest!
Thousands l beginners with
no programming expeviente
have alveady used Head Fivst
C# +o |c8\rn 4o tode. That
tould be \/ou,

the intro

We know what you're thinking.

“How can #us be a serious C# programming book?”
“What’s with all the graphics?”

“Can I actually learn it this way?” Your brg

And we know what your brain is thinking. (

Your brain craves novelty. It’s always searching, scanning, waiting for
something unusual. It was built that way, and it helps you stay alive.

So what does your brain do with all the routine, ordinary, normal things
you encounter? Everything it can to stop them from interfering with

the brain’s real job—recording things that matter. It doesn’t bother
saving the boring things; they never make it past the “this is obviously
not important” filter.

How does your brain now what’s important? Suppose you’re out for
a day hike and a tiger jumps in front of you, what happens inside your
head and body?

Neurons fire. Emotions crank up. Chemicals surge.

GREAT- ONLY
700 MORE DULL,

DRY, BORING
PAGES.

And that’s how your brain knows. ..
This must be important! Don’t forget it!

oo Kninks
ouY

THIS isn b YO g
savndy

But imagine you’re at home, or in a library. It’s a safe, warm, tiger-free zone.
You're studying. Getting ready for an exam. Or trying to learn some
tough technical topic your boss thinks will take a week, ten days at
the most.

Just one problem. Your brain’s trying to do you a big favor. It’s trying
to make sure that this obviously non-important content doesn’t clutter
up scarce resources. Resources that are better spent storing the really
big things. Like tigers. Like the danger of fire. Like how you should
never have posted those “party” photos on your Facebook page.

And there’s no simple way to tell your brain, “Hey brain, thank you
very much, but no matter how dull this book is, and how little 'm
registering on the emotional Richter scale right now, I really do want
you to keep this stuff’ around.”

you are here » XXXiii

XXXiV

how to use this book

We think of a “Head First’ reader as a learner.

So what does it take to learn something? First, you have to getit, then make sure
you don’t forgetit. It's not about pushing facts into your head. Based on the
|atest research in cognitive science, neurobiology, and educational psychology,

learning takes a lot more than texton a page. We know what turns your brain on.
some of the Head First learning principles:

Make it visual. Images are far more memorable than words alone, and
make learning much more effective (up to 89% improvement in recall and
transfer studies). It also makes things more understandable. Put the

words within or near the graphics they relate to, rather than on
the bottom or on another page, and learners will be up to twice as likely to
solve problems related to the content.

Use a conversational and personalized style. In recent studies,
students performed up to 40% better on post-learning tests if the content spoke
directly to the reader, using a first-person, conversational style rather than
taking a formal tone. Tell stories instead of lecturing. Use casual language.
Don't take yourself too seriously. Which would you pay more attention to:a
stimulating dinner party companion, ora lecture?

Get the learner to think more deeply. In other words, unless you
actively flex your neurons, nothing much happens in your head. A reader

has to be motivated, engaged, curious, and inspired to solve problems, draw
conclusions, and generate new knowledge. And for that, you need challenges,
exercises, and thought-provoking questions, and activities that involve both
sides of the brain and multiple senses.

Get—and keep—the reader’s attention. we've all had the”l really want to learn this but
| can't stay awake past page one” experience. Your brain pays attention to things that are out of
the ordinary, interesting, strange, eye-catching, unexpected. Learning a new, tough,
technical topic doesn't have to be boring. Your brain will learn much more quickly if

%\ it's not.

Touch their emotions. We now know that your ability to remember
something is largely dependent on its emotional content. You remember what
you care about. You remember when you feel something. No, we're not talking
heart-wrenching stories about a boy and his dog. We're talking emotions like
surprise, curiosity, fun, “what the...?", and the feeling of “l Rule!” that comes when
you solve a puzzle, learn something everybody else thinks is hard, or realize you
know something that “'m more technical than thou” Bob from engineering doesn't.

the

Metacognition: thinking about thinking

If you really want to learn, and you want to learn more quickly and more deeply,

I WONDER
HOW I CAN TRICK
MY BRAIN INTO
REMEMBERING
THIS STUFF...

pay attention to how you pay attention. Think about how you think. Learn how you
learn.

Most of us did not take courses on metacognition or learning theory when we were
growing up. We were expected to learn, but rarely taught to learn.

But we assume that if you’re holding this book, you really want to learn how to %
build programs in C#. And you probably don’t want to spend a lot of time. If you @
want to use what you read in this book, you need to remember what you read. And “Hiy
for that, you’ve got to understand it. To get the most from this book, or any book or
learning experience, take responsibility for your brain. Your brain on #us content.

The trick is to get your brain to see the new material you're learning
as Really Important. Crucial to your well-being. As important as a
tiger. Otherwise, you're in for a constant battle, with your brain doing
its best to keep the new content from sticking.

So just how DO you get your brain to treat C# like
it was a hungry tiger?

There’s the slow, tedious way, or the faster, more effective

way. The slow way 1s about sheer repetition. You obviously
know that you are able to learn and remember even the dullest
of topics if you keep pounding the same thing into your brain. With

enough repetition, your brain says, “This doesn’t feel important to him, but he
keeps looking at the same thing over and over and over, so I suppose it must be.”

The faster way is to do anything that increases brain activity, especially different
types of brain activity. The things on the previous page are a big part of the solution,
and they’re all things that have been proven to help your brain work in your favor. For
example, studies show that putting words within the pictures they describe (as opposed to
somewhere else in the page, like a caption or in the body text) causes your brain to try to
makes sense of how the words and picture relate, and this causes more neurons to fire.
More neurons firing = more chances for your brain to get that this is something worth
paying attention to, and possibly recording.

A conversational style helps because people tend to pay more attention when they
perceive that they’re in a conversation, since they’re expected to follow along and hold up
their end. The amazing thing is, your brain doesn’t necessarily care that the “conversation”
is between you and a book! On the other hand, if the writing style is formal and dry, your
brain perceives it the same way you experience being lectured to while sitting in a roomful
of passive attendees. No need to stay awake.

But pictures and conversational style are just the beginning,

XXXV

how to use this book

Hel'e's Whaf WE did: il i

defies the layout of the house.

We used pictures, because your brain is tuned for visuals, not text. As far as your
brain’s concerned, a picture really s worth a thousand words. And when text and o] B

~ A
pictures work together, we embedded the text i the pictures because your brain Wﬁ
. om ua
works more effectively when the text is within the thing the text refers to, as opposed i \ o]

to in a caption or buried in the text somewhere. ’R Yo

We used redundancy, saying the same thing in different ways and with different media types, el > BER
and multiple senses, to increase the chance that the content gets coded into more than one area
of your brain.

We used concepts and pictures in unexpected ways because your brain is tuned for novelty,
and we used pictures and ideas with at least some emotional content, because your brain

is tuned to pay attention to the biochemistry of emotions. That which causes you to _feel
something is more likely to be remembered, even if that feeling is nothing more than a little
humor, surprise, or interest.

We used a personalized, conversational style, because your brain is tuned to pay more
attention when it believes you’re in a conversation than if it thinks you’re passively listening
to a presentation. Your brain does this even when you’re reading.

We included dozens of activities, because your brain is tuned to learn and remember more
when you do things than when you read about things. And we made the paper puzzles and
code exercises challenging-yet-do-able, because that’s what most people prefer.

We used mudtiple learning styles, because you might prefer step-by-step procedures,
while someone else wants to understand the big picture first, and someone else just

wants to see an example. But regardless of your own learning preference, everyone % BULLET POINTS

benefits from seeing the same content represented in multiple ways.

We include content for both sides of your brain, because the more of your brain you

engage, the more likely you are to learn and remember, and the longer you can stay focused.

Since working one side of the brain often means giving the other side a chance to rest, you

can be more productive at learning for a longer period of time. Fireside Chats

And we included stories and exercises that present more than one point of view,
because your brain is tuned to learn more deeply when it’s forced to make evaluations and
judgments.

We included challenges, with exercises, and by asking questions that don’t always have

a straight answer, because your brain is tuned to learn and remember when it has to work at
something, Think about it—you can’t get your body in shape just by watching people at the
gym. But we did our best to make sure that when you’re working hard, it’s on the 7ght things.
That you’re not spending one extra dendrite processing a hard-to-understand example,
or parsing difficult, jargon-laden, or overly terse text.

We used people. In stories, examples, pictures, ctc., because, well, because you’re a person.
And your brain pays more attention to people than it does to things.

XXXVi intro

Cut +this out and stiek it

on Your refrigerator.

Slow down. The more you understand,
the less you have to memorize.

Don’t just read. Stop and think. When the
book asks you a question, don’t just skip to the
answer. Imagine that someone really s asking
the question. The more deeply you force your
brain to think, the better chance you have of
learning and remembering,

Do the exercises. Write your own notes.

We put them in, but if we did them for you,
that would be like having someone else do
your workouts for you. And don’t just look at
the exercises. Use a pencil. There’s plenty of
evidence that physical activity w/z/e learning
can increase the learning.

Read the “There are No Dumb Questions”

That means all of them. They’re not optional
sidebars—they’re part of the core content!
Don’t skip them.

Make this the last thing you read before

bed. Or at least the last challenging thing.

Part of the learning (especially the transfer to
long-term memory) happens g/ you put the
book down. Your brain needs time on its own, to
do more processing. If you put in something new
during that processing time, some of what you
just learned will be lost.

Drink water. Lots of it.

Your brain works best in a nice bath of fluid.
Dehydration (which can happen before you ever
feel thirsty) decreases cognitive function.

the

Here’s what YOU can do to bend
your brain into submission

So, we did our part. The rest is up to you. These tips are a
starting point; listen to your brain and figure out what works
for you and what doesn’t. Try new things.

@ Talk about it. Out loud.

Speaking activates a different part of the brain.
If you’re trying to understand something, or
increase your chance of remembering it later, say
it out loud. Better still, try to explain it out loud
to someone else. You’ll learn more quickly, and
you might uncover ideas you hadn’t known were
there when you were reading about it.

Listen to your brain.

Pay attention to whether your brain is getting
overloaded. If you find yourself starting to skim
the surface or forget what you just read, it’s time
for a break. Once you go past a certain point, you
won'’t learn faster by trying to shove more in, and
you might even hurt the process.

Feel something.

Your brain needs to know that this matters. Get
involved with the stories. Make up your own
captions for the photos. Groaning over a bad joke
is still better than feeling nothing at all.

Write a lot of software!

There’s only one way to learn to program: writing
a lot of code. And that’s what you’re going to do
throughout this book. Coding is a skill, and the only
way to get good at it is to practice. We’re going to
give you a lot of practice: every chapter has exercises
that pose a problem for you to solve. Don’t just skip
over them—a lot of the learning happens when

you solve the exercises. We included a solution to
each exercise—don’t be afraid to peek at the
solution if you get stuck! (It’s easy to get snagged on
something small.) But try to solve the problem before
you look at the solution. And definitely get it working
before you move on to the next part of the book.

XXXVii

The screenshots in this book match Visual Studio
2012 Express Edition, the latest free version
available at the time of this printing. We’ll keep future
printings up to date, but Microsoft typically makes

how to use this

Wha‘r vou “eed fOl’ ‘rhis bOOk: older versions available for download.

We wrote this book using Visual Studio Express 2012 for Windows 8 and Visual Studio Express 2012 for
Windows Desktop. All of the screenshots that you see throughout the book were taken from those two editions

of Visual Studio, so we recommend that you use them. You can also use Visual Studio 2012 Professional, Premium,
Ultimate or Test Professional editions, but you’ll see some small differences (but nothing that will cause problems with
the coding exercises throughout the book).

— SETTING UP VISUAL STUDIO 2012 EXPRESS EDITIONS

% You can download Visual Studio Express 2012 for Windows 8 for free from Microsoft's website. It installs cleanly alongside
other editions, as well as previous versions: http://www.microsoft.com/visualstudio/eng/downloads

© Visual Studio Express 2012 for Windows Desktop

. « Visual Studio 2012 Express for Windows Desktop Visual Studio 2012 Express for Window
liek the “[nstall Language Pack
ez
»). You can use Visual Studio Express 2012 for Windows Desktop to R d H

Now link ‘{',O launth build powerful desktop apps in C#, Visual Basic, and C++. You can The Vistal Stidio Express2012 oy wWindows ‘Vl sual Studio

h b . “ target client technologies such as Windows Presentation Foundation Pack is a free add-on that you can use to swi
'{3 e we IV\S{',a evr (WPF), Windows Forms, and Win32. After installation, you can try this e e et e g) e

) e 00 DR TR I G @ A e E ss 2012 for Windows 8
W"\lCh au{‘,oma‘tldal l\/ sl e i i das Important: Beforc installing this Language Pal
KB Article here.

down|oads and System requirements

Download language

installs Visual Studio. Download language Cosls]

English v/

Installation options
Installation options

Visual Studio 2012 Express for Windows Desktop - English
@ Install now
o
Visual Studio 2012 Express for Windows Desi

Pack - Cesky

\/OM‘“ aISO hCCd {:O Visual Studio 2012 Express for Windows Desktop - English Dealead o
Download now
genevate a product key, n ‘
L
which is free for the v

Alter installation, you can Uy this product for up Lo 30
EXPV’CSS Cd-lfthS (buf ::yg;:;uulsweu::tl:rqji;tzg:’iobtam afree product key for
vequives You to treate a

Register now
Mi(,\roso(:{:.aom attount).

% Once you've got it installed, you'll need to do the same thing for Visual Studio Express 2012 for Windows Desktop.

What to do if you don’t have Windows 8 or can’t run Visual Studio 2012

Many of the coding exercises in this book require Windows 8. But we definitely understand that some of our readers
may not be running it—for example, a lot of professional programmers have office computers that are running
operating systems as old as Windows 2003, or only have Visual Studio 2010 installed and cannot upgrade it. If you’re
one of these readers, don’t worry—you can still do almost every exercise in this book. Here’s how:

* The exercises in chapters 3 through 9 the first two labs do not require Windows 8 at all. You’ll even be able to
do them using Visual Studio 2010 (and even 2008), although the screenshots may differ a bit from what you see.

% For the rest of the book, you’ll need to build Windows Presentation Foundation (WPF) desktop
apps instead of Windows 8 apps. We’ve put together a PDF that you can download from the Head First Labs
website (http://headfirstlabs.com/hfesharp) to help you out with this. Flip to leflover #11 in the appendix to learn more.

XXXViii

Read me

This 1s a learning experience, not a reference book. We deliberately stripped out
everything that might get in the way of learning whatever it is we’re working on at
that point in the book. And the first time through, you need to begin at the beginning,
because the book makes assumptions about what you've already seen and learned.

The activities are NOT optional.

The puzzles and activities are not add-ons; they’re part of the core content of the book.
Some of them are to help with memory, some for understanding, and some to help you
apply what you've learned. Don’t skip the written problems. The pool puzzles are
the only things you don’t iave to do, but they’re good for giving your brain a chance to
think about twisty little logic puzzles.

The redundancy is intentional and important.

One distinct difference in a Head First book is that we want you to really get it. And we
want you to finish the book remembering what you’ve learned. Most reference books
don’t have retention and recall as a goal, but this book is about learning, so you’ll see
some of the same concepts come up more than once.

Do all the exercises!

The one big assumption that we made when we wrote this book is that you want to
learn how to program in C#. So we know you want to get your hands dirty right away,
and dig right into the code. We gave you a lot of opportunities to sharpen your skills

by putting exercises in every chapter. We've labeled some of them “Do this!”—when
you see that, it means that we’ll walk you through all of the steps to solve a particular
problem. But when you see the Exercise logo with the running shoes, then we’ve left
a big portion of the problem up to you to solve, and we gave you the solution that we
came up with. Don’t be afraid to peek at the solution—it’s not cheating! But you’ll
learn the most if you try to solve the problem first.

We’ve also placed all the exercise solutions’ source code on the web so you can download
it. You’ll find it at http://www.headfirstlabs.com/books/hfcsharp/

The “Brain Power” questions don’t have answers.

For some of them, there is no right answer, and for others, part of the learning
experience of the Brain Power activities is for you to decide if and when your answers
are right. In some of the Brain Power questions you will find hints to point you in the
right direction.

the intro

We use a lot of diagrams Yo
make tough tontepts easier

to uv\dc\’S{'za"d' Q

You should do ALL of the
“Charpen Yyour penti

I’ activities
Q%warpen your pencil
2N

Activities marked with the
Exertise (running shoe) loao

are really im I
skip ther, y Portant! Don’t

N)
1T You're serious

about learnins C#.

1€ you see the Pool Puzzle loso,
the aL{:'Ni{:\/ is oy{iona\, -and \
You don't like {‘,wis{:\/ \oglc, you
wor't like these either.

XXXiX

you are here »

the review team

The technical review team
Lisa Kellner

Not Pid{:wcd (but \)us‘[‘,
as awesome are the
veviewers from previous
editions): Joe Albaha\ri,
Jay Hilyard, Aayam
Singh, Theodore, Peter
Ritehie, Bill Meitelski
And\/ Parkev, Wayne
Bvadnc\/, Dave Muvdoth,
Bridgette Julie
Landers, Nick Paldino,
David Sterling. Special
thanks to vreader Alan
Ouellette and our other
veaders who let us

know about issues that
slipped ‘{:hrough QC for
the first and setond
editions.

Johnhy H-ahpc

Technical Reviewers:

The book you’re reading has very few errors in it, and give a lot of credit for its high quality to some great technical
reviewers. We’re really grateful for the work that they did for this book—we would have gone to press with errors
(including one or two big ones) had it not been for the most kick-ass review team EVER....

First of all, we really want to thank Lisa Kellner—this is our ninth (!) book that she’s reviewed for us, and she made a
huge difference in the readability of the final product. Thanks, Lisa! And special thanks to Chris Burrows, Rebeca
Dunn-Krahn, and David Sterling for their enormous amount of technical guidance, and to Joe Albahari and Jon
Skeet for their really careful and thoughtful review of the first edition, and Nick Paladino who did the same for the

second edition.

Chris Burrows is a developer at Microsoft on the C# Compiler team who focused on design and implementation of
language features in C# 4.0, most notably dynamic.

Rebeca Dunn-Krahn is a founding partner at Semaphore Solutions, a custom software shop in Victoria, Canada,
that specializes in .NET applications. She lives in Victoria with her husband Tobias, her children, Sophia and Sebastian,
a cat, and three chickens.

David Sterling has worked on the Visual C# Compiler team for nearly three years.

Johnny Halife is a Chief Architect & Co-Founder of Mural.ly (http://murally.com), a web start-up that allows people
to create murals: collecting any content inside them and organizing it in a flexible and organic way in one big space.
Johnny’s a specialist on cloud and high-scalability solutions. He’s also a passionate runner and sports fan.

x| intro

the

Acknowledgments

Our editor:

We want to thank our editor, Courtney Nash, for editing this
book. Thanks!

Cou\r‘{:hc\/ Nash

The O’Reilly team:

=
-~

There are so many people at O’Reilly we want to thank that we hope we don’t
forget anyone. Special Thanks to production editor Melanie Yarbrough,
indexer Ellen Troutman-Zaig, Rachel Monaghan for her sharp
proofread, Ron Bilodeau for volunteering his time and preflighting expertise,
and for offering one last sanity check—all of whom helped get this book from
production to press in record time. And as always, we love Mary Treseler,
and can’t wait to work with her again! And a big shout out to our other
friends and editors, Andy Oram, Mike Hendrickson, Laurie Petryki,
Tim O’Reilly, and Sanders Kleinfeld. And if you’re reading this book
right now, then you can thank the greatest publicity team in the industry:
Marsee Henon, Sara Peyton, and the rest of the folks at Sebastopol.

xli

safari

Safari® Books Online

S a f a rl Safari Books Online is an on-demand digital library that lets you easily search over 7,500

. technology and creative reference books and videos to find the answers you need quickly.
Books Online

With a subscription, you can read any page and watch any video from our library online. Read books on your cell
phone and mobile devices. Access new titles before they are available for print, and get exclusive access to manuscripts
in development and post feedback for the authors. Copy and paste code samples, organize your favorites, download
chapters, bookmark key sections, create notes, print out pages, and benefit from tons of other time-saving features.

O’Reilly Media has uploaded this book to the Safari Books Online service. To have full digital access
to this book and others on similar topics from O’Reilly and other publishers, sign up for free at
hitp://my.safaribooksonline.com/?portal=oreilly.

xlii

1 start building with c#

Build something cool, fast!

I’'M READY FOR A
WiLD RIDE!

fo2ge: o | B or

Want to build great apps really fast?

With C#, you've got a great programming language and a valuable tool at
your fingertips. With the Visual Studio IDE, you’ll never have to spend hours
writing obscure code to get a button working again. Even better, you'll be able
to build really cool software, rather than remembering which bit of code was
for the name of a button, and which one was for its /abel. Sound appealing?

Turn the page, and let’s get programming.

this is a new chapter

c# makes it

H
Why you should learn C S The Do Vinal Sidie ntegoted

Development Environment—is an

C# and the Visual Studio IDE make it easy for you to get to the business }

of writing code, and writing it fast. When you’re working with C#, the important part of working in C#. [tsa

IDE is your best friend and constant companion. program that helps you edit Your ¢ode,
manage Your files, and submit your apps

to the Windows Store.

Here’s what the IDE automates for you...

Every time you want to get started writing a program, or
just putting a button on a page, your program needs a
whole bunch of repetitive code.

Private void Tnitimps
; i InltlallzeComponent()

this.buttoni =
= new
;I/us.suspendLayout(

System.wi
59 1ndows.FormsAButton():

// buttonl
//

this.button]
P -Location = -
this.buttonl Name :Oﬁbutgsglfystem.prawi

this.button] ;
i nl.Size = noy gob
this.buttonl TapIngey o of°toM-Drawing.size (75, 23,

El}:is.guttonl.Text = "buttoni"
is.bt U i g :
thls,b:EEgs%Agf"eVlsualSt)deEaCkCOlor = true;
e -Click += pey SystemAEventHangfér(t‘ is.b
1 fNls.buttonl Click);

ng.Point (105, sg);

using Systems 1lections.Generici

si system.Co e
‘:;i?xg Sistem.windawsforms,

namespace }\JNekarogram

{ static class P

// Forml
//

this.Autoscal
N eDimen, -
thlS-AUf_lOScaleMode ilOnS ~ hew System.Dr,

rogramn

the application-

{
<summary> .
//é// Tli: main entry point for
/] </summary>
sTAThread]
étatic void Main()

walstyles ()i ;
St?i}l;”trgxilzendemngnefaulc (false)
Forml ()) 7

tion.EnableVi
ion.SetCompa
n.Run (new

Applica
applicat
Applicatlo

<
It takes 3| this tode Just 4o draw
a button in a window. Adding a
bun,ch of visual elements 4o 3 Page
tould take |0 times as muth ¢ode.

What you get with Visval Studio and C=...

With a language like C#, tuned for Windows
programming, and the Visual Studio IDE, you can focus

The vesult i a better_

on what your program is supposed to do immediately:
’ookiha app that Lakes
€S Time to write.

/—\ A

© Let's get started!

3
&
Vi a\do\ NET Framework
Isu " solutions How good?
C#, the NET Framework, —> @co @uue Qe
2 the Visudl St IDE : "
vebuilt structures —
:;‘:{:Yhand\c the tedious -
Exciternent Boredom Brain

) most
tode that's \’ijcko'\c 0s .. \/V on B on on

programming 145 ¢

D ata acceSS

start

C# and the Visval Studio IPDE make
lots of things easy

When you use C# and Visual Studio, you get all of
these great features, without having to do any extra

work. Together, they let you:

©

Build an application, FAST. Creating programs in C# is a snap. The
language is flexible and easy to learn, and the Visual Studio IDE does a lot of
work for you automatically. You can leave mundane coding tasks to the IDE
and focus on what your code should accomplish.

Design a great-looking user interface. The Visual Designer in the
Visual Studio IDE is one of the easiest-to-use design tools out there. It

does so much for you that you’ll find that creating user interfaces for your
programs is one of the most satisfying parts of developing a C# application.
You can build full-featured professional programs without having to spend
hours writing a graphical user interface entirely from scratch.

Build visually stunning programs. When you combine C# with
XAML, the visual markup language for designing user interfaces, you’re
using one of the most effective tools around for creating visual programs...
and you’ll use it to build software that looks as great as it acts.

Focus on solving your REAL problems. The IDE does a lot for you, but you
are still in control of what you build with C#. The IDE lets you just focus on your
program, your work (or fun!), and your users. It handles all the grunt work for you:

* Keeping track of all your projects

* Making it easy to edit your project’s code

* Keeping track of your project’s graphics, audio, icons, and other resources
* Helping you manage and interact with your data

All this means you’ll have all the time you would’ve spent doing this routine
programming to put into building and sharing killer apps.

'\ You've going to see exattly

what we mean next.

with c#

#

aApps

fet's get started I€ you don't see this option, You might be rvmv:ing
Visual Studio 2012 Lor Windows Desktop- You'll

| i H exi E and launth Visual Studio
What you do in Visval Studio... need to exit that [DE and huré

Express 2012 for Windows 8.
Go ahead and start up Visual Studio for Windows 8, if you haven’t already. Skip over the start page and select NCZ)
Project from the File menu. There are several project types to choose from. Expand Visual C# and Windows

Store, and select Blank App (XAML). The IDE will create a folder called Visual Studio 2012 in your Documents folder,
and put your applications in a Projects folder under it (you can use the Location box to change this).

New Project ?

Things may
- look a bit
Watch it' different in
. your IDE.
© This is what the New
Project window looks
like in Visual Studio for
Windows 8 Express
Edition. If you’re using
the Professional or Team
Foundation edition, it
might be a bit different. But
don’t worry, everything still
works exactly the same.

What Visval Studio does for you... Make sure that you save your praject

as soon as You tveate it by selecting

As soon as you save the project, the IDE creates a bunch of files, including Save All from the File menu—thatl
MainPage.xaml, MainPage. Xaml.cs, and App.xaml.cs, when you create a new save all of the pro\)cc{: files out to
project. It adds these to the Solution Explorer window; and by default, puts the folder. |£ You seleet Save, it Jus{;
those files in the Projects \App 1 \App1 folder. CH tode that saves the one \IOu’y-c working on.
o
This file contains the XAML Thc{; ols the main
. tonty . .
o ;\c o ?:ci:‘“ ﬂ\c - Ya?)c’s behavior This £ile Contains the (4t
i a age.)
intertate o e main pay lives heve- Codc. that’s Yun when the
\j/ 3PP is launthed o vesumed.

MainPage.Xaml.cs
MainPage.xaml App.xaml.cs
S—_ Visual Studio ereates all three of
these files automatically. [t ereates
seveval other files as welll You can see
4 them in the Solution Explorer window.

T harpen Your pencil

2N

start building with c#

Just a couple more steps and your screen will match the picture below. First, make sure you open
the Toolbox and Error List windows by choosing them from the View menu. Next, select the Light

color theme from the Options menu. You should be able to figure out the purpose of many of

these windows and files based on what you already know. Then, in each of the blanks, try to fill in
an annotation saying what that part of the IDE does. We've done one to get you started. See if you
can guess what all of these things are for.

This ’{:oo’bav- has
buttons that
apply to what

) o - E o
You're turrent|

w App1 - Microsoft Visual Studio Express 2012 for Windows 8
FLE EDIT MEW PROECT BULD DEBUG TEAM DESIGN FORMAT TOOLS STORE TEST WINDOW HELP

Quick Launch (Ctri+Q)

P Local Machine - Debug - Any CPU - A

p -

We've blown up this
window below so you

have movre vroom.

a2 x

& Toolbox v 8 X |MainPagexaml % X Appxaml.cs b/ solution Explorer S
d . N 5 search Toolbox P- @ o-end@ o ‘
Olhs n -‘:hc IDE 2« Common XAML Controls = — =
© g [x Ppointer o
- e 1] Solution 'AppT' (1 project]
2 order 4 @ Appt
@ Butien b & Properties
CheckBox b = References
B ComboBox b Assets
@ Flipview b i Common
o Gid b I Appaaml
B Gridvi £ App1_TemporaryKey.phx
& Grdview > [8) MainPagexami
B image B Pockage appxmanifest
Bl Listiew
© RadioButton
OO Rectangle
StackPanel
..................... TedBlock
TedBox
4 All KAML Cantrols
..................... N e . -
51 AppBar 38a7% v mE @i [H] <) | Properties 1
E PP QDesign 11 mxaml B MEJEl MainPageaml File Properties
Border
..................... Eicpage + e
@ Button : pP1.MainPage” =
Canvas p://schemas . microsoft.con/winfyf2006/xanl/presentation” B Advanced
..................... o CaptureElement &/ /schenas.wicrosoft. con/sjfit/2008/ xanl léu\\dA(t;un , ;age
="using:App. opy to Output Director Do not copy
CheckBox ttp://schemas. microsoft. copflexpression/blend/2008" e — MSBuild:Compile
..................... B Combobox i/ achenas.cpemnlfonfits org/narkup-compatisility 2006 e
&1 ContentControl e="d™> B Misc
______ 7 ContentPresenter <Grid Background="{StaticResourgl ApplicationPageBackgroundThemeBrush}"> File Name MainPage.aml
""""""" O Hiipse B Full Path C\Users\Public\Documents\Vipual &
@ FlipView e
.............. B frame Gl = 1 =
e # Gid v- Search Eror List p-
§ Gridview Description File a Line & |Colu.. = Project o
..................... @ HyperinkButton) .
B e [£ you don't see the Evvor List or
Advanced

O ltemsControl

© temsPresenter
Toolbox | Device

R

Error List Clut

Solution Explorer

The streenshot on page & s
in the Davk ctolor theme.

® o-eudd o &R

Search Sclution Explorer (Ctrl+;) P~
fa] Solution 'App1' (1 project)
4 App1

b J Properties

[=W References

bl Assets

] [> ’ﬁ Common

b Y Appaxaml

& Appl_TemporaryKey.pfx
b W MainPagexaml
Package.appxmanifest

Toolbox, thoose them from the View menu.

\ We switched to the Light color
‘ theme because it’s easier
to see light screenshots in
a book. If you like it, pick
“Options...” from the Tools
menu, expand Environment,
and click on General to change
it (feel free to change back).

you are here »

know your ide

% harpen your pencil

This toolbay has buttons

b Solution

We've filled in the annotations about the different sections of the Visual

Studio C# IDE. You may have some different things written down, but you

section of the IDE is used for.

that apply to what You've
Curvently doing in the [DE.

This is the
+oolbox. [t

has a bunth of .
visual tontrols

that You tan

dvag onto your

‘735&

This Brvor List win

M App1 - Microsoft Visual Studio Express 2012 for Windows 8
FLE EDIT VEW PROJECT BULD DEBUG TEAM DESIGN FORMAT JTOOLS STORE TEST WINDOW HELP

Quick Launch (Ctri+Q)

should have been able to figure out the basics of what each window and

<

s This window
shows \7“°\7c“{.‘.‘Cs
of whatever is
curcently selected

e - B o B LocalMachine ~ Debug -~ AnyCPU - A 5
& Toolbox ~ B X MainPagesxaml B X Appxamles 8, Solution Explorer
5 SearchToolbox P~ ® o-2ud®m o &R
palcemmon AMToatuL R Search Solution Explorer (Ctrls;) P~
Sk Pointer -
= 5] Solution 'App1’ (1 project)
7 H Border + & Appt
Q@ Button D & Properties
CheckBox b m References
B ComboBox D Assets
FlipView bl Common
- b D Appaaml
£ App1_TemporaryKey.pfx
¢ G b [B) MainPage.xaml
B Image K3 Package.appxmanifest
B Listview
@ RadioButton
O Rectangle
StackPanel
TenBlock
[TedBox
Al XAML Controls
X Pointer M
&1 AppBar s87% - mE 12 [F] « » | Properties -
Gl e 0 Design MEJE MainPage:xaml File Propeties
H Border "
Si<page *|[En
@ Button N d
Canvas B Advanced
© CaptureElement i“"“ A“:" 0 ;age
CheckBox apy to Output Director. Do not copy
oo Custom Tool MSBuilc: Compile
B Embds Custom Tool Namespac
&1 ContentControl B
P ContentPresenter <Grid Background="{staticResourfe ApplicationPageBackgroundThemesrush}"> File Name MainPageaaml
© EHlipse . , Full Path C:\Users\Public\Documents\V
@ FlipView L5 o
B Frame Error List X%
Grid Y- Search Error List p-
ol Description file & Line a Colu. Project &
HyperlinkButton) .
B £ you don't see the Evvor List or
<> ltemsControl Advanced
© ItemsPresenter e 8
e [SR o Toolbox, thoose them from the View menu.

dow shows

ou when theve ave exvors in

our Codc-

This pane will show

lots 01(: d'\agnosﬁc 'm(:o abou{ .

Your avy:

The XAML and C# Files

that {he IDE treated Lo D
You when yo added the e
Project appear i, the S .
*plorer, lop

O'{Zhﬂ' f;lcs in

6

G e-endid o &R
Search Solution Explorer (Ctrl+;)

fa] Solution 'App1' (1 project)

4 App1

Properties

=B References

B Assets

B Commeon

I Appxaml

&= Appl_TemporaryKey.pfx

°IU{:ion

9 with any

Your $°’U‘(:ion‘

Vv v

. 0

Package.appxmanifest

Chapter 1

in \Jour designer:

See this little
pushpin icon?

If you click it,
you can turn
auto-hide on or
off. The Toolbox
window has
auto-hide turned
on by defaulit.

)@u €an swite), between
iles using {he Solution

Explover in the D

Q} So if the IDE writes all this code
for me, is learning C# just a matter of
learning how to use the IDE?

A: No. The IDE is great at automatically
generating some code for you, but it can
only do so much. There are some things it's
really good at, like setting up good starting
points for you, and automatically changing
properties of controls on your forms. But
the hard part of programming—figuring out
what your program needs to do and making
it do it—is something that no IDE can do
for you. Even though the Visual Studio IDE
is one of the most advanced development
environments out there, it can only go so far.
It's you—not the IDE—who writes the code
that actually does the work.

Q: What if the IDE creates code | don’t
want in my project?

A: You can change it. The IDE is set up to
create code based on the way the element
you dragged or added is most commonly
used. But sometimes that's not exactly what
you wanted. Everything the IDE does for
you—every line of code it creates, every file
it adds—can be changed, either manually by
editing the files directly or through an easy-
to-use interface in the IDE.

Q} Is it OK that | downloaded and
installed Visual Studio Express? Or do

I need to use one of the versions of
Visual Studio that isn’t free in order to do
everything in this book?

AZ There’s nothing in this book that you
can'’t do with the free version of Visual Studio
(which you can download from Microsoft's
website). The main differences between
Express and the other editions aren’t going
to get in the way of writing C# and creating
fully functional, complete applications.

therejare no
Dumb Questions

Q} You said something about
combining C# and XAML. What is XAML,
and how does it combine with C#?

A: XAML (the X is pronounced like Z, and
it rhymes with “camel”) is a markup language
that you'll use to build your user interfaces for
your full-page Windows Store apps. XAML is
based on XML (which you'll also learn about
later in the book), so if you've ever worked
with HTML you have a head start. Here’s an
example of a XAML tag to draw a gray ellipse:

<Ellipse Fill="Gray"
Height="100" Width="75"
/>

You can tell that that's a tag because it starts
with a < followed by aword (‘E11ipse”),
which makes it a start tag. This particular
E11lipse tag has three properties: one to
set its fill color to gray, and two to set its height
and width. This tag ends with />, but some
XAML tags can contain other tags. We can
turn this tag into a container tag by replacing
/> with a >, adding other tags (which can
also contain additional tags), and closing it
with an end tag that looks like this:
</Ellipse>.Youlllearn alot more
about how XAML works and the different XAML
tags throughout the book.

Q: I’'m looking at the IDE right now,
but my screen doesn’t look like yours! It’s
missing some of the windows, and others
are in the wrong place. What gives?

A: If you click on the Reset Window
Layout command under the Window menu,
the IDE will restore the default window layout
for you. Then you can use the View—Other
Windows menu to make your screen look
just like the ones in this chapter.

start building with c#

Visual Studio will

generate code
you can use as a
starting Point for
your applications.

Malcing sure the
app does what
it'’s supposec[to
do is entirely up

to you.

you are here » 7

if only humans weren’t so delicous

Aliens attack!

Well, there’s a surprise: vicious aliens have launched a full-scale attack
on planet Earth, abducting humans for their nefarious and unspeakable
gastronomical experiments. Didn’t see that coming!

- %
-

g £\ Uhh ohl Aliens

o O

are beaming up

humans. Not 500(1! : E

08
) ML

Only you can help save the Earth

The last hopes of humanity rest on your shoulders! The
people of planet Earth need you to build an awesome C#
app to coordinate their escape from the alien menace. Are
you up to the challenge?

Save the Humans

Move and move evil aliens
will £ill up the seveen. £
You drag your human i;\{:o
one, “ﬁamc over, man!

Drag the huma:\/in‘f;o the
target before the timer at the
bottom of the page vuns out.

s
N

Our greatest human scientitic
minds have invented Protective

interdimensional Jiamond-shape&
portals to protect the human race.

It's up to YOU to SAVE THE
HUMANS l)y ggidllg them sa{ely

to their target portals,

start building with c#

Don't drag
your human
too quickly or

\/ou'll lose him.

you are here » 9

here’s your goal

GRAB A CUP OF

COFFEE AND SETTLE IN!

YOU'RE ABOUT TO REALLY PUT

THE IDE THROUGH ITS PACES,

AND BUILD A PRETTY COOL
PROJE

Heres what youte going to build

You're going to need an application with a graphical user
interface, objects to make the game work, and an executable to o
run. It sounds like a lot of work, but you’ll build all of this over
the rest of the chapter, and by the end you’ll have a pretty good
handle on how to use the IDE to design a page and add C# code.

By the end of this
chay{‘,cr, \/ou’" know your
way avound the IDE,
and have a good head
start on wri{‘,ing tode.

Here’s the structure of the app we’re going to create:

. The 4
o Lhat has 3 ma™ PP uses conty
ol b bildnd 08 S e onite o provide g
ge with 3 bun " the player.

XAML Main Page

and Containers (' Windows Ul

Controls The app uses these tontrols

/ to draw the target the
. human is dragaed to and the
tountdown timer displa\/.

4

The Target
timer thetks the
ProgressBar’s
properties to
see if the player
van out o«c Lime.

Eath human that
o the player has

to save is drawn
using @ StackPanel,
. hich eontains
' £ the main pade e
\{ofﬁ ! \:\I;‘;. The 3amc\>\a\, will i:cﬂ'i’slc and a
wing 23 ¢ in the center eell J nyle:

ke plac
3 i,:c 5r\d——wc’\\ use @ Canvas

(:or H\a{'«'
10 Chapter 1

You’ll be building an app with two different
kinds of code. First you’ll design the
user interface using XAML (Extensible
Application Markup Language), a really
flexible design language. Then you’ll
add C# code to make the game actually
work. You’ll learn a lot more about XAML
throughout the second half of the book.

You'.” write C# code that
manipulates the ontyols
and makes the 9ame work.

C# Code \}

[Targe\'&g o
s R |
You'll use two
timers 4o add

enemies and end the

/ Sta“v\& game if the player

vuns out o«c time.
‘ AddEnemy() ‘
gl AnimateEnemy/() '

l EndTheGame())

methods
StartGame() ‘

) start building with c#
[t's not uwnusual for computers in an office to be running

an och'a{:ing sys{:cm as old as Windows 2003. With thi
PDF, You ean still do the projects in the book. | :

No Windows 8? No problem.

The first two chapters and the last

half of this book have many projects

: that are built with Visual Studio 2012
Jor Windows 8, but many readers aren’t running Windows
© 8 yet. Luckily, most of the Windows Store apps in this

: book can also be built using Windows Presentation

¢ Foundation (WPF), which is compatible with carlier

: operating systems. You can download a free PDF with
: details and instructions from http://www. headfirstlabs.com/
© hfesharp.. flip to leftover #11 in the appendix for

i more information.

Peployment
Package ‘

-EX
Program
file
PP

manifest

Splash
screen

(M

/t/ After Your app is working,
You tan package it up
so it tan be uploaded
to the Windows Store,
Mievosoft’s online

mavketplace for sl

and distri "

buting apps.

you are here » 11

fill in the

Start with a blank application

Every great app starts with a new project. Choose New Project from the File
menu. Make sure you have Visual C#—>Window Store selected and choose
Blank App (XAML) as the project type. Type Save the Humans as
the project name.

®

|£ Your tode filenames don't end in “es”
you may have actidentally ereated a
\)avaSC\rich, Visual Basie, or Visual C++
program. You can £ix this by ¢losing the
solution and starting over- £ You want
to keep the project name “Save the
Humans,” then you'll need to delete the
previous project folder.

Your starting point is the Designer window. Double-click on MainPage.xaml in the Solution

Explorer to bring it up. Find the zoom drop-down in the lower-left corner of the designer and

choose “Fit all” to zoom it out.

Bd Save the Humans - Microsoft Visual Studio Express 2012 for Windows 8
FILE EDIT VIEW PROJECT BULD DEBUG TEAM DESIGN FORMAT TOOLS
B g W ¥ Local Machine - - AnyCPU

MainPagesaml + X [Ny euiRey

STORE
A

TEST WINDOW HELP

Debug

Quick Launch (Ctrl+Q) P = B x

|oa) 3ulInQ WaWIN30g

The designer ghows

You @ yrcvicwfwf
the page that
ou've work'mg

on. [t looks like a
blank page with

a default black

4

-

]

=

background‘
67% |+
800%
400%
200%
150% s3.65% - (s [EE] %] «
100%)
o
66.57% ttp://schemas.microsoft.com/winfx/2086/xanlyp
508 xmlns:x="http: //schemas.microsoft.com/winfx/2006/xaml"
e xmlns:local="using:Save_the Humans" EEE
ar xmlns:d="http://schemas.microsoft.com/expression/blend/2083
33.339% Ins:d="http://sch i i / ion/blend/2085" EEE
b xmlns:mc="http://schemas.openxmlformats.org/markup-compatibility/2006"
25% mc:Ignorable="d">
12.5% 5 <Grid Background="{StaticResource ApplicationPageSackgroundThemeBrush}"s
" </Grid>
Fit all </Page>
Fit selection

100% -

Use these three buttons to turn on the
grid lines, turn on snapping (which
automatically lines up your controls to
each other), and turn on snapping to grid
lines (which aligns them with the grid).

12

start building with c#

You are here!

XAML Main Page / . C# Code Deployment
and Containers \C’%rfroo‘?’: u Package ‘
3 PNG
EXE[__/
.
& XMU S scree

\vg

%0 2

The bottom half of the Designer window shows you the XAML
code. It turns out your “blank” page isn’t blank at all-—it contains
a XAML grid. The grid works a lot like a table in an HTML
page or Word document. We’ll use it to lay out our pages in a way
that lets them grow or shrink to different screen sizes and shapes.

You tan see the XAML code
for the blank oyid that the [DE
5Cncra{:cd for You- chy Your eyes

on it—we'll add some eolumns and
vows in d mipu{:&

53.65% ~ 4

Ga Design 4 HAML
[l <Page
»:Class="5Save_the_Humans.MainPage"
xmlns="http://schemas.microesoft.com/winfx/2@86/xaml/presentation”
wmlns :x="http://schemas.microsoft.com/winfx/2886,/xaml"
xmlns:local="using:Save_the_Humans"
xmlns:d="http://schemas.microsoft. com/expression/blend/2088"
xmlns:imc="http://schemas.openxmlformats.org/markup-compatibility/2e66"
mc:Ignorable="d">

Bl <Grid Background="{5taticResource ApplicationPageBackgroundThemeBrush}™>
</arid:
[</page> < These are the opening and tlosing tags for a grid that
con‘[:ains tontrols. When \/ou add rows, columns, and con{:\rols

to the grid, the tode for them will 9o between these opening
and C|osin5 ‘f:ags

W00% -

This part of the project has steps numbered @ to @
FHP the page to ke,eP g@ing! é

:LOOKING TO LEARN WPF 7 LOOK NO FURTHER!:

: Most of the Windows Store apps in this book can be built with WPF (Windows

: Presentation Foundation), which is compatible with Windows 7 and earlier operating :
i systems. Download the free WPF guide to Head First C# PDF from our website:

: http://headfirstlabs.com/hfcsharp (see leftover #11 in the appendix for more details) :

you are here » 13

get a running start

@ Your page is going to need a title, right? And it’ll need margins, too. You
can do this all by hand with XAML, but there’s an easier way to get your
app to look like a normal Windows Store app.

Go to the Solution Explorer window and find b 5 MainPage.xaml. Right-
click on it and choose Delete to delete the MainPage.xaml page:

Solution Explorer *OXx

@ o--Q&B o &R

Search Solution Explorer (Ctrl+;)

Solution "App4’ (1 project)

4 = Save the Humans
P # Properties
b s References
b Assets

P =& Commen

b 5 Appxaml

& MainPage.xaml

& Package.appxmanifest

Ve
|£ you don't see the
Solution E%Flovcv, You tan
use the View menu to open
it. You tan also veset the

IDE’s window layout using
the Window menu.

B Appd TemporaryKey.p

<>

@

v fXBE X

P -

Cpen

Open With...

Open in Blend...

View Code

\iew Designer

Scope to This

MNew Solution Explorer View
Exclude From Project

Run Custom Tool

Cut

Copy
Delete

Rename

Proparties

Ctrl+Alt+0
Shift+F7

Ctrl+X
Ctrl+C
Del

F2

Over the next few pages
you’ll explore a lot of
different features in
the Visual Studio IDE,
because we’ll be using
the IDE as a powerful
tool for learning and
teaching. You’ll use the
IDE throughout the book
to explore C#. That’s a
really effective way to

get it into your brain!

When you start
a Windows Store
app, you'll often
replace the main
page with one

of the templates
that Visual

Studio proviJes.

£ You those a diffevent name when ou
treated your project, you'll see that
name instead of “Save the Humans” in
the Solution Explorer.

@ Now you’ll need to replace the main page. Go back to the Solution Explorer and
right-click on Save the Humans (it should be the second item in the
Solution Explorer) to select the project. Then choose Add—New Item... from

the menu:

Add

Add Reference...

Add Service Reference...

Store

14 Chapter 1

New ltem... Ctrl+Shift+A
Existing ltem... Shift+Alt+A
New Folder

Class... Shift+Alt+C

start building with c#

The IDE will pop up the Add New Item window for your project. Choose Basic Page and give it the name

MainPage.xaml. Then click the Add button to add the replacement page to your project.

4 Installed Default & Search Installed Templates (Ctrl+E) P~
“ Visuglj# Blank Page Visual C2 = Type: Visual C#
oce A minimal page with layout awareness, a
Data Basic Page Visual C# title, and a back button control.
General When YOU Y'CYlaCC
Web - .
Wien e Store Split Page Visual C2 MainPage.xaml with
_ _ the new Basie Page
b Online ltermns Page Visual C# i'(:CM, 'H’\C ,DE V\CCdS
C"\OOSC BaSiC P33C 'b) ltem Detail Page Visual C# {9 add addi{:iona|
add a new ?asc -ko \louv ‘C|ICS- RCbUIldlhs
PY‘O.ﬂC't baSCd on 'H\C Grouped Items Page Visual C# -{:hc SOlU‘EIOY\ bV‘ihSS
Basic Page template. Group Detail Page T cvcvy{.hnf\g wp to
date so it tan
Resource Dictionary Visual C# dlsP'a\/ '{:hc ?agc in
: & the designer-
M epege Make sure You name it MainPagc.%amL because it needs
the same name as the page that you deleted. [Add [Concel | (

The IDE will prompt you to add missing files—choose Yes to add them. Wait for the designer to finish loading. It

might display either‘ Invalid Markup ‘ or ‘ Build the Project to update Design view. ‘ Choose Rebuild Solution from the
Build menu to bring the IDE’s Designer window up to date. Now you’re ready to roll!

Let’s explore your newly added MawnPage.xaml file. Scroll through the XAML pane in the designer window until you
find this XAML code. This is the grid you’ll use as the basis for your program:

68.22% ~ 588 038 [$-) « b
aDesign * BXAML ® mEm &\
L = Ye aae should
This grid acts as a rcot panel for the page that defines two rows: - our P 5‘ i
* Row @ contains the back button and page title be disyla\/cd n
* Row 1 contains the rest of the page layout he designer.
N-- \/ou'" use {'.\'\C |DE JC" lay °“+’) ﬁ: { s ?(:
= Style="{StaticResource LayoutRootStyle}"s our app b\l modi‘c\lihg this Swd. T Isn)
=| ZGrid. RowDefinitions») doublc—chck on
<RowDefinition Height="148"/> MainPagc.xaml
<RowDefinition Height="*"/> in the Solution
</Grid.RowDefinitions> Notice how there’s a whole sepavate gvid, Explover.
¢<l-- Back button and page title --> WIth.'{"s own S{”artmlﬁ <6”d> and C"d"‘S
- <Grid> @— </rid> tags? That's the page header
= <Grid-C§1umnDifinitionS> " ’ that displays the app name. This grid is
<ColumnDefinition Width="Auto"/> . Lo .
also ton
<ColumnDefinition Width="*"/> ,“-bﬁc_—d inside the voot grid that
| </Grid.ColumnDefinitions> You ¢ 3dd'"5 tontrols to.
<Button x:Name="backButton" Click="GoBack" IsEnabled="{Binding Frame.CanGoBack,
<TextBlock x:Mame="pageTitle" Grid.Column="1" Text="{StaticResource AppNamel}" St
<fGrid> -
——
100% - 4 »

you are here » 15

not so after all

@ Your app will be a grid with two rows and three columns (plus the
header row that came with the blank page template), with one big cell
in the middle that will contain the play area. Start defining rows by
hovering over the border until a line and triangle appear:

Save the Humans - MainPage.xaml|
iPagexaml # X

| You don't see

the numbers 140 appear-..

and | ¥ along

the border of

your page, ¢lick Ahen ek 4o

outside the page.

Laying out the page using a
gric[’ s columns and rows allows
your app to automatically

ac[just to the Jis])lay.

Dum

Q: But it looks like | already have many rows and
and columns in the grid. What are those gray lines?

A: The gray lines were just Visual Studio giving you a
grid of guidelines to help you lay your controls out evenly
on the page. You can turn them on and off with the
button. None of the lines you see in the designer show up
when you run the app outside of Visual Studio. But when
you clicked and created a new row, you actually altered
the XAML, which will change the way the app behaves

Hover over the
border of the grid
until an orange
triangle and line

treate a bottom —
vow in the grid.

therejare no
b Questions

After the vow is added,
the line will changc

+o blue and \/ou’ll see
the vow hcigH’, in the
border. The height

of the tenter vow will
thange from 1% to a
larger number followed

by a star.

Windows Store
apps need to
look rigllt on
any screen,
from tablets
to la]otoPs to
giant monitors,
in portrait or
laancape.

Q: Wait a minute. | wanted to learn about C#. Why
am | spending all this time learning about XAML?

A: Because Windows Store apps built in C# almost
always start with a user interface that's designed in XAML.
That's also why Visual Studio has such a good XAML
editor—to give you the tools you need to build stunning
user interfaces. Throughout this book, you'll learn how

to build two other types of programs with C#, desktop
applications and console applications, neither of which

16

when it's compiled and executed.

use XAML. Seeing all three of these will give you a deeper
understanding of programming with C#.

start with c#

@ Do the same thing along the top border of the page—except this time create two columns, a small one
on the lefthand side and another small one on the righthand side. Don’t worry about the row heights
or column widths—they’ll vary depending on where you click. We’ll fix them in a minute.

8 © My Application

Don‘{: worry 'l(" Your

row hcigh{:s or tolumn
widths ave different; = U
\/ou)” £ix them on the

th‘l: yagcv \

When you’re done, look in the XAML window and go back to the same grid from the previous page.
Now the column widths and row heights match the numbers on the top and side of your page.

P.Design B XAML @ DE®E
<l--
This grid acts as a root panel for the page that defines two rows:
* Row @ contains the back button and page title
* Row 1 contains the rest of the page layout
-->
= <Grid Style="{StaticResource LayoutRootStyle}">

- <Grid.ColumnDefinitions>
<ColumnDefinition Widt <\
<ColumnDefinition Width="10 ">

tnita : § i Heve's the width of the left column
<ColumnDefinition Width="166*"/> you ¢veated in step 5—the width

b b

</Gr.‘id.Columr?Dz.ef%nitionw matehes the width that You saw in
= <Gr-1d.RowDe1_:1|j11‘_c10ns>_ the designer. That's because the [DE
<RowDefinition Height="140"/> genevated this XAML ctode for you

<RowDefinition Height="125*"/>
<RowDefinition Height="32*"/>
</Grid.RowDefinitions>

100% ~ 4 »

Your grid rows and columns are now added!
XAML grids are container controls, which means they hold other o O
controls. Grids consist of rows and columns that define cells, and o)
each cell can hold other XAML controls that show buttons, text, and #
shapes. A grid is a great way to lay out a page, because you can set its

rows and columns to resize themselves based on the size of the screen.

The humans are
preparing. We don’t like
the looks of ths.

17

let’s the competition

Set up the grid for your page When You change his

numbev, You modi‘c

Your app needs to be able to work on a wide range of devices, and using the grid—and its
a grid is a great way to do that. You can set the rows and columns of XAML tode.

a grid to a specific pixel height. But you can also use the Star setting,

which keeps them the same size proportionally—to each other and also

to the page—mno matter how big the display or what its orientation is.

€@ SET THE WIDTH OF THE LEFT COLUMN. 435 * -

Hover over the number above the first column until a drop-

down menu appears. Choose Pixel to change the star to a
lock, then click on the number to change it to 160. Your v Star
column’s number should now look like this:

Ixel
160 v
Auto
e REPEAT FOR THE RIGHT COLUMN AND Select Column
Add Column Before

THE BOTTOM ROW.
Make the right column and the bottom row 160 by
choosing Pixel and typing 160 into the box. Add Column After

Celete Column

Set your columns or rows to
Pixel to give them a fixed B

width or heiglnt. The Star

setting lets a row or column
g

grow or shrink Proportionally
to the rest of the gric[. Use L — 5
this setting in the Jesigner | I: ZS’ZZ,‘Z“ T
to alter the Width or Height ; design. et

We’ll talk a lot more
Property in tlle X AML. I-[about what goes into designing a good

i app later on. For now, we’ll walk you

you remove tlle Wic[tll or © through building this game. By the end of
. .9 the book, you’ll understand exactly what
H elgllt PI'OPQI' ty, it's tlle same ¢ all of these things do!

as setting the property to 1*,

18

start building with c#

e MAKE THE CENTER COLUMN AND CENTER ROW THE

DEFAULT SIZE 1% (IF THEY AREN/T ALREADY)- XAML and C# are
Click on the number above the center column and enter 1. Don’t use case sensitivel Make
the drop-down (leave it Star) so it looks like the picture below. Then Sure your uppercase
make sure to look back at the other columns to make sure the IDE and lowercase letters
didn’t resize them. If it did, just change them back to 160. match example code.

When You enter 1% into the box,
the [DE sets the tolumn to its
default width. [t might adjust
the other columns. [it does, 3u5£
veset them back to 160 pixels.

175 #* <

T
1 5
-

O Look AT YOUR XAML CODE!
Click on the grid to make sure it’s selected, then look in the XAML window to see the code that you built.
<l--

This grid acts as a root panel for the page that defines two rows:
* Row @ contains the back button and page title 7mt<ﬁﬁd~>IMca£tm{pP
* Row 1 contains the rest of the page layout means everything that comes
N after it is part of the grid.
<Grid Style="{StaticResource LayoutRootStyle}">
<Grid.ColumnDefinitions>
<ColumnDefinition Width="160"/> This is how a tolumn is dcf'mcd £o(;‘ :hXAML
. a4 s 1 umns an ee YOWs,
@ ﬁ/J ?:ih;/:: :rdcd{c‘ﬁrf: ré:l::th‘(:ini{:ion {:ags and
<ColumnDefinition Width="160"/>

three RowDefinition tags.
</Grid.ColumnDefinitions>

<Grid.RowDefinitions> v This Ja,{ vow with a height of 140 pixels is
<RowDefinition Height="14@"/> Part of the Basic Page template you added.
<RowDefinition

/>
<RowDefinitionfHeight="160"/>
</Grid.RowDefinitions>
‘§ You used the tolumn and vow

drop—downs to set the Width
In a minute, you'll be adding controls and Height properties.

) Your grid, which will show up here,
after the vow and column definitions.

’

you are here » 19

take of your program
£ You don’t see the
. toolbox in the IDE, You
Add controls to your grid ean open it using the View
menu. Use the Push?in +o
Ever notice how apps are full of buttons, text, pictures, progress bars, sliders, kCCF it from t‘,o”aysing. \

drop-downs, and menus? Those are called controls, and it’s time to add some

of them to your app—inside the cells defined by your grid’s rows and columns.
Search Toolbox P~

@ Expand the section of the toolbox and 4 Common XAML Controls -
drag a into the bottom-left cell of the grid. h Pointer
2arch Toolbox P~ g E:::r:
x Pointer “ CheckBex
5l AppBar & ComboBox
‘B FlipView

Border

B Grid
i GridView
Canvas El Image
< CaptureElement El ListView

® RadioButton
Then look at the bottom of the Designer window and have O Rectangle
alook at the XAML tag that the IDE generated for you. StackPanel
You'll see something like this—your margin numbers will be TextBlock

TextBox

different depending on where in the cell you dragged it, and the
properties might be in a different order.

These are properties. Eath

property has a name, followed by
I::c)(aﬁl’{f::‘g:n:“zc;" starts K an equals sign, followed by its value.

_><Button Content="Button" HorizontalAlignment="Left"
Margin="60,72,0,0" Grid.Row="2" VerticalAlignment="Top"/>

@ Drag a into the lower-right cell of the grid. Your XAML will look something like this.

See if you can figure out how it determines which row and column the controls are placed in.

Click on Pointer in the toolbox, ltL)e/;Otgc()jlgg; St(:;

. : . then click on the TextBloek e FLE EDIT
= «TextBlocks d move it around and wateh &3 word Yoolboe' | | ©-
] . « the IDE cfrda’cc the Margin that shows up
PVOPCYf\/ in the XAML. in the upper-left
corner of the

JEJESK IDE. If it's not

¥0Q|O0] 3JAR(] IUIFNQ JUILNDO(

[{

MainPage.

= XAML there, select
Toolbox from
<ffextBlock Grid.Column="2" HorizontalAlignment="Left" the View menu *
Margin="14,8,0,0" Grid.Row="2" TextWrapping="Wrap" to make it
Text="TextBlock" VerticalAlignment="Top"/> ; appear.
20 We added line breaks to make the XAML easier to

vead. You tan add line breaks too. Give it a try!

start with c#

@ Next, expand the section of the toolbox. Drag a

into the bottom-center cell, a into the bottom-right cell (make sure it’s
below the TextBlock you already put in that cell), and a into the center cell.
Your page should now have controls on it (don’t worry if they’re placed differently than
the picture below; we’ll fix that in a minute):

®© Save the Humans

When you add the
Canvas tontrol, it
looks like an empty
box. We'll £ix that

shortly. Heve's the TextBloek

= EtEtainti tontrol gou added in
step 2. You dragged
a Con‘(:cn{:Con{:\rol

into the same ¢ell.
Heve’s the

button you '
added in step |. You Jus{ added

this ProgressBar- =8 ' ' e
‘L Here's the ContentControl. »

What do You think it does? "

When you drag a

@ You've got the Canvas control currently selected, since you just added it. (If not, use
the pointer to select it again.) Look in the XAML window: COﬂtl‘Ol out 0{ tlle

<Canvas Grid.Column="1" Grid.Row="1" HorizontalAlignment="Left" Height="1@8"... tOOlLOX anc[Onto

It’s showing you the XAML tag for the Canvas control. It starts with <Canvas and our age tl‘e
ends with />, and between them it has properties like Grid.Column="1" (to put y P ’

the Canvas in the center column) and Grid.Row="1" (to put it in the center row). IDE autOmatiCally
Try clicking i both the grid and the XAML window to select different controls.
generates XAML
T‘r\/ Clid(mg this button.

[t brings up the Dotument 10 put it where you
- Outline window. Can You .
2=s G RIS dragged i
Ca Design T E XAML ’@’ You'll learn more about it

in a few pages. 21

your app’s property value is going up

Use properties to change how the controls look

The Visual Studio IDE gives you fine control over your controls. The Properties window
in the IDE lets you change the look and even the behavior of the controls on your page.

€ Change the text of the button.
Right-click on the button control that you dragged onto the grid and choose Edit Text

from the menu. Change the text to: Start! and see what you did to the button’s XAML:

<Button Content="Start!"™ HorizontalAlignment="Left" VerticalAlignment="Top" ...

Jchihgs in the IDE, +0.

When You've editing
ext, use the Escapc
key to finish. This

works for othey

Use the Name box to change the
name of the control to startButton.

Q

Type Button
Search Properties
Arrange by: Category ~
P Brush

b Appearance

4 Common
ClickMode
\/ou Miah'[: Content
V\CCd ‘{',o ContentTransitions
C?‘Pahd '{')\C ToolTipService.Tool...
ommon DataContext
and La\/ou{:
. 4 Layout
settions.
Width
u Height
Row 0

Column 0

Zlndex
Horizontal Alignment
VerticalAlignment

Margin

b Text
b Transform
b Interactions

b Miscellaneous

22 Chapter 1

MName startButton

When you edit the text in the button, the IDE /
updates the Content property in the XAML.

@ Use the Properties window to modify the button.
Make sure the button is selected in the IDE, then look at the
Properties window in the lower-right corner of the IDE. Use
it to change the name of the control to startButton and
center the control in the cell. Once you’ve got the button looking
right, right-click on it and choose View Source to jump
straight to the <Button> tag in the XAML window.

[#]

p

These little squares tell You if the property has been
set. A filled squave means it's been set; an empt
square means it's been left with a default value.

Release

Start!

[Conection]\-Ea_\ When You used “Edit Text” on the vight—click menu to ehange

o the button’s text, the [DE updated the Content property.
[New o
& Use the and buttons to set the
HorizontalAlignment and VerticalAlignment properties
Auto (1) v o to “Center” and center the button in the cell.
Auto (38) ¥ o

When you dragged the button onto the page, the IDE
used the Margin property to place it in an exact position
in the cell, Click on the square ® and choose Reset from
the menu to reset the margins to 0.

Qo batk to the

<Button x:Name="startButton" XAML vindow in

5 the [DE and have a
0 Content="Start!" look at the XAML
b d Z that You uydated,’

Grid.Row="2"
HorizontalAlignment="Center"
VerticalAlignment="Center"/>

The properties may be in a different order. That’s OK!

You are here!

You can use Edit—>Undo (or Ctrl-Z) to undo start with c#
the last change. Do it several times to undo XAML Main Page Deploywent
the last few changes. If you selected the and Containers Windows Ul 0 Code Package
: Controls (PN
wrong thing, you can choose Select None) e
from the Edit menu to deselect. You can also i S [) 71
hit Escape to deselect the control. If it’s e Qj . Y
living inside a container like a StackPanel or \ Y,)
Grid, hitting Escape will select the container, ‘ Oe /=
L : Y .
so you may need to hit it a few times. ’ | \O S =y
Q = N

© Change the page header text.
Right-click on the page header (“My Application”) and choose View Source to jump to the XAML for the
text block. Scroll in the XAML window until you find the Text property:

Text="{StaticResource AppName}"
Wait a minute! That’s not text that says “My Application”—what’s going on here?

The Blank Page template uses a static resource called AppName for the name that it displays at the top
of the page. Scroll to the top of the XAML code until you find a <Page .Resources> section that has

this XAML code 1n it:
<x:String x:Key="AppName">My Application</x:String> \/ow TextBloek and Avoid These
L AW L
. . o ContentControl are
Replace “My Application” with the name of your application: in the lower—vight cell ek
<x:String x:Key="AppName">Save the Humans</x:String> of the grid-

—>
Now you should see the correct text at the top of the page:

Dor\"l‘, worry about that back -Grou Into _»
@ Sa\/e the H umans &— button. You?I” learn all about how)
to use it in ChaP'{:cr 4. You'”

also learn about statie vesources.
Q Update the TextBlock to change its text and its style.

Use the Edit Text right-mouse menu option to change the TextBlock so it says Avoid These
Avoid These (hit Escape to finish editing the text). Then right-click on it, choose (B S
the menu item, and then choose the submenu and
select SubheaderTextStyle to make its text bigger. A box appears around
the StackPanel if you
6 Use a StackPanel to group the TextBlock and ContentControl. hover over it

Make sure that the TextBlock is near the top of the cell, and the ContentControl is near
the bottom. Click and drag to select both the TextBlock and ContentControl,
and then right-click. Choose from the pop-up menu, then choose
. This adds a new control to your form: a StackPanel control. You can
select the StackPanel by clicking between the two controls.

Reset Layout *

All

The StackPanel is a lot like the Grid and Canvas: its job is to hold other controls ;_’_ﬂ'&‘-.-fr':}_id Th 25e
(it’s called a “container”), so it’s not visible on the form. But since you dragged the I"gr'terlmjr'tml_
TextBlock to the top of the cell and the ContentControl to the bottom, the IDE created Rightclick and
the StackPanel so it fills up most of the cell. Click in the middle of the StackPanel veset the layout
to select it, then right-click and choose [ResetLayout | g [A1 o quickly reset its
properties, which will set its vertical and horizontal alignment to Stretch. Finally, right-
click on the TextBox and ContentControl to reset their layouts as well. While you have
the ContentControl selected, set its vertical and horizontal alignments to Center.

of the StackPanel,
TextBlock, and
ContentControl.

you want your game to work, right?

3Q) 24} 30 2P's 243 vo qe3 43 buopay
Aq wgng Juaungo] y3 uado osje uey ,.o/\—* 2uI[inO uawWn20g

Controls make the game work

Controls aren’t just for decorative touches like titles and captions. They’re central to the way your game works.
Let’s add the controls that players will interact with when they play your game. Here’s what you’ll build next:

24

e Turn the Canvas control into the gameplay area.

You'll eveate a play area with a

..and \/ou'll use a

gradient background.. -and you'll work on the You'll make the ProgressBar template to make your

bottom vow. \/ as wide as its column...

<
Game Over

Q Update the ProgressBar.
Right-click on the ProgressBar in the bottom-center cell of the grid, choose the Reset
Layout menu option, and then choose All to reset all of the properties to their default
values. Use the Height box in the Layout section of the Properties window to set the
Height to 20. The IDE stripped all of the layout-related properties from the XAML,
and then added the new Height:

<ProgressBar Grid.Column="1" Grid.Row="2" Height="28"/%

Remember that Canvas control that you dragged into the center square? It’s hard
to see it right now because a Canvas control is invisible when you first drag it out of

the toolbox, but there’s an easy way to find it. Click the very small button above
the XAML window to bring up the Document Outline. Click on to
select the Canvas control.

Make sure the Canvas control is selected, then use the Name box in the
Properties window to set the name to playArea.

[\ Once You thange the name,

)

it'll show up as playAvea
ntead of [Camas] in the

" m 82 o Dotument. Outline window.

enemy look like this.

You ¢an also get
1o the Dotumcy,{;
Outline by thoosing
the View—0ther

Windows meny.

{

Document Cutline v =X
L pageRoot

@ a
4 1) pageRoot

= BottomAppBar
= TopAppBar
4 H [Grid]
4 E [Grid]
0¥ backButton
@ pageTitle
O startButton
B [ProgressBar]
4 B [StackPanel]
[[TextBlock]
&1 [UserContral]

ORI I I R C I I C I ¢}
0O 000 O0O0O0O OO

8

e B Cclanesoucce: After you’ve named the Canvas control, you can close the
L Bl Document Outline window. Then use the IEI and @ buttons
G 64 in the Properties window to set its vertical and horizontal
B 238 alignments to Stretch, reset the margins, and click both
A 100% buttons to set the Width and Height to Auto. Then set its

Column to 0, and its GolumnSpan (ne

#FFAB40EE

at the bottom of the color editor and t

Chapter 1

xt to Column) to 3.

Finally, open the Brush section of the Properties window and
use the (@ button to give it a gradient. Choose the starting
and ending colors for the gradient by clicking each of the tabs

hen clicking on a color.

start building with c#

Q Create the enemy template.
Your game will have a lot of enemies bouncing around the screen, and you’re going to want them to all look the
same. Luckily, XAML gives us templates, which are an easy way to make a bunch of controls look alike.

Next, right-click on the ContentControl in the Document Outline window. Choose Edit Template, then choose
Create Empty... from the menu. Name it EnemyTemplate. The IDE will add the template to the XAML.

You've “Fl\/ing blind” for this e (e

V\C*{ bl‘t—{hc dCSigV\CY WOV\"{: @® [EnemyTemplate |

display anything for the Applytol You ¢an also use the
template until you add a tontrol Deﬁnoe i: e Dotument Oubline
and set its height and width so S — window to select

l't shows 0‘7- DOV\I{; WO\"V\/)‘ \IOU ‘C O Resource dictionary StandardStyles.xaml 'H’\C 3Y‘Id I‘F |‘k 3:{5
¢an always undo and try again i deselected.
so:\c{:hin\lg goes wrong, ‘/\ \L

Your newly created template is currently selected in the IDE. Collapse the Document Outline window so it doesn’t
overlap the Toolbox. Your template is still invisible, but you’ll change that in the next step. If you accidentally click out of
the control template, you can always get back to it by opening the Document Outline, right-clicking on the Content Control,

and choosing Edit Template—> Edit Current.
Make sure You don't elick anywheve else in the designer until
e Edit the enemy template. you see the ellipse. That will keep the template selected.
Add a red circle to the template:

* Double-click on in the toolbox to add an ellipse.

* Set the ellipse’s Height and Width properties to 100,

Stroke No brush o
which will cause the ellipse to be displayed in the cell. = = 5 =
* Reset the HorizontalAlignment, Editor m Color resources

VerticalAlignment, and Margin properties by 1. e
clicking on their squares and choosing Reset.

Click in this ¢olor
selector and drag

#* Go to the Brush section of the Properties window and click
on M to select a solid-color brush. 4o the uFPcr—righ{: 100%

% Color your ellipse red by clicking in the color bar and
dragging to the top, then clicking in the color sector and
dragging to the upper-right corner.

#FFFFO000

The XAML for your ContentControl now looks like this:
<ContentControl Content="ContentControl®™ HorizontalAlignment="Center”
VerticalAlignment="Center" Template="{StaticResource EnemyTemplate}"/>
Sevoll around Your page’s XAML window and see if You €an find wheve the
EnemyTemplate is defined. [t should be vight below the AppName vesource.

6 Use the Document Outline to modify the StackPanel and TextBlock controls.
Go back to the Document Outline (if you see = EnemyTemplate (ContentControl Template) at the top of the Document

Outline window; just click (L]0 get back to the Page outline). Select the StackPanel control, make sure its
vertical and horizontal alignments are set to center, and clear the margins. Then do the same for the TextBlock.

you are here » 25

You're almost done laying out the form! Flip the page for the last steps... =—>

check out the page you built

Q Add the human to the Canvas.

You've got two options for adding the human. The first option is to_follow the next three paragraphs. The second, quicker
option is to just type the four lines of XAML into the IDE. It’s your choice!

Select the Canvas control, then open the All XAML Controls section of the toolbox and double-click
on Ellipse to add an Ellipse control to the Canvas. Select the Canvas control again and double-click on
Rectangle. The Rectangle will be added right on top of the Ellipse, so drag the Rectangle below it.

Hold down the Shift key and click on the Ellipse so both controls are selected. Right-click on the Ellipse,
choose Group Into, and then StackPanel. Select the Ellipse, use the solid brush property to change its
color to white, and set its Width and Height properties to 10. Then select the Rectangle, make it white as
well, and change its Width to 10 and its Height to 25.

Use the Document Outline window to select the Stack Panel (make sure you see Type StackPanel ot the top of
the Properties window). Click both [buttons to set the Width and Height to Auto. Then use the Name
box at the top of the window to set its name to human. Here’s the XAML you generated:

<5tackPanel x:Name="human” Orientation="Vertical™: I‘c \You thoose to t pe this into the XAML
<Ellipse Fill="White" Height="18" Width="18"/> window of the [DE, make sure you do it divectly
<Rectangle Fill="White™ Height="25" Width="18"/> above the </Canvas> {:33 That's how You indicate
</5tackPanel>

that the human is tontained in the Canvas.

Go back to the Document Outline window to see how your new controls appear:

4 [d playArea ® o
4 B human @ o
© [Ellipse] @ o

O [Rectangle] @ o

JC\[gor
may also set Shroke Yro\vcr.‘ !
\ﬁ\f S?&P;/cvlllhai\ladd an outline. Can Yo £ ouvre W l‘en you c[rag

dd or vemove It°

out how o3 a control around
@ Add the Game Over text. a Canvas, its
When your player’s game is over, the game will need to display a Game
Over message. You’ll do it by adding a TextBlock, setting its font, and Le{t anc[TOP

giving it a name: .
#* Select the Canvas, then drag a TextBlock out of the toolbox and PrOPertleS are

onto it. changec[to set

% Use the Name box in the Properties window to change the . e I {
TextBlock’s name to gameOverText. its POSItIOHc

* Us.e the Text section of tbe Properties window to .change the fonF to you cllange tlle
Arial Black, change the size to 100 px, and make it Bold and Italic. c[

#* Click on the TextBlock and drag it to the middle of the Canvas. Le{t an TOP

* Edit the text so it says Game Over. Properties, you

move the control.

26 Chapter 1

start building with c#

Q Add the target portal that the player will drag the human onto.
There’s one last control to add to the Canvas: the target portal that your player will drag the human
mto. (It doesn’t matter where in the Canvas you drag it.)

Select the Canvas control, then drag a Rectangle control onto it. Use the 3 button in the Brushes
section of the Properties window to give it a gradient. Set its Height and Width properties to 50.

Turn your rectangle into a diamond by rotating it 45 degrees. Open the Transform section of the
Properties window to rotate the Rectangle 45 degrees by clicking on ¥ and setting the angle to 45.

2 " = V 4 ® >y

@ Angle 45 u

Finally, use the Name box in the Properties window to give it the name target.

Congratulations—you’ve finished building the main page for your app!

P

you are here » 27

you control

XAML property

Content

Height

Rotation

Fill

x :Name

+ O

*
WHQ DQES wHaTYT™?

Where to find it
in the Properties
window in the IDE

At the top

[Brush

‘b ﬁ.ppearance‘

P Transform

Now that you’ve built a user interface, you should have a sense of what some of the controls do, and you’ve used
alot of different properties to customize them. See if you can work out which property does what, and where in
the Properties window in the IDE you find it.

What it does

Determines how tall the
control should be

Sets the angle that the
control is turned

You use this in your C#
code to manipulate a
specific control

The color of the control

Use this when you want
to change text displayed
inside your control

Here’s a hint: you can use the Search box in the
Properties window to find properties—but some of
these properties aren’t on every type of control.

28

Solution on page 37 eem—

start building with c#

You've set the stage for the game

Your page is now all set for coding. You set up the grid that will

serve as the basis of your page, and you added controls that will
make up the elements of the game.

Y ou are here!

XAML Main Page X C# Code
and Containers [Windows Ul

Peployment
Controls

Package ‘

The fivst

was to treate the proi tontrols
and set up the 3ridP.r°Ju+’

step you did Then You added

+0 Your aae.
The next s{:Z;: is EOSC

write ¢ode that uses
hCm.

Visual Studio gave you useful tools for laying

out your page, but all 1t really did was 1lghg you
create XAML code. You're the one in charge!

you are here » 29

keep your stub for re-entry

What you'll do next

Now comes the fun part: adding the code that makes your game
work. You’ll do it in three stages: first you’ll animate your enemies,
then you’ll let your player interact with the game, and finally The fiest thin 9)'ou'” do

you’ll add polish to make the game look better.

30

is add C# code that
Causes enemies to shoot
out atvoss the play

. [} . .
First you'll animate the enemies... area every time you

To make the game
work, you'll need the
progress bar to tount
down, the human to
move, and the game
+o end when the
enemy 58‘{‘; him ov

time vuns out. J

Chapter 1

wthen you'll add the gameplay...

\/ou used a 'Eemyla’cc
+o make the enemies
look like ved eirtles.
Now \/ou'” update
the template to make
them look like evil
alien heads.

/ tlick the Start button.

A lot of programmers build their code in small
increments, making sure one piece works before
moving on to the next one. That’s how you’ll build

the rest of this program. You’ll start by creating
a method called AddEnemy () that adds an
animated enemy to the Canvas control. First
you’ll hook it up to the Start button so you can fill
your page up with bouncing enemies. That will lay
the groundwork to build out the rest of the game.

T~

wand finally, you’u
make it look gooJ.

Add a method that does something

start

with c#

It’s time to start writing some C# code, and the first thing you’ll do is
add a method—and the IDE can give you a great starting point by

generating code.

When you’re editing a page in the IDE, double-clicking on any of the
controls on the page causes the IDE to automatically add code to your
project. Make sure you’ve got the page designer showing in the IDE,
and then double-click on the Start button. The IDE will add code to
your project that gets run any time a user clicks on the button. You

When you double—tlicked on the Button tontral, the

should see some code pop up that looks like this:

IDE exeated this method. [t will vun when a user
tlicks the “Stavt!” butfon in the vunning application.

—
private void startButton_Click(object sender, RoutedEventArgs e)

1
¥

Use the IPE to create your own method

Click between the { } brackets and type this, including the parentheses and semicolon:

private woid startButton_Click(object sender, RoutedEventiArgs e)

{ The ved squiggly line is the IDE telling you
there’s a problem, and the blue box is the

AddEnemy ()

Click="startButton Click"

\Thc IDE also added
this to the XAML. See
if You £an find it YouI”
learn more about what
this is in Chapter 2.

; IDE {telling you that it migh{: have a solution.

Notice the red squiggly line underneath the text you just typed? That’s the IDE telling you that something’s
wrong. If you click on the squiggly line, a blue box appears, which is the IDE’s way of telling you that it

might be able to help you fix the error.

Hover over the blue box and click the # ™ icon that pops up. You'll see a box asking you to generate a
method stub. What do you think will happen if you click it? Go ahead and click it to find out!

8~

El Generate method stub for 'AddEnemy’ in "Save_the_Humans.MainPage'

Dum

Q} What'’s a method?

A: A method is just a named block of code.
We'll talk a lot more about methods in Chapter 2.

therejare no
b Questions

Q} And the IDE generated it for me?

A: Yes...for now. A method is one of the basic
building blocks of programs—you'll write a lot of
them, and you'll get used to writing them by hand.

31

intelligent and sensible
C# code must be
added exactly as
you see it here.

Watch it-’ It’s really easy to throw

off your code. When
you’re adding C# code to your
program, the capitalization has to
be exactly right, and make sure you
;. get all of the parentheses, commas,
@ Delete the contents of the method stub that the IDE ¢ and semicolons. If you miss one,
generated for you. : your program won't work!

Fill in the code for your method

It’s time to make your program do something, and
you’ve got a good starting point. The IDE generated a
method stub for you: the starting point for a method that
you can fill in with code.

private void AddEnemy()

1
¥

row new NotImplementedException

Gelett this and delete it You'll learn
about exteptions in Chapter 12.

@ Start adding code. Type the word Content into the method body. The IDE will pop up a window
called an IntelliSense Window with suggestions. Choose ContentControl from the list.

private void AddEnemy()

1
Content
1 ®_ _contentLoaded -
& Content

vl ContentControl

#= ContentPresenter

& ContentProperty

*z ContentThemeTransition

& HorizontalContentAlignment

HorizontalContentAlignmentProperty

*z ScrollContentPresenter -

@ Finish adding the first line of code. You’ll get another IntelliSense window after you type new.

private void AddEnemy()
1

}

ContentControl enemy = new ContentControl();

This line eveates a new ContentControl objeet. You'll
learn about ochL‘f:s and the new keyword in Chapter 3,

—_

32 Chapter 1 and vefevente Vaviables like engmy in Chapter 4

start building with c#

@ Before you fill in the AddEnemy () method, you’ll need to add a line of code near the top of the file.
Find the line that starts with public sealed partial class MainPage and add this line
after the bracket ({):

/// <summary>

/// A basic page that provides characteristics common to most applications.
/// </summary>

public sealed partial class MainPage : Save_the_Humans.Common.LayoutAwarePage

This is called 3 «cncld You'll

{ -~
@ndom = newmtjj) / learn move about how it
works in Chapter 4

@ Finish adding the method. You'll see some squiggly red underlines. The ones Do YYou see @ 5‘\“'33'7 underline
under AnimateEnemy () will go away when you generate its method stub. under ?laYA"a? Go back to the
XAML editor and sure you set
private void AddEnemy() the name of the Canvas control
{ 1o playArea.
This line adds 1"“‘; ContentControl enemy = new ContentControl();
new cnelr\/{(,on ::ilcd enemy.Template = Resources["EnemyTemplate"”] as ControlTemplate;
to ?dco Cc\/loyl‘l leavn AnimateEnemy(enemy, @, playArea.ActualWidth - 100, "(Canvas.Left)");
C::l J:c:.llcz"::iov\s n AnimateEnemy(enemy, random.Next((int)playArea.ActualHeight - 100),
about Lol

g T random.Next((int)playArea.ActualHeight - 100), "(Canvas.Top)");
Chapter playArea.Children.Add(enemy);
}

l(: ou need to switth between the XAML and CH#
Lodc, use the tabs at the £op of the window.

MainPage.xaml MainPagexaml.cs +® X

@ Use the blue box and the # ™ button to generate a method stub for AnimateEnemy (), just like you
did for AddEnemy () . This time it added four parameters called enemy, p1, p2, and p3. Edit the
top line of the method to change the last three parameters. Change the parameter p1 to £rom, the

parameter p2 to to, and the parameter p3 to propertyToAnimate. Then change any int types to
double.

private void AnimateEnemy(ContentControl enemy,int pl double p2, string p3)

) 1
You'll learn throw new NotImplementedException();
about methods }
and parameters
in Chapter 2.

|private void AnimateEnemy(ContentControl enemy,@o@fr‘om,@ubl@to, string pr‘oper‘tyToAnimate)|

The IDE may generate the method stub
with “int” £ypes. Change them to “double”. Flip the page to see your program run] — ees—-
You'll leavn about types in Chapter 4-

you are here » 33

ok, that’s pretty cool

Finish the method and run your program

Your program is almost ready to run! All you need to do is finish your
AnimateEnemy () method. Don’t panic if things don’t quite work
yet. You may have missed a comma or some parentheses—when you’re
programming, you need to be really careful about those things!

Still seeing red?
The IDE helps
you track down
problems.

If you still have some of those red
i squiggly lines, don’t worry! You
i probably just need to track down

: a typo or two. If you’re still seeing

€ Add a using statement to the top of the file.
Scroll all the way to the top of the file. The IDE generated several
lines that start with using. Add one more to the bottom of the list:

Flusing System;

S{&{CMChfﬁ using System.Collections.Generic;

. using System.IO;

like {hCSC IC£ using System.Ling;

ou use tode using Windows.Foundation;

om NET using Windows.Foundation.Coellections;

. . {h £ using Windows.UI.Xaml;

libraries tha using Windows.UI.Xaml.Controls;

tome w'r(:h using Windows.UI.Xaml.Controls.Primitives;

c# \/OIA'“ using Windows.UI.Xaml.Data; tode work. YOU tan

’ using Windows.UI.Xaml.Input;

learn more using Windows.UT.Xanl.Media; the semicolon at the end
about them in using Windows.UI.Xaml.Navigation; énd.
ChaP££Y 1 Lusing Windows.UI.Xaml.Media.Animation;

This using statement lets
¢ode from the NET Fra

program 40 move the ene

© Add code that creates an enemy bouncing animation.

You generated the method stub for the AnimateEnemy () method on the

¢ squiggly red underlines, it just means
i you didn’t type in some of the code

© correctly. We've tested this chapter

: with a lot of different people, and we
i didn’t leave anything out. All of the

i code you need to get your program

¢ working is in these pages.

You'll need this line to make the next bit

. use the [ntelliS
window to 36'[‘, it Yigh‘l:—-and don';‘l:cpovgzzc

You use animation
mework in Your

mies on Your streen.

\/ou)” learn about
object initializers
like this in
Chapter 4-

previous page. Now you’ll add its code. It makes an enemy start bouncing across

the screen.

private void AnimateEnemy(ContentControl enemy, double from, double to, string propertyTolnimate)

{

Storyboard storyboard = new Storyboard() { AutoReverse = true, RepeatBehavior =

Doublefnimation animation = new DoubleAnimation()

And you'll leavn .

about animation
in ChaP‘l:cr 16.

From = from,
To = to,

Duration = new Duration{TimeSpan.FromSeconds(random.Next(4, 6)))

¥;

Storyboard.SetTarget(animation, enemy);
Storyboard.SetTargetProperty(animation, propertyTofnimate);
storyboard.Children.Add(animation);

storyboard.Begin();

Look over your code.

You shouldn’t see any errors, and your Error List window should be
empty. If not, double-click on the error in the Error List. The IDE will
jump your cursor to the right place to help you track down the problem.

34 Chapter 1

s

RepeatBehavior.Forever };

This ode makes the
enemy You treated move
atross PlayArca. I‘F \/ou
changc 4 and b, You £an
make the enemies move
slower or faster.

S

£ You ean't see the Evvor
List window, ¢hoose Evvor
List from the View menu
to show it. You'll leavn
mov;c about using the error
window and debuaain o
tode in ChaP‘{:CVSZS. e

start building with c#

Here’s a hint: if you move too many windows
around your IDE, you can always reset by choosing
Reset Window Layout from the Window menu.

@ start your program.
Find the P button at the top of the IDE. This starts your program running.

Dd App4 - Microsoft Visual Studio Express 2012 for Windows 8
FILE EDIT VIEW PROJECT BUILD DEBUG TEAM TOOLS STORE TEST WINDOW HELP

g - Bl 9D - ~ P Local Machine ~ Debug ~ AnyCPU - ; BE % N

4l

MainPage.xaml MainPagexaml.cs = X

“z App4.MainPage
—lusing System;

This button starts your program.

6 Now your program is running!
First, a big X will be displayed for a few seconds, and then your main page will be displayed. Click
the “Start!” button a few times. Each time you click it, a circle is launched across your canvas.

|l And it didn't take

You built something £09 d. But theve's move

long, \")us{: like we promise

{0 do to 55{; it Y‘\S\'\‘{',-

?7 Save the Humans

This big X is the splash

sereen. You'll make your

own splash streen at the
end of the thapter.

N
Game Over

e

I£ the enemies aven’t boum‘,ing,

or if they leave the play area,
double—check the code. You may
be missing paventheses or keywords.

@® stop your program.

Press Alt-Tab to switch back to the IDE. The * button in the toolbar has been replaced with O) to
break, stop, and restart your program. Click the square to stop the program running.

you are here » 35

what you’ve done, where you’re going

Heres what youve done so far

Congratulations! You've built a program that actually does
something. It’s not quite a playable game, but it’s definitely a start.
Let’s look back and see what you built.

You are here!

!

XAML Main Page) C# Code Peploywment
and Containers X‘Q:f:o‘?lss vl Package
PNG
—

\ OL
EXE
\ A O } ‘
D | ! Jr | o —
o eC > En \/ de(
& ‘ 5 —
T 4 (jé:ﬁiiﬁ App
s fest

methods
\>(StartGame() |
e —
g\ AddEnemy/() l
e

o
o
>
d
&
38
<
\
~—r
J ' AnimateEnemy() '
o e —
—aw l EndTheGame())
e

Wc‘vc 30‘&'&0, a SOOd

s{;ak{.: by bu”dihs e This step is where we
user m{:CHCaCc... wﬁfc C# o {:ha{
makes Jchc gamc‘;lay
run.
ouk we still need
{:\\:c cest of the C#

Lodc Jf,o "‘akc H‘c 8\7?
actually work-

Visual Studio can generate code for you, but you
need to know what you want to build BEFORE

you start Luilc[ing it. It won't do that for you!

36 Chapter 1

start building with c#

Here’s the solution for the “Who Does What” exercise on page 28.
We’ll give you the anwers to the pencil-and-paper puzzles and
exercises, but they won’t always be on the next page.

N
W+Q °Q. WH AT ?

a lot of different properties to customize them. See if you can work out which property does what, and where in
the Properties window in the IDE you find it.

Where to find it
XAML property in the Properties What it does

window in the IDE
Content \

Determines how tall the

control should be

— At the top

I Brush
Sets the angle that the
control is turned
’b Appearance ‘
Rotation You use this in your C#
code to manipulate a
P Commen specific control

he color of the control

x :Name

P Transform

Use this when you want
text or graphics in your
control

solution

Now that you’ve built a user interface, you should have a sense of what some of the controls do, and you’ve used

emember how You set the f:)‘amc of {:\r\c.
Féanvas tontrol L “playhvea? That _sc{: ﬁ
“x:Namc" \avo‘nr{;y in the)(AML, whlc\'\. wi C#
tome in handy in 3 minute when Yyou write
tode to work with the Canvas.

you are here »

37

tick tick tick

Add timers to manage the gameplay

Let’s build on that great start by adding working gameplay elements. This game adds
more and more enemies, and the progress bar slowly fills up while the player drags the
human to the target. You’ll use timers to manage both of those things.

The MainPage. Xaml.ts file you've been editing

contains the tode for a class called MainPage.
o ADD MORE LINES TO THE TOP OF YOUR C# CODE. Vol learn about tlasses in Chapter 3.
Go up to the top of the file where you added that Random line. Add three more lines:

/// <summary>

/// A basic page that provides characteristics common to most applications.

/// </summary>
public sealed partial class MainPage

: Save_the_Humans.Common.LayoutAwarePage

{ Add these three lines

Random random = new Random();

DispatcherTimer enemyTimer = new DispatcherTimer();
DispatcherTimer targetTimer = new DispatcherTimer();
bool humanCaptured = false;

@ ADD A METHOD FOR ONE OF YOUR TIMERS.
Find this code that the IDE generated:
public MainPage()
{

}

this.InitializeComponent();

Put your cursor right after the semicolon, hit Enter two times, and type

enemyTimer. (including the period). As soon as you type the dot, an IntelliSense

window will pop up. Choose Tick from the IntelliSense window and type the

following text. As soon as you enter += the IDE pops up a box:
enemyTimer.Tick +=
enemyTimer_Tick; (Press TAB to insert)

Press the Tab key. The IDE will pop up another box:
enemyTimer.Tick +=enemyTimer Tick;

Press TAB to generate handler "enemyTimer_Tick' in this class

Press Tab one more time. Here’s the code the IDE generated for you:

public MainPage()

{ The IDE generated

this.InitializeComponent(); a method ‘COY‘ you

enemyTimer.Tick += enemyTimer Tick; called an CVC}"{:
} / handler. You'll learn

about event handlers
vold enemyTimer Tick(object sender, object e) in Chaytcv 5.

{
}

throw new NotImplementedException();

38 Chapter 1

below -Ehc one YOIA added
before. These are fields,
and \/ou)“ learn about
them in Chapter 4-

Tick
ﬁck

Timers "tick”
every time
interval by
calling methods
over and over
again. You'll use
one timer to add
enemies every
few seconds, and
the other to end
the game when
time expires.

[t's normal o add parentheses O start building with c#

hen writing about a method.
€© FINISH THE MaznPase() METHOD: "
You’ll add another Tick event handler for the other timer, and you’ll add @w A‘"

two more lines of code. Here’s what your finished MainPage () method v —
and the two methods the IDE generated for you should look like: Qwew

public MainPage() Right now your Start button
{ adds bouncing enemies to the
this.InitializeComponent(); play area. What do you think

enemyTimer.Tick += enemyTimer_Tick; you Il need to dO to make it
enemyTimer.Interval = TimeSpan.FromSeconds(2); start the game instead?

targetTimer.Tick += targetTimer Tick;
targetTimer.Interval = TimeSpan.FromSeconds(.1); TY'\/ chansms these

¥ numbers onte your

vold targetTimer_Tick(object sender, object e) 9ame 1s ‘CM'SHCd' How

: does that ¢hange the
throw new NotImplementedException(); 58"\‘?‘3\/?

}

vold enemyTimer_Tick(object sender, object e)

1
throw new NotImplementedException(}; $_ ;2::{5]53.?‘:;\8‘&‘1 'l:hcsc lines as
b €n You pressed Tab
to add the Tick event handlers.

You'll veplace them v
m with tode that
gets vun every time the timers tick.

@ ADD THE EnpTHeGame() METHOD.-
Go to the new targetTimer Tick () method, delete the line that the IDE generated, and add
the following code. The IntelliSense window might not seem quite right:
void targetTimer_Tick(object sender, cbject e) H—‘ You tlosed the Dcsignc\r tab

Did the [IDE i) progressBar.Value += 1; that had the XAML eode,

: i i double—click on MainP
: if (progressBar.Value »>= progressBar.Maximum) on /VldinFage.
::c:a{::gl;:gc EndTheGame(); *am| in the Solution Explorcr
the PPin 3 window to bring it up.

Fvog\rcssBar? Notice how progressBar has an error? That’s OK. We did this on purpose (and we’re not even
That's betause sorry about it!) to show you what it looks like when you try to use a control that doesn’t have a
there was no name, or has a typo in the name. Go back to the XAML code (it’s in the other tab in the IDE), find
lowertase—P the ProgressBar control that you added to the bottom row, and change its name to progressBar.

zv?\.{-f:Bah Next, go back to the code window and generate a method stub for EndTheGame (), just like you

" did a few pages ago for AddEnemy (). Here’s the code for the new method:

tlosest mateh e voig Erdres This method ends the

:‘é:‘:;“ld N private void EndTheGame() IF Sa"‘COVCVTcx{; Comes wp g?me by stoEpingt];he

ind was the (¢ (lolavAres.Children. Contai overText)) 35 an error. imers, making the

type of the z (IplayArea. children. Contains (genarerlees)) didn't S:Ez}:t means You Start button visible

tontrol. enemyTimer.Stop(); R_ “6amc Over? € name of the again, and adding
targetTimer.Stop(); back ver” TextBlock. Go the GAME OVER text
humanCaptured = false; ack and do it now. to the play area.

startButton.Visibility = Vvisibility.Visible;
playArea.Children.Add(gameOverText);

you are here » 39

so close i can taste it

Make the Start button work

Remember how you made the Start button fire circles into the Canvas? Now
youw’ll fix it so it actually starts the game.

We’re giving you a lot of code to

type in.
© Make the Start button start the game. P ,
Find the code you added earlier to make the Start button add an By the end of the book, you'll know

enemy. Change it so it looks like this: what all of this COd.e does—lin fa.Ct’)
yoU'll be able to write code just like it

private void startButton_Click{object sender, RoutedEventirgs e) on your own

1

StartG F job i
StartGame() When you thange this lne, you For now, your job is to make sure

1 Y ;
" you enter each line accurately, and
N_/ Jcakc the S tart button start to follow the instructions exactly. This
he 9ame instead of just adding

will get you used to entering code,
3n enemy to the playAvea Canvas. and will help give you a feel for the

© Add the StartGame() method. ins and outs of the IDE.

Generate a method stub for the StartGame () method. Here’s the If you get stuck, you can download

code to fill into the stub method that the IDE added: working versions of MainPage.xam!
T e) and MainPage.Xaml.cs or copy and
? You'll leavn about paste XAML or C# code for each
human.IsHitTestvisible = true; <« [sHit TestVisible in individual method:
et e el Chapter [5. http://www. headfirstlabs.com/hfcsharp.
progressBar.Value = @;
startButton.visibility = visibility.Collapsed;
playArea.Children.Clear();
playArea.Children.Add(target); Did you forget to set the names of
playArea.Children.Add({human); the ‘(’,&YSC'{Z Rcd:angk or the human
Timer.Start();
E;igit'::’r;ri;rj:;riz); StackPanel? \/ou ¢an look a -ch Ayagcs
1 back to make sure you set the vight

names for all of the ontrols.

© Make the enemy timer add the enemies.

Find the enemyTimer Tick () method that the IDE added for Onte you've used to working with

you and replace its contents with this: tode, YW’“ be 900d at spot {:ing Lhose

vold enemyTimer_Tick(object sender, object e) / missing Farcn{hcscs, Scmit'.olons, ete.
AddEnemy () ; R . . .

3 Are you seeing errors in the Error List window that don’t make

sense? One misplaced comma or semicolon can cause two,
three, four, or more errors to show up. Don’t waste your time
trying to track down every typo! Just go to the Head First Labs
web page—we made it really easy for you to copy and paste all
of the code in this program.

40 Chapter 1

» http://www.headfirstlabs.com/hfcsharp/

start building with c#

Alert! Qur spies
have reported that the
humans are building up
their defenses!

Run the program to see your progress :; o

Your game is coming along. Run it again to see how it’s shaping up.

When You press the “Start!” button,
it disappears, tleavs the enemies, and
starts the progress bar filling up- The play avea slowly stavts 4o £ill up

with boum:ing enemies.

Save the Humans

Avoid These

When the progress bav at the

bod'f:{:zm ‘(';Hs up, {:hc gamc ends RA‘N

and the Qame Over text WY

displayed. : va Ew

A What do you think you'll need to do to get the rest

The target timer should fill up of your game working?
slowl\/, and the enemies should appear
:&ry two setonds. |£ the {:iming is —

, make sure You added all of £h i i !
lines to the MainPage() method. : it e e nd e

you are here » 41

in any event...

Add OOde 1'0 Wlake VOUI’ con‘l'l’0|s Make sure you switch back
interact with the player to the IDE and stop the

app before you make more

You’ve got a human that the player needs to drag to the target, and a changes to the code.
target that has to sense when the human’s been dragged to it. It’s time
to add code to make those things work. You'll learn more

abou{: {‘)\c cvenJc
handlevs in the
@ Go to the XAML designer and use the Document Outline window to select human Properties window
(remember, it’s the StackPanel that contains a Circle and a Rectangle). Then go to the in Chapter k.
Properties window and press the [7] button to switch it to show event handlers. Find
the PointerPressed row and double-click in the empty box.

T .
ve Dotumert Outlng
m .
Name human ¥ | Y ave Lo aPSCd [6V‘ld3,
playAvea, and other lines.
Type StackPanel

1€ it did, Jjust expand them

PointerExited ~ Double-click in this box. to find the human tontrol

PointerMoved
PointerPressed

PointerReleased

Now go back and check out what the IDE added to your XAML for the StackPanel:

<StackPanel x:Name="human” Orientation="Vertical" PointerPressed="human PointerPressed"»

It also generated a method stub for you. Right-click on human PointerPressedin
the XAML and choose “Navigate to Event Handler” to jump straight to the C# code:

private void human_PointerPressed(object sender, PointerRoutedEventfrgs e)

{

) You can use these
buttons to switch

@ Fill in the C# code: between showing

private woid human_PointerPressed(object sender, PointerRoutedEventArgs e) properties and
1
if (enemyTimer.IsEnabled) ?vent handlel-'s
i in the Properites
humanCaptured = true; window.
human.IsHitTestVisible = false;
b
3

Properties
If you go back to the designer and Heme| human
click on the StackPanel again, you’ll fype Stackane
see that the IDE filled in the name pointeroved

of the new event handler method. m—% ;e
You’ll be adding more event handler PointerReleased
methods the same way.

42 Chapter 1

PointerExited =

human_PointerPressed

Make sure you add the vight event handler! You added a start building with c#
Poin{:ch\rgssgd event handler o the human, but now \/ou)\rc

adding a PointerEnteved event handler 4o the taraet.

@ Use the Document Outline window to select the Rectangle named target,
then use the event handlers view of the Properties window to add a

When the Properties
window is in the mode
where it displays event

PointerEntered event handler. Here’s the code for the method: hapdlers, double-
. . . .]) clicking on an empty

{:[lrlvate void target_PointerEntered(object sender, PointerRoutedEventhrgs e) event handler box
. . causes the IDE to add

if (targetTimer.IsEnabled && humanCaptured .
[Gecs P) a method stub for it.

progressBar.Value = @;

Canvas.SetLeft(target, random.Mext(188, (int)playArea.ActualWidth - 1ee)
Canvas.SetTop(target, random.Next(1e8, (int)playArea.ActualHeight - 1@8)
Canvas.SetLeft(human, random.Next(le8, (int)playArea.ActualWidth - 1@8));

Canvas.SetTop(human, random.Mext(188, (int)playArea.ActualHeight - 188));
humanCaptured = false;

" Sl
uman.IsHitTestWVisible = true;

MName target F K
1 O g

s
).

El

h Type Rectangle
PointerCanceled =
PointerCapturelost
,) . . PointerEntered target_PointerEntered
You'll need to switeh Your Properties window back DointerErte B
to show properties instead of event handlevs. ’q/

@ Now you’ll add two more event handlers, this time to the playArea Canvas control. You’ll need to find the
right [Grid] in the Document Outline (there are two of them—use the child grid that’s indented under
the main grid for the page) and set its name to grid. Then you can add these event handlers to playArea:
private void playArea_PointerMoved(object sender, PointerRoutedEventirgs e)

: That's a lot of Varcnjchcscs!
if (humanCaptured)

Be veally caveful and get
{ \/

them righjo
Point pointerPosition = e.GetCurrentPoint(null).Position;

These ¢ tieal Point relativePosition = grid.TransformToVisual(playArea).TransformPoint(pointerPosition);
€ two vcr. 1ta if ((Math.Abs(relativePosition.X - Canvas.GetLeft(human)) > human.ActualWidth * 3)
bavs are a Iogncal —> || (Math.Abs({relativePosition.¥ - Canvas.GetTop(human)) > human.ActualHeight * 3))

opevator. You'll {

learn about them humanCaptL:lr'ed = fai!.se;.
. human. IsHitTestVisible = true;
in Chapter 2.)
else You can make the
{ game more or
Canvas.SetLeft(human, relativePosition.X - human.ActualWidth / 2); less sensitive by
Canvas.SetTop(human, relativePosition.Y - human.ActualHeight / 2); changing these
)
} 3s to alower or

}

higher number.

private void playArea_PointerExited(object sender, PointerRoutedEventirgs e)

1 :
if (humanCaptured)
EndTheGame(); Name playArea ~
} Type Canvas
Make sure You put the vight code PointerExited playArea_PointerExited =
in ‘H\C Cowc(;{; cven{; hahdlch’ Pointerhoved playfirea_Pointerhaoved
DOY\,‘E aCCidCh‘EAH\/ swaF '{')\cm. PointerPressed
PointerReleased

you are here » 43

you can’t save them all

Pragaging humans onto enemies ends the game

When the player drags the human into an enemy, the game should end. Let’s add the code to do that.
Go to your AddEnemy () method and add one more line of code to the end. Use the IntelliSense
window to fill in enemyPointer.PointerEntered from the list:

private void AddEnemy()

{
ContentContrel enemy = new CoententControl();
enemy.Template = Resources["EnemyTemplate™] as ControlTemplate;
AnimateEnemy(enemy, @, playArea.ActualWidth - 188, "(Canvas.Left)");
AnimateEnemy(enemy, random.Next((int)playArea.ActualHeight - 1@a),
random.Next((int)(playArea.ActualHeight - 188)), "(Canvas.Top)");
playArea.Children.Add{enemy); R
my.Pointe Here's the last line of your
T P . our
} @ CapturePointer a AddE"c"“/O mc‘u\°:(: i \{
£ PointerCanceled tursor at the end the line
Start {"\/P"‘S this line of # PointerCapturelost and hit Enter 1o add the
tode. AS soon as You enter & PointerCaptures new line 0‘(: tode.

the dot, an IntelliSense ¥
window will Pop up- chy ¥
{\/Pihs “Pointer”’ '{:o\)um? £ PointerMoved
down to the entvies in 14
the list that start with 4

“Pointer...”

44

PointerEntered PointerEventHandler UIElement.PointerEntered

PointerExited Occurs when a pointer enters the hit test area of this element.

PointerPreszed

PointerReleased -

Choose PointerEntered from the list. (If you choose the wrong one, don’t worry—just backspace
over it to delete everything past the dot. Then enter the dot again to bring up the IntelliSense window.)

Next, add an event handler, just like you did before. Type += and then press Tab:

enemy.PointerEntered +5

)
enemy.PointerEntered: (Press TAB o mser) 4 You Il learn all abou{:
how event handlers like

this work in Chapter I5.

Then press Tab again to generate the stub for your event handler:

enemy .PointerEntered += enemy Pointer'EnteL\gd;

Press TAB to generate handler 'enemy_PointerEntered’ in this class

Now you can go to the new method that the IDE generated for you and fill in the code:

vold enemy_PointerEntered(object sender, PointerRoutedEventérgs e)

1
if (humanCaptured)

EndTheGame(};
¥

Chapter 1

start building with c#

Your gawme is now playable

Run your game—it’s almost done! When you click the Start button, your play
area is cleared of any enemies, and only the human and target remain. You
have to get the human to the target before the progress bar fills up. Simple at
first, but it gets harder as the screen fills with dangerous alien enemies!

Dra 0

-«

the human to safet

The aliens only spend theiv
time Pa‘{:ro”ins or moving
humans, so Jchc gamc onl\/
ends if You dvag a human
onto an enemy. Onte You
velease the human, he’s
temporarily safe from aliens.

Look through the code and find
wheve You set the [sHit TestVisible
Property on the human. When

it’s on, the human in'l:crLcP'l:S the
PointerEntered event betause the
human’s StackPanel tontrol is si-{:{ing
between the enemy and the pointer-.

Get him to the target before time's up..

wbut Jrag too fast, and you'll lose your human!

you are here » 45

bells whistles aliens

Make your enewies look like aliens

Red circles aren’t exactly menacing. Luckily, you used a template.
All you need to do is update it.

Seeing events
instead of
properties?

Watc}l it-’ You can toggle the

Properties window
between displaying properties or
events for the selected
control by clicking the el
wrench or lightning bolt icons.

o Go to the Document Outline, right-click on the ContentControl,

choose Edit Template, and then Edit Current to edit the template. :
You'll see the template in the XAML window. Edit the XAML code :
for the ellipse to set the width to 75 and the fill to Gray. Then add :
Stroke="Black"” to add a black outline, and reset its vertical and :
horizontal alignments. Here’s what it should look like (you can delete :
any additional properties that may have inadvertently been added 77
while you worked on it):

<Ellipse Fill="Gray" Height="186" Width="75%" Stroke="Black" />

e Drag another Ellipse control out of the toolbox on top of the existing ellipse. Change its Fill to
black, set its width to 25, and its height to 35. Set the alignment and margins like this:

HorizontalAlignm... |[= = = =
VerticalAlignment @ TRR1S - r\ You tan also “eyeball” it (exeuse the pun) by using
— Lhe mouse or arvow keys to dvag the ellipse into
HE 120 *L70 C place. Try using Copy and Paste in the Edit menu to
ey $o topy the c”i‘?sc and ?as{:c another one on {'p\? of it

e Use the # button in the Transforms section of the Properties window to add a Skew transform:
n & F ® Y

X 10] Y O [m]

o Drag one more Ellipse control out of the toolbox on top of the existing ellipse. Change its fill to
Black, set its width to 25, and set its height to 35. Set the alignment and margins like this:

HorizontalAlignm... | |= = | =] [
VerticalAlignment lfl B L1]
Margin « 70 =+ 40
220 o U Avoid These
.) Now Your enemies /
and add a skew like this:

look a lot move like
2 & y 4 ®] human-—ca{fmg aliens.

X -10 m V0 = Lj

46 Chapter 1

start building with c#

Add a splash screen and a tile _
Don’t feel like making your own splash

That big X that appears when you start your program is a splash screen or logos? Ypu can download ours:
screen. And when you go back to the Windows Start page, there it hitp://www.headfirstlabs.com/hfcsharp
1s again in the tile. Let’s change these things.

Expand the ml Assets (glder in the Solution Explorer window and

s =Rl you'll see four files. Double-click each of them to edit them in Paint.
N o-eREB & Edit SplashScreen. png to create a splash screen tha‘t’s displafyed when
Search Solution Explorer (Ctrl+;) p- the game starts. Logo.png and. Sm'allLogo.])r.zg are displayed in the S.tart
o . _ screen. And when your app is displayed in the search results (or in the
&1 Solution 'Save the Humans' (1 project) . N .
D e S Windows Store!), it displays StoreLogo. png.

p & Properties

P =B References

4 | Assets
Logo.png
SmallLego.png g <
SplashScreen.png S S
Bl storelogo.png

B0
= ENEEN EeEw
= P]) g

N 5 e I I =

Some editions

p B Common " o‘p V"s"al
P B Appxaml L S Studio use
4 Iy MainPagexaml| ! heir own
b) MainPagexaml.cs . SA VE THE :Y'a;?hiés
Package.appxmanifest A4)
£ Save the Humans_TemporaryKey.pfx HU ANS cdl‘EOY‘S
_ instead of
MS Paint.

Size: 36.2K8 100% (=) ®

<ControlTemplate x:Key="EnemyTemplate" TargetType="ContentControl">
<Grid>

<Ellipse Fill="Gray" Stroke="Black" Height="100" Width="75"/>

<Ellipse Fill="Black" Stroke="Black" Height="35" Width="25"
HorizontalAlignment="Center" VerticalAlignment="Top"
Margin="40,20,70,0" RenderTransformOrigin="0.5,08.5">

<Ellipse.RenderTransform>

<CompositeTransform SkewX="18"/>

Heve's the updated XAML for the
</Ellipse.RenderTransform>

new enemy template that you eveated.

</Ellipse>
<Ellipse Fill="Black" Stroke="Black" Height="35" Width="25"
HorizontalAlignment="Center" VerticalAlignment="Top"
/ Margin="70,20,40,0" RenderTransformOrigin="0.5,0.5">

<Ellipse.RenderTransform>
<CompositeTransform Skewx="-10"/>
</Ellipse.RenderTransform>

</Ellipse> THERE’S JUST ONE MORE THING YOU NEED TO DO...

</Grid>

</ControlTemplate> P(/AY YOUE é’AME!

See 'hc You an 55{; eveative and Changc the vay Ah d don't £ o\rge‘{'— to s{:c? back and \rca“\/

the human, target, play area, and enemies look. appreciate what you built. Qood \')ob! you are here » 47

your app becomes everyone’s app

Publish your app

You should be pretty pleased with your app! Now
it’s time to deploy it. When you publish your app
to the Windows Store, you make it available to
millions of potential users. The IDE can help
guide you through the steps to publish your app to
the Windows Store.

Here’s what it takes to get your app out there:

48

Open a Windows Store
developer account.

Y ou are here!

XAML Main Page Deployment
and Containers Windows Ul C# Code Package g
I-PN

......

Controls [t
: . 5 j sereon
A T TicK svent handil bp

STORE TEST WINDOW HELP

Choose your app’s name, set an
age rating, write a description,
and choose a business model to
determine if your app is free,
ad-supported, or has a price.

Test your app using the
Windows App Certification Kit
to identify and fix any problems.

Open Developer Account...
Reserve App Name...

Acquire Developer License...

Edit App Manifest
Associate App with the Store...

Capture Screenshots...

Create App Packages...
Upload App Packages...

Submit your app to the
Store! Once it’s accepted,
millions of people around the
world can find and download it.

Throughout the book we'll show you wheve to find
more information £rom MSDN, the Microso‘%
Developer Network. This is a veally valuable vesource
that helps you keep expanding your knowledge.

|

The Store menu in the [DE has all of the
tools you need to publish Your app-

1

In some editions of Visual Studio, the
Windows Stove options appear undev the
P\ro\)cd‘{: menu instead of having their own
top-level Store menu.

(> You can learn more about how to publish apps to the Windows Store here:
http://msdn.microsoft.com/en-usl/library/windows/appsl/jj657972.aspx

Chapter 1

start building with c#

Use the Remote Pebugger to sideload your app

Sometimes you want to run your app on a remote machine without publishing it to the
Windows Store. When you install your app on a machine without going through the
Windows Store it’s called sideloading, and one of the easiest ways to do it is to install
the Visual Studio Remote Debugger on another computer.

At the time this is being written, you'll
find “Remote Tools for f\a/iSual S{:w;i\/ioul

Here’s how to get your app loaded using the Remote Debugger: 2012 Update 2,” but You may find

*
*

future updates. J

Make sure the remote machine is running Windows 8.

Go to the Microsoft Download Center (http://www.microsofl.com/en-hk/download/default. aspx) on the
remote machine and search for “Remote Tools for Visual Studio 2012.”

Download the installer for your machine’s architecture (x86, x64, ARM) and run it to install the
remote tools.

Go to the Start page and launch the Remote Debugger. - D

Remote
Debugger

If your computer’s network configuration needs to change, it may pop up a wizard to help with that.
Once it’s running, you'll see the Visual Studio Remote Debugging Monitor window:

b Visual Studio Remote Debugging Monitor - O
Eile Tools Help

Date and Time Description

This is vunning on a tomputer called MY-SURFACE. Take
note of the machine name, because it will tome in handy in
a minute.

* Your remote computer is now running the Visual Studio Remote Debugging Monitor and waiting

for incoming connections from Visual Studio on your development machine.

If you have an odd network setup, you may have trouble running the
remote debugger. This MDSN page can help you get it set up:
http://msdn.microsoft.com/en-usl/library/vstudio/bt727f1t.aspx

Flip to get your app up and running on the remote computer! emm—

you are here »

49

humans saved for now

Start remote debugging

Once you've got a remote computer running the remote debugging monitor, you
can launch the app from Visual Studio to install and run it. This will automatically
sideload your app on the computer, and you’ll be able to run it again from the Start
page any time you want.

©

CHOOSE “"REMOTE MACHINE"” FROM THE DEBUG DROP-DOWN.-

You can use the Debug drop-down to tell the IDE to run your program on a remote
machine. Take a close look at the P Local Machine ~ hutton you've been using to run your
program—you’ll see a drop-down (=). Click it to show the drop-down and choose Remote

Machine:

[:Z:- Remote Machine ~ JEVE I RS
P Remote Machine

Simulator
Local Machine
Remote Machine

Don't forget to thange this

baek to Simulator when \/ou'\rc
veady to move on to the next
Lha?‘{:cr_’ You'll be writing a bunth
of programs, and you'll need this
button to vun them.

RUN YOUR PROGRAM ON THE REMOTE MACHINE.-
Now run your program by clicking the ® button. The IDE will pop up a window asking for the
machine to run on. If it doesn’t detect it in your subnet, you can enter the machine name manually:

Filter Jo i

Searching...

@ Manual Configuration

Address: |MY-SURFACE
N

Authentication Mode: | Windows l\

\
| \ Select

@ My Subnet
Enter the name of the mathine vunning

the Remote Debugging Monitor-

Learn more about Remote Debugging

50 Chapter 1

If you need to change the machine
in the future, you can do it in the
project settings. Right-click on
the project name in the Solution
Explorer and choose Properties,
then choose the IZEE tab.
If you clear the Remote machine: field
and restart the remote debugger,
the Remote Debugger Connections
window will pop up again.

start building with c#

ENTER YOUR CREDENTIALS.-
You’ll be prompted to enter the username and]
. Enter your credentials

password of the user on the remote machine. i : :

. . . isual Studio was unable to create a secure connection to
You can turn off authentication in the Remote MY-SURFACE4016. Authentication failed.
Debugging Monitor if you want to avoid this (bllt To retry, enter your credentials for MY-SURFACE.
that’s not a great idea, because then anyone can

i I

run programs on your machine remotely!).

[User name

H [Password

Domain:

[[] Remember my credentials

==

GET YOUR DEVELOPER LICENSE.

You already obtained a free developer license from

Microsoft when you installed Visual Studio. You need Developer license acquisition has been started on machine
. . . . "MY-SURFACE", Please check that machine's console to complete
that license in order to sideload apps onto a machine. developer license acquisition,

Luckily, the Remote Debugging Monitor will pop up a
wizard to get it automatically.

NOW...SAVE SOME HUMANS!

Once you get through that setup, your program will start running on the
remote machine. Since it’s sideloaded, if you want to run it again you can
just run it from the Windows Start page. Congratulations, you’ve built your
first Windows Store app and loaded it onto another computer!

Invasion force, full retreat! That's
an order! These Earthlings are no
pushovers. We’ll need to regroup and
replan our attack.

Congratulations! You've
U eld off the alen

invasion...for now. Bu{: we
have a ‘Fcciing "{Fa{: this
isn't the last we've heard
O‘F ‘H\Cm.

you are here » 51

2 it’s all just code

*
* Under the hood *

ONE OF THESE DAYS
I’LL FIGURE oUuT
WHAT’S GOING ON
UNDER THERE.--

You’re a programmer, not just an IDE user.

You can get a lot of work done using the IDE. But there’s only so far it
can take you. Sure, there are a lot of repetitive tasks that you do when
you build an application. And the IDE is great at doing those things for
you. But working with the IDE is only the beginning. You can get your
programs to do so much more—and writing C# code is how you do it.

Once you get the hang of coding, there’s nothing your programs can’t do.

this is a new chapter

53

at your

When youtre doing this... Al of these fasks have 4o

do with standard actions
and boilerplate code. Those
are the things the [DE is
great for helping with.

The IDE is a powerful tool—but that’s all it is, a foo/ for you to use. Every time
you change your project or drag and drop something in the IDE, it creates code
automatically. It’s really good at writing boilerplate code, or code that can be
reused easily without requiring much customization.

Let’s look at what the IDE does in a typical application development, when you're...

o CREATING A WINDOWS STORE PROJECT
There are several kinds of applications the IDE lets
you build. We’ll be concentrating on Windows Store
applications for now—you’ll learn about other kinds of
applications in the next chapter.

In Chapter |, You treated a blank Windows Stove pr jeet—
that told the IDE 4o eveate an empty page and an;JiJc
) Your new Fro\)ct‘b

© braceING A cONTROL OUT OF THE
TOOLBOX AND ONTO YOUR PAGE, AND
THEN DOUBLE-CLICKING IT

Controls are how you make things happen in your page.
In this chapter, we’ll use Button controls to explore
various parts of the C# language.

o MName startButton ¥
© seTTING A PROPERTY ON YOUR PAGE Type suton
The Properties window in the IDE is a really acarchBiopesties A,

Arrange by: Category ~

powerful tool that you can use to change attributes of
b b Brush

just about everything in your program: all visual and NFEE—

functional properties for the controls on your page,

4 Common
and even options on your project itself. ClickMode Release ~lo
Content Start! _
Tl’\c . . . ContentTransitions (Collection) O
casy ’:I::/chf':dsiz”“d°w lz the IDE is 4 reaH/v TooMipServiceTool.. lIln
tode in MainPa .a SPICC' - Chu.nk m(' XAML i D
9e-Xam aufoma'lu{_a”y) and it ean v

save You time. Use the Al

open the Properties windo —Enter shorteut 4o

w it it's tlosed.
54

it’s all just code

..the IPE does this

Every time you make a change in the IDE, it makes a

change to the code, which means it changes the files that

contain that code. Sometimes it just modifies a few lines,

but other times it adds entire files to your project. These files are eveated firo
a predefined template fha{:m
Coh'l:aihs ‘l:he basic Codc '{'p
ereate and disFIay a page.

© ---THE IDE CREATES THE FILES AND
FOLDERS FOR THE PROJECT.-

-

Save The Humans MainPage.xaml MainPage.xaml.cs SplashScreen.png Properties
.csproj

© ...7we 1pE ADDS copE TO MAINPAGE-XAML THAT ADDS A
BUTTON, AND THEN ADDS A METHOD TO MAINPAGE-XAML -CS
THAT GETS BUN ANY TIME THE BUTTON IS CLICKED-

q private void startButton Click(object sender, RoutedEventArgs e)
{ /R\
}

The [DE knows how to add an cmy{:\/ :nc{:hod
4o handle a button elick. But it doesn't know
what to ?u{: inside it—that's Your \')ob‘

MainPage.xaml.cs

9 ...THE IDE OPENS THE MAINPAGE-XAML FILE
AND UPDATES A LINE OF XAML CODE-

The IDE went into this file...

<Button x:Name="startButton"

- contentrstarey” —

HorizontalAlignment="Center"

VerticalAlignment="Center" Click="startButton Click"/>

MainPage.xaml

.and updated this XAML eode-

you are here » 55

great, the “talk”

Where programs come from

A C# program may start out as statements in a bunch of

files, but it ends up as a program running in your computer.
Here’s how it gets there.

56

Every program starts out as source code files

You've already seen how to edit a program, and how the IDE saves your program to
files in a folder. Those files are your program—you can copy them to a new folder
and open them up, and everything will be there: pages, resources, code, and anything
else you added to your project.

You can think of the IDE as a kind of fancy file editor. It automatically does the
indenting for you, changes the colors of the keywords, matches up brackets for you,
and even suggests what words might come next. But in the end, all the IDE does is
edit the files that contain your program.

. ' There's no veason You
The IDE bundles all of the files for your program into a solution by creating a couldn’t build your

solution (.s/n) file and a folder that contains all of the other files for the program. The programs in Notepad
solution file has a list of the project files (which end in .csproj) in the solution, and the but it'd be a lot '
project files contain lists of all the other files associated with the program. In this
book, you’ll be building solutions that only have one project in them, but you can
casily add other projects to your solution using the IDE’s Solution Explorer.

more {imc—donsuming.

Build the program to create an executable

When you select Build Solution from the Build menu, the IDE compiles
your program. It does this by running the compiler, which is a tool that
reads your program’s source code and turns it into an executable. The
executable 1s a file on your disk that ends in .exe—that’s the actual program
that Windows runs. When you build the program, it creates the executable
inside the bin folder, which is inside the project folder. When you publish
your solution, it copies the executable (and any other files necessary) into
into a package that can be uploaded to the Windows Store or sideloaded.

When you select Start Debugging from the Debug menu, the IDE compiles
your program and runs the executable. It’s got some more advanced tools
for debugging your program, which just means running it and being able
to pause (or “break”) it so you can figure out what’s going on.

Chapter 2

it’s all code

The .NET Framework gives you the right tools for the job

C# is just a language—Dby itself; it can’t actually do anything. And that’s where the .NET
Framework comes in. Those controls you dragged out of the toolbox? Those are all part of
a library of tools, classes, methods, and other useful things. It’s got visual tools like the XAML
toolbox controls you used, and other useful things like the DispatcherTimer that made your
Save the Humans game work.

All of the controls you used are part of .NET for Windows Store apps, which contains
an API with grids, buttons, pages, and other tools for building Windows Store apps. But for
a few chapters starting with Chapter 3, you’ll learn all about writing desktop applications,

which are built using tools from the .NET for Windows Desktop (which some people call \

“WinTorms”). It’s got tools to build desktop applications from windows that hold forms with
checkboxes, buttons, and lists. It can draw graphics, read and write files, manage collections
of things...all sorts of tools for a lot of jobs that programmers have to do every day. The

funny thing is that Windows Store apps need to do those things, too! One of the things An API, or Application
you’ll learn by the end of this book is how Windows Store and Windows Desktop apps do PV°3V3"‘"‘""5 [ntevface, is
some of those things differently. That’s the kind of insight and understanding that helps good a tolleetion of code tools
programmers become great programmers. that You use to aceess

or Coh‘brol a S\/s‘{:Cm.
Many systems have APls,
but they've especially
important for operating
sx/s{xms like Windows.

The tools in both the Windows Runtime and the .NET Iramework are divided up into
namespaces. You've seen these namespaces before, at the top of your code in the “using” lines.
One namespace is called Windows .UI.Xaml.Conrols—it’s where your buttons, checkboxes,
and other controls come from. Whenever you create a new Windows Store project, the IDE will
add the necessary files so that your project contains a page, and those files have the line “using
Windows.UI.Xaml.Controls;” at the top.

You can see an overview of .NET for Windows Store apps here:
http://msdn.microsoft.com/en-usl/library/windows/apps/br230302.aspx

Your program rums inside the Common Language Runtime

Every program in Windows 8 runs on an architecture called the Windows Runtime. But
there’s an extra “layer” between the Windows Runtime and your program called the
Common Language Runtime, or CLR. Once upon a time, not so long ago (but before
C# was around), writing programs was harder, because you had to deal with hardware and
low-level machine stuff. You never knew exactly how someone was going to configure his

computer. The CLR—often referred to as a virtual machine—takes care of all that for
you by doing a sort of “translation” between your program and the computer running it.

You don't veally have to worry
You’ll learn about all sorts of things the CLR does for you. For example, it tightly manages ;) .+ +he CLR muth vigh £

your computer’s memory by figuring out when your program is finished with certain pieces | |4 enough 4o know it's
of data and getting rid of them for you. That’s something programmers used to have to do 4}, . and takes tave of
themselves, and it’s something that you don’t have to be bothered with. You won’t know it vunning Your program for you
at the time, but the CLR will make your job of learning C# a whole lot easier. avkomati call\/. You'll learn more

about it as you 9o

57

mother’s little helper

The IDE helps you code

You've already seen many of the things that the IDE can do.
Let’s take a closer look at some of the tools it gives you, to

make sure you're starting off with all the tools you need.

58

o

THE SOLUTION EXPLORER SHOWS YoU EVERYTHING
IN YOUR PROJECT

You’ll spend a lot of time going back and forth between classes, and the easiest
way to do that is to use the Solution Explorer. Here’s what the Solution Explorer
looked like after creating a blank app called Appl:

Solution Explorer * I X
@ e-2naBm o &H
Search Solution Explorer (Ctrl+;) P~ E)
fa] Solution 'App1' (1 project) The Solution
4 [Appl Explover
b B Properties shows You the
[=B References dichcrcn{: files
b Assets in the solution
b Common foldcr.
b Appaaml
&= Appl_TemporaryKey.pfx

X MainPagexaml
Package.appxmanifest

USE THE TABS TO SWITCH BETWEEN OPEN FILES

Since your program is split up into more than one file, you’ll usually have several
code files open at once. When you do, each one will be in its own tab in the code
editor. The IDE displays an asterisk (¥) next to a filename if it hasn’t been saved yet.

S - a9 - = P Local Machine = Debug ~ Any CPU

A

MainPage.xaml MainPagexaml.cs # X

N~

When \/ou’rc working on a program, Zou’" oc{‘,cr\- have two
tabs for it at the same time—one for the dc.sugncr, and
one to view the tode. Use Control—Tab to switeh between

open windows quickly.

Chapter 2

A miss'm5
semitolon at
‘U\c end o('\ a
S{:a‘[:c"\cw{: is
one of the most
Common evrvrovrs
that keeps your
program from
building.

it’s all just code

THE IDE HELPS YoU WRITE CODE

Did you notice little windows popping up as you typed code into the IDE? That’s

a feature called IntelliSense, and it’s really useful. One thing it does is show you
possible ways to complete your current line of code. If you type random and then a
period, it knows that there are three valid ways to complete that line:

randen| The IDE knows that vandom
@ Equals has methods Next, NC*‘EBY{:CS,
@ GetHashCode NextDouble, and four others. |£ vou
© GetType type N, it seleets Next. Type "
@ int Random.Mext(int minValue, int maxValue) (+ 2 overload(s)) ~ or space, Tab, or Enter o tell £he
@ MextBytes Returns a randorm number within a specified range. ‘DE to £|” it in 1Cov- ou. That can
@ I‘~Ita:t'l:[.}oublE Exceptions: be a veal Limesaver ig\/ou)\rc ‘{ZYPlhﬁ
@ ToString System.ArgumentQutOfRangeException alot of Y‘C&“Y on\g method names.

.,
o
=3
o
g
g
&

t Random.Mext(int maxValue)
Returns a nonnegative random number less than the specified maximum.

axValue: The exclusive upper bound of the random number to be generated. maxValue must be greater than or equal to zero.

This means that theve ave 3 diffevent ways that

You éan call the Random.Next() method.

If you select Next and type (, the IDE’s IntelliSense will show you information
about how you can complete the line.

h use the debugger to
\:{Ancio\\,;u\?rogram inside the [DE,

st thing it does is build

the .
THE ERROR LIST HELPS YoU TROUBLESHOOT your program- £ it Lom?l\zs) .
COMPILER ERRORS ven our proagam vurs If vot,
If you haven’t already discovered how easy it is to make typos in a C# it won't vun, and will show Yyou

program, you’ll find out very soon! Luckily, the IDE gives you a great tool for evrors in the Evvor List.
troubleshooting them. When you build your solution, any problems that keep it
from compiling will show up in the Error List window at the bottom of the IDE:

b 0 Warnings 0 Messages Search Error List P~
Description File Line = Colu.. = Project =

(})1 ; expected MainPagexaml.cs

€3 2 'System.Random' does not contain a definition for ‘'Nxet’ and no extension method 'Nxet' accepting a first MainPagexaml.cs 30 20 Appl
argument of type 'Systern.Random’ could be found (are you missing a using directive or an assembly reference?)

Error List| Output

Double-click on an error, and the IDE will jump to the problem in the code:
, The IDE will show a squigaly
int j = random.Next(1@)_ understore to show you that
sexpected | there's an ervor. Hover over it
to see the same ervor message
that appears in the Evvor List.

you are here » 59

your program makes a statement

Every time you make 3 new program, You

define namespace for i .
Anatowmy of a program s sepovate Broroee for it so that its coge

Every C# program’s code is structured in exactly the

' om the NET Fram
Windows Store AP| lasses Fra ework and

same way. All programs use namespaces, classes,

and methods to make your code easier to manage.

A elass tontains 3 \flc_l:c- of your
program (although some very small
programs £an have \')us{: one tlas

The order of the
methods in the

tlass ‘Filc docsn)‘l:
STATEMENT matter—method

s).

N

A ¢class has one or move methods. STATEMENT - 2 ean \)ust as

Your methods always have o live

easi |\/ tome

inside a elass. And methods ave } METHOD 2 before method |.
made up of sta{xmcn{:s—M ' STATEMENT </

ones You've already seen.

STATEMENT

Let’s take a closer look at your code

Open up the code from your Save the Humans project’s

MainPage.xaml.cs so we can have a closer look at it.

©® THE CODE FILE STARTS BY USING THE -NET FRAMEWORK TOOLS
You’ll find a set of using lines at the top of every program file. They tell C# which parts of the

NET Framework or Windows Store API to use. If you use other classes that are in other namespaces,

then you’ll add using lines for them, too. Since apps often use a lot of different tools from the .NET
Framework and Windows Store API, the IDE automatically adds a bunch of using lines when it
creates a page (which 1sn’t quite as “blank™ as it appeared) and adds it to your project.

using
using
using
using
using
using
using

System; These using lines are at the top
System.Collections.Generic; Eiﬂﬂyuﬁcﬁh.Tmyfm
System.IO; to use all of those NET
ys . ; Framework ¢lasses. Eath one tells
System.Linq; Your program that the elasses
Windows .Foundation; in this particular .es file will use

Windows.Foundation.Collections; w°££kch““i"mcwaww

] NET Framework (S stem)
Windows .UI.Xaml; Windows Store AP| nameepace

One thing to keep in mind: you don’t actually Aave to use a using statement. You can always use
the fully qualified name. Back in your Save the Humans app, you added this line:

using Windows.UI.Xaml.Media.Animation;

Try commenting out that line by adding // in front of it, then have a look at the errors that show

up in the error list. You can make one of them go away. Find a Storyboard that the IDE now tells

you has an error, and change it to Windows.UI.Xaml.Media.Animation.Storyboard (butyou

should undo the comment you added to make your program work again).

60 Chapter 2

it’s all just code

C# PROGRAMS ARE ORGANIZED INTO CLASSES

Every C# program is organized into classes. A class can do anything, but most classes
do one specific thing. When you created the new program, the IDE added a class called
MainPage that displays the page. When you called Your program Save the Humans, the [DE eveated a
[_\ namespate for it called Save_the_Humans (it converted the spaces
to understores because namespaces tan't have spates) by adding the

namespace Save_the Humans ;,.pace keyword at the top of your code file. Everything inside its

j paiv of eurly brackets is part of the Save_the Humans namespace.

(3]

Look for the
ma{:ching paivs
of brackets.
Every {is
eventually
paired up with
a } Some
pairs £an be
inside othevs.

public sealed partial class MainPage : Page
: This is a class called MainPage. [+ contains all of the code to make the page work. The
IDE eveated it when you told it to eveate a new blank CH# Windows Store project.

CLASSES CONTAIN METHODS THAT PERFORM ACTIONS

When a class needs to do something, it uses a method. A method takes input, performs some
action, and sometimes produces an output. The way you pass input into a method is by using
parameters. Methods can behave differently depending on what input they’re given. Some
methods produce output. When they do, it’s called a return value. If you see the keyword
void in front of a method, that means it doesn’t return anything:

void startButton Click (object sender, object e)<-\

< method
{ /_/Q\ This line ealls a method named —l;‘\“:{_l::' ’
StartGame () ; StartGame(), which the IDE 2

g{-,c\'s
helped you eveate when you avam der
} asked it to add a method stub. ca\\cd sen

and €
A STATEMENT PERFORMS ONE SINGLE ACTION
When you filled in the StartGame () method, you added a bunch of statements. Every
method is made up of statements. When your program calls a method, it executes the first
statement in the method, then the next, then the next, etc. When the method runs out of
statements or hits a return statement, it ends, and the program resumes after the statement
that originally called the method.

t aets
- : &— This i method called StavrtGame() that o
e vod Srarseanel e {:hc iscr clicks the Start button.

{ called when
human.IsHitTestVisible = true;
humanCaptured = false; The StartGame() method tontains
progressBar.Value = 0; nine statements. Each statement
startButton.Visibility = ends with a semicolon.

Visibility.Collapsed;
playArea.Children.Clear() ;)
playArea.Children.Add (target) ; ,’t: Ny 20d extra
playArea.Children.Add (human) ; your s JcaJccmchJ;a e

. movre
enemyTJ.r_ner.Start() ; readable. They've ignored
targetTimer.Start() ; when your Program builds

} :
}

Here’s the tlosing bracket at the very
V=
bottom of Yyour MainPagc.xaml.ds Lile.

you are here » 61

get some

t}lere]gre no

Dumb Questions

Q} What'’s with all the curly brackets?

A: C# uses curly brackets (or “braces”) to group statements
together into blocks. Curly brackets always come in pairs. You'll
only see a closing curly bracket after you see an opening one. The
IDE helps you match up curly brackets—just click on one, and you'll
see it and its match get shaded darker.

Q: How come | get errors in the Error List window when [try
to run my program? | thought that only happened when | did
“Build Solution.”

AI Because the first thing that happens when you choose Start
Debugging from the menu or press the toolbar button to start your
program running is that it saves all the files in your solution and then

tries to compile them. And when you compile your code—whether
it's when you run it, or when you build the solution—if there are
errors, the IDE will display them in the Error List instead of running

your program.

y, 3
A lot of the ervors that show up when you try to vun)
Your program also show up in the Error List window
and as ved squiggles under Your tode.

SO THE IDE CAN REALLY
HELP ME OUT. IT GENERATES
CODE, AND IT ALSO HELPS ME FIND
PROBLEMS IN MY CODE.-

The IDE helps you build your code right.

A long time ago, programmers had to use simple text
editors like Notepad to edit their code. (In fact, they would
have been envious of some of the features of Notepad, like
search and replace or G for “go to line number.”) We had
to use a lot of complex command-line applications to build,
run, debug, and deploy our code.

Over the years, Microsoft (and, let’s be fair, a lot of other
companies, and a lot of individual developers) figured out
a lot of helpful things like error highlighting, IntelliSense,
WYSIWYG click-and-drag page editing, automatic code
generation, and many other features.

After years of evolution, Visual Studio is now one of the
most advanced code-editing tools ever built. And lucky for
you, it’s also a great tool for learning and exploring C# and
app development.

62

-

.,

.

 WHAT'S MY vrvvc‘t?

it’s all just code

*

Match each of these fragments of code generated by the IDE to what it does.
(Some of these are new—take a guess and see if you got it right!)

myGrid.Background =
new SolidColorBrush (Colors.Violet);

| // This loop gets executed three times b

public sealed partial class MainPage : Page

{

private void InitializeComponent ()

N

helloLabel.Text = "hi there";

helloLabel.FontSize = 24;

/// <summary>
/// Bring up the picture of Rover when
/// the button is clicked

/// </summary>

partial class Forml

{

this.MaximizeBox = false;

Set properties for a TextBlock control

Nothing—it’s a comment that the
programmer added to explain the code
to anyone who’s reading it

Disable the maximize icon (&) in the
title bar of the Forml window

A special kind of comment that the IDE
uses to explain what an entire block of
code does

Change the background color of a Grid
control named myGrid

A method that executes whenever a
program displays its main page

you are here »

63

exercise solution

 wHAT'S MY vuRreasE?

Match each of these fragments of code generated by the IDE to what it does.
(Some of these are new—take a guess and see if you got it right!)

myGrid.Background =
new SolidColorBrush (Colors.Violet);

Set properties for a TextBlock control

Nothing—it’s a comment that the
programmer added to explain the code

| // This loop gets executed three times '

public sealed partial class MainPage : Page
{

to anyone who’s reading it

Disable the maximize icon (F&3) in the
title bar of the Forml window

private void InitializeComponent ()

N

(Wait, a window? Not a page?
‘/ou'" start lcarnihg about
desktop apps with windows and
forms later in this cha\?‘{:ﬂ'.

hellolLabel.Text = "hi there";

helloLabel.FontSize = 24; A special kind of comment that the IDE
uses to explain what an entire block of

code does

/// <summary>
/// Bring up the picture of Rover when
/// the button is clicked

Change the background color of a Grid
control named myGrid

/// </summary>

partial class Forml

{ A method that executes whenever a

program displays its main page

this.MaximizeBox = false;

64 Chapter 2

it’s all code

Two classes can be in the
same "amespace SomeClasses.cs

Take a look at these two class files from a
program called PetFiler2. They’ve got
three classes: a Dog class, a Cat class, and

a Fish class. Since they’re all in the same
PetFiler2 namespace, statements in the
Dog.Bark () method can call Cat .Meow ()
and Fish.Swim (). It doesn’t matter how
the various namespaces and classes are divided
up between files. They still act the same when
they’re run.

namespace PetFiler2 ({

class Dog {

public void Bark() {
// statements go here

When 3 method 1s “Yub\'\t,’

ik means every other
¢lass in the namespace
tan attess iks methods:

l

1@ class Cat {

public void Meow () {

MoreClasses.cs // more statements

namespace PetFiler2 {

class Fish {

public void Swim() {
// statements

Sinte these ¢lasses are in the same namespate,
they can all “see” eath other—even though
they've in diffecent files. A elass tan span
muH‘,iF]c (:ilcs ‘{:oo, but You need to use the

“partial” keyword when you detlare it.

Partial) class Cat {

public void Purr() ({
// statements

You tan onl\/ syli{: a ¢tlass up into di‘(:xccrcn{: files
if you use the “partial” keyword. You probably
won't do that in any of the tode You write in
this book, but the ,BE used it 4o split Your
Page up into two files so it could put the
XAML tode into MainPagc.xam] and the C#
eode into MainPage.xaml.s.

There’s more to namespaces and class declarations, but you
won’t need them for the work you’re doing right now. Flip to #3
in the “Leftovers” appendix to read more. 65

your mileage may

Your programs use variables to work with data

When you get right down to it, every program is basically a data cruncher.
Sometimes the data is in the form of a document, or an image in a

video game, or an instant message. But it’s all just data. And that’s where
variables come in. A variable is what your program uses to store data.

Peclare your variables

Whenever you declare a variable, you tell your program its ¢ype and its name.

Once C# knows your variable’s type, it'll keep your program from compiling
if you make a mistake and try to do something that doesn’t make sense, like
subtract “Fido” from 48353.

Thcsc are the names
CSC variables.

Lint maxWeight; k/)
string message;

bool boxChecked

These 3¢ Lhe vavidble kyres:

Thcsc names are for \/OM

CH# uses the variable + Like methods and tlasses, use

to define wh TPe - kmkmﬂc““‘“d
ariables ¢an iﬁfjaﬁa fhese oetribe the variable's vsage
Variables vary

A variable is equal to different values at different times while your
program runs. In other words, a variable’s value varies. (Which is

why “variable” is such a good name.) This is really important, because
that idea is at the core of every program that you’ve written or will ever
write. So if your program sets the variable myHeight equal to 63:

int myHeight = 63;

any time myHeight appears in the code, C# will replace it with its
value, 63. Then, later on, if you change its value to 12:

myHeight = 12;

C# will replace myHeight with 12—but the variable is still called
myHeight.

66

Are you
already
familiar with

Watdl lf’ another

language?

If so, you might find that a
few things in this chapter
seem really familiar. Still, it’s
worth taking the time to run
through the exercises anyway,
because there may be a few
ways that C# is different from
what you’re used to.

Whenever your
program needs to
work with num]oers,
text, true/false
values, or any other
kind of data, you'll
use variables to lcee]o
track of them.

it’s all just code

You have to assign values to variables
before you use them

Try putting these statements into a C# program:

string z;
string message = "The answer is " + z;

If you write code

Go ahead, give it a shot. You’ll get an error, and the IDE will

refuse to compile your code. That’s because the compiler tllat uses a Varial)le
checks each variable to make sure that you've assigned it a

value before you use it. The easiest way to make sure you tllat hasn,t l)een
don’t forget to assign your variables values is to combine These values

the statement that declares a variable with a statement that ave assigned to aSSigne(Z[a Value,
assigns its value: the variables.

your c0c[e won 't
c0mpile. It'’s easy to
avoid that error

xWeight 25000;

"Hi ! " ,.

string \message

bool boxChecked Ly Comlnnmg your

true;
variable declaration

Each detlaration has a type, and assignment mto
exattly like before.

a single statement.

A few useful types T

Every variable has a type that tells C# what kind of data it can ,

hold. We’ll go into a lot of detail about the many different types Once Youve assigned 3 valye
in C# in Chapter 4. In the meantime, we’ll concentrate on the to Your variable, that value
three most popular types. 1nt holds integers (or whole numbers), €an thange. So there’s o
string holds text, and bool holds Boolean true/false values. dlsadvan'l:agc to assigning a

variable an initial val
You de¢lave it. e

var-1-a-ble, noun.
an element or feature likely to change.
Predicting the weather would be a whole ot

easter if meterologists didn’t have to take so
many variables into account.

you are here » 67

operators are standing by

C# uses fawmiliar math symbols

Once you've got some data stored in a variable, what can you

do with it? Well, if it’s a number, you’ll probably want to add,
subtract, multiply, or divide it. And that’s where operators come
in. You already know the basic ones. Let’s talk about a few more.
Here’s a block of code that uses operators to do some simple math:

To programmers, the
word “string” almost
always means a string of
text, and “int” is almost
always short for integer.

The thivd statement ¢hanges the

d i umb = . value of number, setting it equal to
.V:i (j;:}gﬁe fan"fi' int number = 15 3b times 15, whith is S40. Then it
pumber and set it o) number = number + 10; vesets it again, setting it equal to
15. Then we added 10 12 = (42 / D), whieh is b.
to it A‘(:{:cr the setond number = 36 * 15;
statement, nurber = pumber = 12 - (42 / 7);
equal to 25 (/1) This opevator is a little diffevent.
number += 10; = += means take the value of number
and add 10 o it. Sinte number is
umb *= 3; : .
The *= opevator ﬁ n er = 3 turvently equal to b, adding 10 toit
is similar to +=, number = 71 sets its value to 16.

exeept it multiplies
the eurvent value of
numbevr by 3, s0it

Norma“\/, 7l divided b\/ 3 is 23.bbbbbb.... But when \/ou,\rc

dividing two ints, \/ou'll always get an int vesult, so 23.bbb...
gets truncated to 23.

/ 3;
A_

You'“ use int a lot for coun‘[',ing, and when you do, the ++
and —— o?cra{'pvs tome in hand\/. +4 intrements tount

by adding one 4o the value, and —— detrements count by
subtracting one from it, so it ends up equal to zevo.

ends up set to 48. int count = 0;
count ++;
This sets the count --;
tontents of a
TextBlotk control
ramed output to string result = "hello";

“hello a93in hello”.

N

The w is an Cm"{'«\/ S‘{’,Vihg'

result

output.

+= " again " + result; & When you use the + operator

Text = result;

with a string, it just puts
two strings together. [+
automatically convert

ﬁ;ﬁfzﬁﬁi%tAv result = "the value is: " + count; | .. 4 steings for you
s " mwiw .
('\o\r adding s’cr'mgs.) N\ result = ’
A bool stores true
or ‘(:alsc- The I bool yesNo = false; ...

opevator means NOT.
[£ flips true o

£alse, and vice versa.

_}7yesNo

68 Chapter 2

bool anotherBool

'anotherBool;

Don’t worry about

= true; memorizing these

operators now.

You’ll get to know them :
¢ because you’ll see ’em over and over again. :

it’s all just code

Use the debugger to see your variables change *
N SR K-De]oug this!
e debugger 1s a great tool for understanding how your programs

work. You can use it to see the code on the previous page in action. *

o CREATE A NEW VISUAL c# WINDOWS STORE BLANK APP (XAML) PROJECT-
Drag a TextBlock onto your page and give it the name output. Then add a Button and double-click it
to add a method called Button Click (). The IDE will automatically open that method in the code
editor. Enter all of the code on the previous page into the method.

© INSERT A BREAKPOINT ON THE FIRST LINE OF CODE-
Right-click on the first line of code (int number = 15;)and choose Insert Breakpoint from the
Breakpoint menu. (You can also click on it and choose Debug—Toggle Breakpoint or press F9.)

ﬂ Chapter 2 - Program 1

- [m] x
- Comments (whith
‘l:Chapter_E_Prngramj.MalnPagE - '9’* OnNavigatedTo(MavigationEventArgs €) - CI{\'\CY‘ S{:&V{L W“th ‘two
£
i i 2 - . -: or move slashcs or are
-] /* Double-clicking on the Button in the designer caused it to Q\ ded b /% and
* create the empty Button_Click() method. surroun))
*/ ¥/ wmarks) show up
in the [DE as green
-] private void Button_Click(object sender, RoutedEventArgs e) Lext. \{ou don't have

{ / to worey abolﬁ{? what
® // There's a breakpoint on this line you {;\/\ac in between

number = number + 18; those marks, because
number = 36 * 15; comments ave always
number = 12 - (42 / 7); ianoved b\, the COm?ilcr-
number += 1@; Wh 3
number *= 3: o en You set a breakpoint on 3 line
number = 71 / 3: ndﬁdodz, the 'mc. turns ved and 3 Creating a new
. ot appears in the mavrgin of Blank App project
int count = @; the code editor. will tell the IDE
count++ , to create a new
count--; project with a blank
) page. You might
string result = "hello"; want to name it
result += " again " + result; th‘" You debug your eode b something like
output.Text = result; vunning it inside the IDE, as UseTheDebugger
result = "the value is: " + count; $90n as your Program hits g (to match the
result = ""; .brcakzoin‘l: it'll Pause and let You header of this
inspeet and thange the values of page). You'll be
bool yesNo = false; all the variables. building a whole
bool anotherBool = true; lot of programs
yesNo = lanotherBool; throughout the
} . book, and you may
o > want to go back to
them later.
you are here » 69

———— Flip the page and keep going!

stop bugging me!

3]

o

As soon as the number

START DEBUGGING YOUR PROGEAM -

Run your program in the debugger by clicking the Start Debugging
button (or by pressing F'5, or by choosing Debug—Start Debugging from
the menu). Your program should start up as usual and display the page.

CLICK ON THE BUTTON TO TRIGGER THE BREAKPOINT-
As soon as your program gets to the line of code that has the breakpoint,
the IDE automatically brings up the code editor and highlights the
current line of code in yellow.

number
number
number
number
number
number

(] int number = 15;
= number + 18;
= 36 * 15;

=12 - (42 / 7)

+= 18;
& 3j

=71/ 3;

ADD A WATCH FOR THE number VARIABLE-

Right-click on the number variable (any occurrence of it will do!) and
choose &2 Add Watch from the menu. The Watch window should appear in

the panel at the bottom of the IDE:

_ IDE Tip: 384D
When you're debugging a
Windows Store app, you can
return to the debugger by
pressing the Windows logo
key+D. If you're using a touch
screen, swipe from the left
edge of the screen to the
right. Then you can pause or
stop the debugger using the
Debug toolbar or menu items.

AJc[ing a

watch can]melp
you l(ee]o track
of the values of

Watch 1 *A X
Marmne Value Type
I N

Locals Watch 1

STEP THROUGH THE CODE-

Press F10 to step through the code. (You can also choose Debug—Step Over from
the menu, or click the Step Over button in the Debug toolbar.) The current line
of code will be executed, setting the value of number to 15. The next line of
code will then be highlighted in yellow, and the Watch window will be updated:

Watch 1 *A X
Marmne Value Type
© nomber 15 im |

variable gets a new
value (I5), its wateh is

u?da‘&d.

%)

70

Locals Watch 1

CONTINUE RUNNING THE PROGEAM -

When you want to resume, just press F5 (or Debug—Continue), and the

program will resume running as usual.

Chapter 2

¥ K

the variables in
your program.
This will reauy
come in hanJy
when your
programs get
more complex.

1

\/ou ¢an also hovcr over a
vaviable while)'ou ve dcbu%mg
to see its value displayed in

a ‘{:ooH:lF .and)'ou tan F"‘

it so it stays open/

Loops perform an action over and over

Here’s a peculiar thing about most large programs: they almost always
involve doing certain things over and over again. And that’s what

loops are for—they tell your program to keep executing a certain set
of statements as long as some condition is€rue (or falsel).)

while (x > 5) That's a big part of why

it’s all just code

_ IDE Tip: Brackets

If your brackets (or braces—either name
will do) don’t match up, your program
won't build, which leads to frustrating
bugs. Luckily, the IDE can help with this!
Put your cursor on a bracket, and the
IDE highlights its match:

bool test = true;
while (test == true)

are so im?oY{',&n . {
{ 2"\‘::3“:“:; test 4o Figure // Contents of the loop
out it it should keep looping: }l

X =x - 3;

In a while looP, all of the
statements inside the Cwly
brackets get executed as
long as the ¢tondition in the
parentheses is true.

Every for loop has three statements. The fivst sets
up the loop. |t will keep looping as long as the second
statement is true. And the thivd statement gets
exetuted after each time through the loop.

~N

/\/\/\r\/\/’\
for (int i = 0; i < 8; i =1+ 2)

{

// Everything between these brackets

// is executed 4 times

Use a code snippet to write simple for loops

You'll be typing for loops in just a minute, and the IDE can help
speed up your coding a little. Type for followed by two tabs,
and the IDE will automatically insert code for you. If you type
a new variable, it’'ll automatically update the rest of the snippet.
Press Tab again, and the cursor will jump to the length.

for (int l = @; ié{

IF you thange the vaviable to |
something else, the snippet

automatically thanges the
other two otturrentes of it. }

Press Tab 4o get the tursor
“:oJumF to the length. The
number of Limes £his loop vuns
is determined by whatever

You set lcng{:h to. \/ou tan
thange length 4o a number or 3

variable.
length; i}+}

you are here » 71

on one condition

if/else statements make decisions

Use if/ else statements to tell your program to do certain
things only when the conditions you set up are (or aren’t)
true. A lot of if/else statements check if two things are equal.
That’s when you use the == operator. That’s different from the
single equals sign (=) operator, which you use to set a value.

string message = "";

Every i statement

starts with
if (someValue == 24) conditional test-

{ The statement inside
the eurly brat,\fc{-,s is
message = "The value was 24."; ket oy e

fest is true
}

ons +o chetk if
lways use two ca\ua\s signs
Q\:Io \‘Iﬂ\ings are equal 4o eath other:

if (someValue é 24)
if/else statements ave {

iahtforward.
\’EC::Y Zﬁ::_:%t‘i;rwar // You can have as many statements
licest'.cs{m, the // as you want inside the brackets
\’;2”"‘ i:‘é:t;;thihc message = "The value was 24.";
S emen

[iest set of brackets '} alge {

Otherwise, it exetutes

fhe statements between message = "The value wasn’'t 24.";
the setond set. }

Don’t confuse the two equals sign operators!

You use one equals sign (=) to set a variable’s value, but two equals

WatCh it' signs (==) to compare two variables. You won’t believe how many bugs in

. * programs—even ones made by experienced programmers!—are caused

. by using = instead of ==. If you see the IDE complain that you “cannot implicitly
convert type ‘int’to ‘bool’, that’s probably what happened.

72 Chapter 2

Make sure you thoose a sensible name for this project,

because you'll vefer baakwfo it later in the book. When You see Lhese sneakevs, it

. means that it's time for you to
BUlld an app from ‘rhe ground up tome up with tode on your own.

The real work of any program is in its statements. You've already seen how statements fit into

a page. Now let’s really dig into a program so you can understand every line of code. Start by
creating a new Visual C# Windows Store Blank App project. This time, instead of deleting
the MainPage.xam! file created by the Blank App template, use the IDE to modify it by adding three

it’s all code

%

rows and two columns to the grid, then adding four Button controls and a TextBlock to the cells. BUﬂd ‘ﬂﬁs Page
The page has a grid with three rows *
and two columns. Each row definition The page has four Button controls, one in
has its height set to 1 *, which gives each row. Use the Content property to
ita <RowDefinition/> withoutany set their text to Show a message, If/else,
properties. The column heights work the Another conditional test, and A loop.
same way. I

I -

L | Eath button is centered in the eell. Use the
Grid-Row and Grid.Column properties to set
the vow and tolumn (they default to0 0).

Another conditional test t /

You don't see any{:hing here, but there’s ac-l:ually a
TextBlok tontrol. [t doesn't have any text, so it's
invisible. [£’s eentered and in the bottom vow, with
ColumnSpan set to 2 so it spans both columns.

-

sm06 -] «

QDesign 1 @Exam B DIE
The bottom cell has a TextBlock control Use the x : Name property to name the buttons
named myLabel. Use its St yle property buttonl,button2,button3, andbutton4.
to set the style to BodyTextStyle. Once they’re named, double-click on each of

them to add an event handler method.
K |£ You need to use the Edit S{yk righ{:——mousc menu to

set this but you've having trouble selecting the control,
Eou tan \righ{;——dlick on the Tc%{:Block tontrol in the

otument Outline and thoose Edit S{:\/lc from theve. 73

ready, set, code!

£) lukion +o the exertise. Does A lot of programmers don’t use the
e Heres Tu{: * T{:I‘:nsimihv? Ave the line IDE to create their XAML—they build
LORCISE [Your solwtion fo ' Fies in 8 it by hand. If we asked you to type in
y R-c,‘« breaks di”cvcn‘[‘,; or the propertics in the XAML by hand instead of usi
e . 2 |£ so, that's ox! e y hand instead of using
sPL!Jt\PH diffevent order? % so, : the IDE, would you be able to do it?
[T -
El4Page +
wiClass="Chapter_2 Program_2.MainPage”) -
amnlns="http:/fechenas . mleroseft. confwinfx/ 2606/ wanl f presentatlon” <— Heve's the <Pagc>
womlns ig="http: /fschemas . microsoft . comfwinfx/ 2086, xanl " and <Qrid> 'Eags
wmlns:local="using:Chapter_2_ Program_2" that the [DE
wnlns :d="http://schemas . alcrosoft. comfexpression/blend f2aaa"
wnlns sme="http: /fschemas . openxml formats .. org/markup- compatiblility f2eee" 3"\”3{“1 for you
: e when you eveated
nc i Ignorable="d"»
v~ the blank app.
= wGrdd Background="{StaticRessurce ApplicatlionPageBackgroundThemeBrush} s
- carid, Rowdefinitionss
chowbefinition/ >
mmif”%:%m::} Heve are the vow and
howDefinition» N
| ¢farid, Rowdefinitionss» column dC‘clhl‘{'JOV;& three
= sarid. ColunnDefinitionss vows and two Columns.
ttﬂlumﬂef?"%t}ﬂnf} WhCV\ oun dOMblC-‘LthCd
cColumnbefinition/s the [DE
<ferid. ColunnDefinitions: on each button, the '
f generated a method with
- fButton x:Name="buttonl” Content="Show a message” the name of the button
Horizontalaligment="Center” Click="butten1 Click"/> followed by _Click.
- cButton xiName="buttonz" Content="If/else" HorizentalAlignment="Centaer”®
Grid.Column="1" Click="buttonz Click® f»
- fButton x:Name="button3” Content="Another conditional test" Horizentalalignment="Center®
Grid.Row="1" Click="button3_click"/» This button is in the
n z x oo o . . setond Column and
- <Button xiName="buttond” Content="A lopp" Horizontalalignment="Center setond th
Grid.Column="1" Grid.Row="1" Eli:k-"huttand_click"h‘/ on wrow, 50 these
‘/—\?/ properties ave set 4o I.
fTaxtBlock x:Name="myLabel™ Horizontalalignment="Center” varticalaligrment="Center”
Grid, Aow="2" Grid.Columnspan="2" Style="{5taticResource BodyTextStylel"/
< farids
</Page: -
=% =4 L}

_ @wtnv«
PQWEWR
Why do you think the left column and top row are given the

number 0, not 1? Why is it OK to leave out the Grid.Row
and Grid.Column properties for the top-left cell?

74 Chapter 2

Make each button do something

Here’s how your program is going to work. Each time you press one
of the buttons, it will update the TextBlock at the bottom (which you
named myLabel) with a different message. The way you’ll do it is
by adding code to each of the four event handler methods that you

had the IDE generate for you. Let’s get started!
When You see a ‘Do ﬂ\is.’", pop
'* * open the IDE and go"ow along.
Do this!
do, and ?oin*{: out what to look
* for o get the most out of
the example we show Yyou-
Go to the code for the buttonl Click () method and fill in
the code below. This is your chance to really understand what

We'll tell you exattly what to
MAKE BUTTONL UPDATE THE LABEL -

every statement does, and why the program will show this output:

name Is Quentin

xis 51

d is 1.57079632679

Here’s the code for the button:

. . k”
x is a vaviable. The in
part tells CH# that its {
an integer, and the ves

O‘(: the S{atcmcn{: sets

// this is a comment

its value % étrié; Hime = "Quentin";
int = H
This line eveates the output N ¢\
of the Program: the updated double d = Math.PT / 2;

text in the TextBloek named
myLabcL

+ "\nx is " + x

+ "\nd is " + d;

X }

it’s all code

_ Afewhelpfu] tips

% Don't forget that all your statements
need to end in a semicolon:

name = "Joe";

#* You can add comments to your code
by starting them with two slashes:

// this text is ignored

% Variables are declared with a name
and a type (there are plenty of types
that you'll learn about in Chapter 4):

int weight;
// weight is an integer

% The code for a class or a method goes
between curly braces:

public void Go() {
// your code here

}

* Most of the time, extra whitespace is
fine:
int j = 1234 ;
is the same as:

int § = 1234;

private void buttonl Click (object

gmyLabel.Text = "name is " + name

The \n is an estape se uente

sender, RoutedEventArgs e)
Theve’s a built in ¢l

—in ¢lass ¢alled
Math, and it’s g0t & mcmb:v
ealled Pl. Math lives in the
Sys{cm namespate, so the
£ile this code tame from

needs to have 3 usi .
e at the o, oL

Lucki]y, the IDE
Bcncrajced the using line

or You.

to add a line break to the

Run your program and make
sure the output matches the
screenshot on this page.

*

TchcBlock ‘f:ex{:.

Flip the page to finish your program | ees——-

75

the things

Set up conditions and see if theyte true

Use if/ else statements to tell your program to do certain

things only when the conditions you set up are (or aren’t) true. Wlleﬂ you use

Use logical operators to check conditions a conditional

You've just looked at the == operator, which you use to test whether two

oPerator 1o

variables are equal. There are a few other operators, too. Don’t worry about
memorizing them right now—you’ll get to know them over the next few ComPaI'e two
chapters. 3
P numlaers, it's
* The != operator works a lot like ==, except it’s true if the two things
called a

you’re comparing are not equal.

* You can use > and < to compare numbers and see if one is bigger or Conc[itional test.
smaller than the other.

% The ==, !=, > and < operators are called conditional operators.
When you use them to test two variables or values, it’s called
performing a conditional test.

* You can combine individual conditional tests into one long test using
the && operator for AND and the | | operator for OR. So to check if

iequals3orjislessthan5,do (1 == 3) || (J < 5).
Make sure you stop Your program before

You do this—the [DE won't let You edit
the tode while the program'’s Yunhing,
You ean stop it by closing the window,
using the stop button on the toolbar,
or sclecfing Stop chu%ing from the

Cbua meénu.

€© SET A VARIABLE AND THEN CHECK ITS VALUE-
Here’s the code for the second button. It’s an if/else statement
that checks an integer variable called x to see if it’s equal to 10.

private void button2 Click(object sender, RoutedEventArgs e)
{

int x = 5;

Fivst we set if (x == 10)
wP a vaviable t
Ca“cd % and : myLabel.Text = "x must be 10";
make it eay,
to 5. Thla\'« s
theek if it’s myLabel.Text = "x isn’t 10";
equal 40 |0 }

}

Here’s the output. See if you can tweak one line
* of code and get it to say “x must be 10” instead.
*

76

it’s all code

© ADD ANOTHER CONDITIONAL TEST.

The third button makes this output. Then change it so someValue is set to 3 instead of 4. The TextBlock
gets updated twice, but it happens so fast that you can’t see it. Put a breakpoint on the first statement and

step through the method, using Alt-Tab to switch to the app and back to make sure the TextBlock gets
updated.

This line checks someValue to

iz see if it's c‘\ual 40 3, and then
this line runs no matter what it thetks to make sure name

is “Joc"~

private void button3 Click(object sender, RoutedEventArgs e)
{

int someValue = 4;
string name = "Bobbo Jr.";
if ((someValue == 3) && (name == "Joe")) <:
{
myLabel.Text = "x is 3 and the name is Joe";
}
myLabel.Text = "this line runs no matter what";

}

e ADD LOOPS TO YOUR PROGRAM -
Here’s the code for the last button. It’s got two loops. The first is a while loop, which
repeats the statements inside the brackets as long as the condition is true—do something
while this 1s true. The second one is a for loop. Take a look and see how it works.

private void buttond4 Click(object sender, RoutedEventArgs e)
{

- - 0; £ tatement is
This loop keeps int count The scéond{\’a\'{ ?‘ioth;s ‘Z:; as i is less than
rchafing as |on5 as while (count < 10) Jd\c {"CS{' l sa\ls k oin " The
the count vaviable { five, the 101\7 Ehou‘i\'\ cc'c,‘,dtmb?ot',k6 and the
. B e Co)
¢ less than [0 } count = comnt 47 t?:tklsisv‘::cci{c;: only £ the test is true.
This sets up the loop- for ' RO This statement oets c“t'r’:ddicc
[t :)“5{2 assigns 3 count = count - 1; the end o£ Cau-\ loov. |:, ‘s{')\c '
value to the integer } it adds one to i every Time
that'll be used in it loop exetutes. 'ljhis is Fa”cd :r,:[
myLabel.Text = "The answer is " + count; iterator, and it's vun 'ﬂCd‘_'\l
} after all the statements in the
tode b\oCk

Before you click on the button, read through the code and try to figure out what the
TextBlock will show. Then click the button and see if you were right! * %k_
77

over and over and...

N q%yarpen your penci
A Let’s get a little more practice with conditional tests and loops. Take a

look at the code below. Circle the conditional tests, and fill in the blanks
so that the comments correctly describe the code that’s being run.

int result = 0; // this variable will hold the final result r/c filled in the
) .ﬁ__/ irst one for you.
int x = 6; // declare a variable x and setittob you

while (x > 3) {

// execute these statements as long as

result = result + x; // add x

x =x - 1; // subtract

}

for (int z =1; z< 3; z =2z + 1) {
// start the 1oop by |
// keep looping as 1ONG @S

}

myLabel.Text = "The result is " + result;

Move about tonditional tests

You tan do simple conditional tests by theeking the value of a vaviable using
a tomparison operator. Here's how Yyou tompare two ints, x and ¥:

X <y (less than)
X > y (greater than)
x == y (equals - and yes, with two equals signs)

These are the ones \/ou'” use most often.

\

78

it’s all just code

WAIT UP! THERE’S A FLAW IN YOUR

LOGIC- WHAT HAPPENS TO MY LOOP IF T
WRITE A CONDITIONAL TEST THAT NEVER
BECOMES FALSE?

Then your loop runs forever!

Every time your program runs a conditional test, the result
is either true or false. If it’s true, then your program
goes through the loop one more time. Every loop should
have code that, if it’s run enough times, should cause

the conditional test to eventually return false. Butif it
doesn’t, then the loop will keep running until you kill the
program or turn the computer off!

ed an '\w(:'m'\{:c \00}7,

. ca“w mes when You |

This is sometim

{',ua\
theve ave ac m.
i“adn’c 4o use one n YU prod®
— qgharpen your pencil
:\' Here are a few loops. Write down if each loop will repeat forever or
eventually end. If it's going to end, how many times will it loop?
LOOP #1 LOOP #3 LOOP #5
int count = 5; int j = 2; int p = 2;
while (count > 0) { for (int 1 = 1; i < 100; for (int g = 2; g < 32;
count = count * 3; i=1*2) qg=q* 2)
count = count * -1; { . _ {
} For Loop #3, how/_>j - J _Il" while (p < q)
many times will this while (37 < 25) (
statement be executed? { b= p * 2
LOOP #2 o0 > }
int 1 = 0; } For Loo? #5, hOW/—>q =P - q@
int count = 2; many times will this }
- - - 2 .
while (i) A LOOP #4 statement be exetuted? Hint: p stacts out eoual o
count = count * 3; Z. Think about when the
count = count * -1; while (true) { int 1 = 1;} iterator “P=p K2
} exetuted.
Remember, a for loop always — @RA‘N
runs the conditional test at the ‘PQWEWR
begim\ing of the block, and the)
itevator at the end of the block. Can you think of a reason that you’d want to write a
loop that never stops running?

you are here » 79

if only, but only if

_ @G harpen your pencil

A solutlon Let’s get a little more practice with conditional tests and loops. Take a
look at the code below. Circle the conditional tests, and fill in the blanks
so that the comments correctly describe the code that’s being run.

int result = 0; // this variable will hold the final result
int x = 6; // declare a variable x and SC‘tl‘E‘l’,Ob ..

while > 3) {

// execute these statements as long as %S .grcatcr than 3

result = result + x; // add x 40 the vesult vaviable

x=x-1; // subtract | from thevaleof x .
} This loop vuns twice—First with z set 4o | , and
_ £ then 2 second fime with z set to 2. Once it hits
for (int z = 1; @ z=2z+1) { 3 itsnolonger less than 3, so the loop stops.
// start the loop by . detlaring a vaviable z and setting it to |

myLabel.Text = "The result is " + result;

% harpen your pencil
: SOIUt n Here are a few loops. Write down if each loop will repeat forever or
10 eventually end. If it's going to end, how many times will it loop?

LOOP #1 LOOP #3 LOOP #5

This loop executes once This loop executes 7 times This loop
executes 8 times

LOOP #2 LOOP #4

This loop runs forever Another infinite loop

Take the time 4o veally figure this one out. Heve's a pevfect opportunity to try out the debugger on your own! Set a
brcak?oin‘f‘, on the statement 9=P-9 Add watehes for the vaviables p and) and s{:c? ‘{‘)\vough the |oo?-

80 Chapter 2

therejare no
b Questions

Dum

Q; Is every statement always in a class?

AZ Yes. Any time a C# program does something, it's because
statements were executed. Those statements are a part of classes,
and those classes are a part of namespaces. Even when it looks
like something is not a statement in a class—like when you use
the designer to set a property on a control on your page—if you
search through your code you'll find that the IDE added or changed
statements inside a class somewhere.

Q} Are there any namespaces I'm not allowed to use? Are
there any | have to use?

A: Yes, there are a few namespaces that will technically work, but
which you should avoid. Notice how all of the us ing lines at the
top of your C# class files always said Sy stem? That's because
there’s a Sy stem namespace that's used by the Windows Store
APl and the .NET Framework. It's where you find all of your importait
tools to add power to your programs, like System.Ling, which
lets you manipulate sequences of data, and System. IO, which
lets you work with files and data streams. But for the most part, you
can choose any name you want for a namespace (as long as it only
has letters, numbers, and underscores). When you create a new
program, the IDE will automatically choose a namespace for you based
on the program’s name.

Q: | still don’t get why | need this partial class stuff.

AZ Partial classes are how you can spread the code for one class
between more than one file. The IDE does that when it creates

a page—it keeps the code you edit in one file (like MainPage.

xaml), and the code it modifies automatically for you in another file
(MainPage.xaml.cs). You don't need to do that with a namespace,
though. One namespace can span two, three, or a dozen or more
files. Just put the namespace declaration at the top of the file, and
everything within the curly brackets after the declaration is inside
the same namespace. One more thing: you can have more than one
class in a file. And you can have more than one namespace in a file.
You'll learn a lot more about classes in the next few chapters.

Q: Let’s say | drag something onto my page, so the IDE
generates a bunch of code automatically. What happens to that
code if | click Undo?

it’s all code

A: The best way to answer this question is to try it! Give it a shot—
do something where the IDE generates some code for you.

Drag a button on a page, change properties. Then try to undo it.
What happens? For most simple things, you'll see that the IDE is
smart enough to undo it itself. (For some more complex things, like
working with databases, you might be given a warning message that
you're about to make a change that the IDE can’t undo. You won't
see any of those in this book.)

Q: So exactly how careful do | have to be with the code that’s
automatically generated by the IDE?

A: You should generally be pretty careful. It's really useful to
know what the IDE is doing to your code, and once in a while you'll
need to know what's in there in order to solve a serious problem. But
in almost all cases, you'll be able to do everything you need to do
through the IDE.

%BUI.I.ET POINTS

= You tell your program to perform actions using
statements. Statements are always part of classes, and
every class is in a namespace.

m Every statement ends with a semicolon (;).

m When you use the visual tools in the Visual Studio IDE,
it automatically adds or changes code in your program.

m Code blocks are surrounded by curly braces { }.
Classes, while loops, if/else statements, and lots of
other kinds of statements use those blocks.

m Aconditional test is either t rue or false. You use
conditional tests to determine when a loop ends, and
which block of code to execute in an if/else statement.

= Any time your program needs to store some data, you
use a variable. Use = to assign a variable, and == to
test if two variables are equal.

m Awhile loop runs everything within its block (defined
by curly braces) as long as the conditional test is t rue.

m Ifthe conditional testis false, the while loop code
block won't run, and execution will move down to the
code immediately after the loop block.

81

your code...

Code Magnets

Part of a C# program is all scrambled up on the fridge. Can you rearrange
the code snippets to make a working C# program that produces the
output? Some of the curly braces fell on the floor and they were too small
to pick up, so feel free to add as many of those as you need! (Hint: you'll

definitely need to add a couple. Just write them in!)

The " is an empty string—it means the
vaviable vesult has no characters in it yet.

A

I output.Text = result; b

82

This magnet didn't £Lall

ott the frid
\ string result = ""J ' 9e...

if (x == 2) {

result = result + "b c";

if (x> 2) {

result = result + "a";

int x = 3; '

X:x__l;

result = result + w_u.

Output:
This is a
TextBlotk

named “OU{'«?V‘E,
that the
Pros\ram u‘?da‘{:cs
by setting its
Text \aro?cr{:\f

— Answers on page 86.

it’s all code
ke You'll be eveating a lot of applications

xc’“ 3.ivc you a lot of exevtises like this throughout the book. Ehroughout this book, and youl need 4o give
d‘ ,{:SL"‘ ‘/E“ _JC’\C answer in a couple of pages. [£ You get stuck, eath one a diffevent name. We vecommend namin
on't be atvaid to peek at the answer—it’s not theating/ this one “Practicellsing|fElse”. [£ helps to put

programs from a chapter in the same folder.

Time to get some practice using if/else statements. Can you build this program?

£ you ereate two vows and ~ Add a Button and a CheckBox.

set one vow's height to |# i, You can find the CheckBox control in the toolbox,
the IDE, it seems to disappear Just below the Button control. Set the Button’s name
because it’s eollapsed 4o a tiny to changeText and the CheckBox’s name to
Build this page. size. Just set the other vow ~ enableCheckbox. Use the Edit Text right-click
Its gota grid with two to % and it’|| show up again. menu option to set the text for both controls (hit
rows and two columns. Escape to finish editing the text). Right-click on each

control and chose Reset Layout—All, then make

sure both of them have their VerticalAlignment and
HorizontalAlignment set to Center.

Change the label if checked Enable label changing /

Add a TextBlock.

It’s almost identical to the one you
added to the bottom of the page in

Press the button to change my text \ the last project. This time, name it

labelToChange and setits Grid.

Row property to "1".

Set the TextBlock to this message if the user clicks the button but the box IS
NOT checked.

Here’s the conditional test to see if the checkbox isw Tex-t Cha ng |ng |S d |Sa b|ed

enableCheckbox.IsChecked == true

L.) .
If that test is NOT true, then your program should execute two statements: e Hint: you'll put this
tode in the else block.
labelToChange.Text = "Text changing is disabled";

labelToChange.HorizontalAlignment = HorizontalAlignment.Center;

If the user clicks the button and the box IS checked, change the TextBlock so it
either shows on the lefthand side or R|g ht on the righthand side.

If the label’s Text property is currently equal to "Right" then the program should change the text to
"Left" and setits HorizontalAlignment property to HorizontalAlignment.Left. Otherwise, set
its text to "Right"and its HorizontalAlignment property to HorizontalAlignment .Right. This
should cause the program to flip the label back and forth when the user presses the button—but only if the
checkbox is checked.

83

this puzzle’s than it looks

Poo] Puzzle

/>\\ Your job is to take code snippets from int x = 0:
/ the pool and place them into strin oém _ nn.
\ /// ; the blank lines in the code. You g P !
may not use the same snippet ,
more than once, and you won't while (=)
7\ need to use all the snippets.
Your goal is to make a class :
that will compile and run. Don't if (x< 1) |
be fooled—this one’s harder than it
looks. }
Output
if |) |
a Noise annays an oyster :
Heve's another TextBlotk, if ((x ==) A
and we also gave it the
« n
name ‘output -)
if |) A

We intluded these Pool Puzzle exertises throughout the book
to give Yyour brain an cx{:\ra—'{:ough workout. | \/oul\rc the kind

of person who loves twisty little logic puzzles, then you'll love }
this one. [£ \/ou‘rc not, give it a shot an\/wa\/—bu{: don't be
afraid to look at the answer to Figwc out what's going on.
And if \/ou‘rc s‘f:um?cd b\/ a ?ool ?uz.zjc, dc“:ini{:d\/ move on. }

Note: each snippet
from the pool can only
be used once!

x>0

X< 1 X=x+1;

x> 1 X=X+ 2;

x> 3 X=X -2; poem = poem + "noys ";
poem =poem+" ", x<4 X=x-1; poem = poem + "oise ";
poem = poem + "a"; poem = poem + " oyster";
poem = poem + "n"; output.Text = poem; poem = poem + "annoys";

poem = poem + "an"; poem = poem + "noise";

84

it’s all just code

Time to get some practice using if/else statements. Can you build this program?

3 ercige We added line breaks as
oLutioN usudl to make it easier
r’ to vead on the page.
Here’s the XAML code for the grid:

<Grid Background="{StaticResource ApplicationPageBackgroundThemeBrush}">
<Grid.RowDefinitions>

<RowDefinition/>
<RowDefinition/>
</Grid.RowDefinitions> H«\gou double—tlicked the button in the designer
<Grid.ColumnDelfir.1i‘.cions> betore You set its name, it may have ¢treated a
zgoiumnge?n}t}onji _Cli"'k event handler method called Button Click 10
olumnDefinition instead of thangeText, Cliek0). ek

</Grid.ColumnDefinitions>

<Button x:Name="changeText" Content="Change the label if checked"
HorizontalAlignment="Center" Click="changeText Click"/>

<CheckBox x:Name="enableCheckbox" Content="Enable label changing"
HorizontalAlignment="Center" IsChecked="true" Grid.Column="1"/>

<TextBlock x:Name="labelToChange" Grid.Row="1" TextWrapping="Wrap"
Text="Press the button to set my text"
HorizontalAlignment="Center" VerticalAlignment="Center"
Grid.ColumnSpan="2"/>
</Grid>

And here’s the C# code for the button’s event handler method:
private void changeText Click (object sender, RoutedEventArgs e)

{

if (enableCheckbox.IsChecked == true)
{
if (labelToChange.Text == "Right")
{
labelToChange.Text = "Left";

labelToChange.HorizontalAlignment = HorizontalAlignment.Left;
}
else
{
labelToChange.Text = "Right";
labelToChange.HorizontalAlignment = HorizontalAlignment.Right;

}

else

{

labelToChange.Text = "Text changing is disabled";
labelToChange.HorizontalAlignment = HorizontalAlignment.Center;

}

you are here » 85

introducing a different kind of app

Code Magnets
Solution

int x = 0;
string poem = "";

i Rl hile (x<4)

intx=3; poem=poem+ al
if (x <1) {

Thc Fivst Lime through the poem = poem + " ";
1o 3, so this }

This magnet. didn't £3]]

loop, % is cc\ual
:::di{:ional fest will be true. poem = poem + "n";

if (x>1) {

This statement poem = poem + " oyster":
makes x eaual
*l:oZ{:thirs{: X=x+2;
time {:hrough }
the looP, and if (x==1) {

result = | the second

—t + "~"; Eine through poem = poem + “noys “;
}
if (x = 2) { if (x<1) {

result = result + "b c"; "o "
poem = poem + olse .,

}

x=x+1;
}
output.Text = poem;

Did you get a different solution? Type it into
the IDE and see if it works! There’s more than

one correct solution to the pool puzzle.
loutput.Text = result; ' /'l)\ P

|£ you want a veal ¢thallenge, see if You tan figwc out what that othevr solution is/ Here's a
86 Chapter 2 hint: theve’s another solution that keeps the word fragments in order. If you came up with
that solution instead of the one on this page, see if Yyou tan Figwc out wh\/ £his one works +oo.

it’s all just code

Windows Desktop apps are easy to build

Windows 8 brought Windows Store apps, and that gave everyone a totally new way

to use software on Windows. But that’s not the only kind of program that you can
create with Visual Studio. You can use Visual Studio for Windows Desktop to build
Windows Desktop applications that run in windows on your Windows 8 desktop.

My Deskiop App

Intemet Explorer Store

We'll use Visual Studio

for Windows Desktop
1o build programs that
vun in windows on Your
Windows 8 desktop-
4
THIS SOUNDS FISHY.- ~

WHY DO I NEED TO LEARN
MORE THAN ONE WAY TO
BUILD PROGRAMS?

Windows Desktop apps are an effective learning tool

We’ll spend the next several chapters building programs using Visual Studio
for Windows Desktop before coming back to Windows Store apps. The
reason is that in many ways, Windows Desktop apps are simpler. They may Another great reason to
not look as slick, and more importantly, they don’t integrate with Windows learn Windows D esktop

8 or provide the great, consistent user interface that you get with Windows Programming is that You

9et 1o see the same thing
done more than one way.

That’s a veally quick way

Store apps. But there are a lot of important, fundamental concepts that
you need to understand in order to build Windows Store apps effectively.
Windows Desktop programming is a great tool for exploring those
fundamental concepts. We’ll return to programming Windows Store to get tontepts into Your

brain. Flip the Page to

see what we mean...

apps once we've laid down that foundation.

you are here » 87

this looks oddly familiar

Rebuild your app for Windows Pesktop ¥

. Do this!
Start up Visual Studio 2012 for Windows Desktop and create a new project. This 0 :
time, you'll see different options than before. Click on Visual C# and Windows, ’ *

and create a new Windows Forms Application project.

b Recent Sort by: Default SIS Search Installed Templates (Cul+E) 2 =
& |nstzlled :
E]' Windows Forme Application Visual G2 Type: Visuz| C#
4 Templates m A praject for creating an apphcation with a Norma“\l You
b Visual Basic E‘j WFF Application Visual CF Windows Forms user inberface Should choosc
& Visual CF
Windows ﬁ Console Application viewsice When You ereate a new a bC'{'—iZCV name
= project in Visual Studio 2012 than “Chapter
b Visual C++ Eﬂﬁi Clags Library Visual C2 E ‘c o WithWS DCSk{')O? 2_ _ PV‘O am
Visual Studio Solutions - *PY'CSS 4 -) N 5)
Samples gj‘ Emply Project Geusl G2 YOU 5c-[: these options. Choose 4 but we've
b Qrline Windows Forms Application. specifically using
a name with
Marne: Chapter £ - Program 4 | ates a d a
S S
Locabion: C\UsershPublich BocumentsiVisual Studio 20124 Projects), - ? ¢ n .
. : hyphen for this
Solution: Create new solubion -) {
Solution name Chapter 2 - Program 4 [#] Cr=at= directany for solution PVOJCC so YOIA
[] Add to source control tan see Wha£
[ok [conca it does to the
namespace.

o WINDOWS FORMS APPS START WITH A FORM THAT You CAN RESIZE-
Your Windows Forms Application has a main window that you design using the designer in the IDE.
Start by resizing it to 500% 130. Find the handle on the form in the Designer window and drag to resize
it. As you drag it, keep an eye on the changing numbers in the status bar in the IDE that show you the
new size. Keep dragging until you see E#EEESEY in the status bar.

Keep dragging these handles Heve's what your
/ until your form is the vight size. form should look
i like after you
C) vesize it J/
[ol Form1 (= =]=]

88 Chapter 2

it’s all just code

© cHANGE THE TITLE OF YoOUR FORM.
Right now the form has the default title (“Form1”). You can
change that by clicking on the form to select it, and then

Make sure you’re
using the right

changing the Text property in the Properties window. Visual Studio

Watch it!

Properties ~ax . If you’re using the

Form1 System Windows.Forms.Form @ i Express edition of Visual Studio

(=] [O]f | & : 2012, you'll need to install two
Qg:gtiw o & : versions. You've been using Visual
My Desktop App ¢ Studio 2012 for Windows 8 to build
. N : Windows Store apps. Now you’ll

= My Desktop App :

for Windows Desktop. Luckily,
both Express editions are available
for free from Microsoft.

The text as;o— need to use Visual Studio 2012

© 4pp A BUTTON, cHECKBOX, AND LABEL -
Open up the toolbox and drag a Button, CheckBox, and : :
Label control onto your form.

Toolbox e 2 5! You can expand the toolbox by choosing “Toolbox™ from
Search Toolbox Sl 2 the View menu, or by clicking on the Toolbox tab on the
: T
Al ndow=korn= = & side of the IDE. You can keep it from disappearing by
k Pointer

s clicking the pushpin icon (E=]) on the Toolbox window. You
BackgroundWorker

@" BindingNavigator
g1 BindingSource These spacer lines help You position your tontrols as You drag them around.
|

- \ My Deskiop App oo

can also drag the window title so that it floats over the IDE.

CheckedListBox

ColorDialog | Chanae the label if checked |

ComboBox

ContextMenuStrip On the next page you’ll use the Properties window
DataGridView to change the text on each control, and to set the
DataSet CheckBox control’s state to checked. See if you can

DateTimePicker figure out how to do that before you flip the page!
DirectoryEntry

DirectorySearcher

SRR T =R% =LY e R

DomainUpDown
o Des| [=]

ErrorProvider M_‘," k.tDp - EI@
Lxailog Change the label ff checked [¥T Enable Iabel changing |
FileSystemWatcher
FIowLayoutPan?I The ,DE l‘\ClPS You 8“37\ \/OIAY' COh{'xols b\/ dis\?la\/ihg
FolderBrowserDialog aligthh‘E |'mcs as \/ou drag ‘H\cm avound ‘{;hc ‘(-‘orm_
FentDialog

"] GroupBox

EH HelpProvider a5l My Desktop App E\@

ma HicrollBar

B ImageList Change the label if checked Enable label changing

A Label

A LinkLabel - =3 Press the button to change my text

Hint: you’ll need to use the AutoSize property

to get the Label control to look right. you are here » 89

déja vu

@ UsEe THE PROPERTIES WINDOW TO SET UP THE CONTROLS.-

Click on the Button control to select it. Then go to the Properties window and set its Text property:
Change the label if checked v

Change the Text property for the CheckBox control and the Label control so they match the screenshot on
the next page, and set the CheckBox’s Checked property to True. Then select the Label control and set the
TextAlign control to MiddleCenter. Use the Properties window to
labelToChange System.Windows.Forms.Label -| set the names of your controls. Name the Button changeText,
el £ |+ set the CheckBox control’s name to enableCheckbox, and
=8 Pressthebutton tochangemytext =/ pname the Label control 1abelToChange. Look at the code below
TextAlign MiddleCenter | . .

=T —1 | carefully and see if you can see how those names are used in the code.

UseMnemanic
UseWaitCursar) % .
B Behavior []] | || | Change the AutoSize property on the Label control to False.

AlowDrop i | []|7| Labels normally resize themselves based on their contents. Disabling
TextAlign . .
Determines the position of the tert within the abel, AutoSlze to true causes the drag handles to show up. Drag it so

it’s the entire width of the window.

© ADD THE EVENT HANDLER METHOD FOR YOUR BUTTON-
Double-click on the button to make the IDE add an event handler method. Here’s the code:

Formles & X

% Chapter 2 Program_d.Form1 = @ Forenl(] -
Enamecpace Chapter_2_ Program_4 *
K .
= i i Forml : For .
= ?ubhc partial class Form arm When \/ou double—clncked on {:hc
= public Forml() bu'{:{loh; ‘{')'\C IDE SCY\CYQ‘{ZCd 'H’\iS
£ event handler and named it
, InitializeComponent(); changcTc%{:__Clitk() b ma‘{',é"\ \/ouv'
bu‘(’,{:oh’s name, Lhangc-rc%'{L
= private weoid changeText_Click(ocbject sender, Eventirgs e)
{
if (ensbleCheckbox.Checked == true)
{
if (labelToChange.Text == "Right"}
1
labelToChange.Text = "Left™;
labelToChange.TextAlign = ContentAlignment.Middleleft;
1
else
{) Here's the tode
labelToChange.Text = "Right"; £ ‘H’\
labelTelhange.TextfAlign = ContentAlignment.MiddleRight; or ¢ CVCW&
T handler method.
; Take a caveful
?1“ look—can you see
) .
labelToChange.Text = "Text changing is disabled"; what's d"p event
labelToChange TextAlign = ContentaAlignment MiddleCenter; ‘FV‘OW\ ‘{‘,hc SiMi'aY
: ¥ tode You added
} for the exercise?
} 5

121% - 4 3

90 Chapter 2

it’s all just code

Debug your program in the IDE.
When you do, the IDE will build your

| Change the label i checked Enable label changing program and run it, which pops up the
main window that you built. Try clicking
Press the button to change my text the button and checkbox.

| Change the label if checked Enable label changing

Cliek the
— Right theckbox to
enable or
o disable label
thh labc' changmg s | Change the label if checked | Enable label changing Changins.

enabled, the label shows
either Left or Right
with ma‘uhing a|i5mncn£-
|£ it's disabled, it shows

a message that’s centeved.

Left «<——

| Change the label f checked

Text changing is disabled

["] Enable label changimg

_ qharpen your pencil
Q P y P Fill in the annotations so they describe the lines in this C# file

that they're pointing to. We've filled in the first one for you. Can
you guess what the last annotation should say?

using System; C#L\asrom
using System.Ling; lines to add,!'.‘.‘.J.‘?\'.‘F.’fif -----------

using System.Text; other namespactes ...
using System.Windows.Forms:

{ E— [

class MyClass { U

public static void DoSomething () { = ..

MessageBox.Show ("This is a message");

Here’s a hint. You haven’t seen MessageBox yet, but .
} it’s something that a lot of desktop apps use. Like | T ...t
most classes and methods, it has a sensible name. | e .

Solution on page 95—

you are here » 91

a closer look

Your desktop app knows
where to start

When you created the new Windows Forms
Application project, one of the files the IDE added
was called Program.cs. Go to the Solution Explorer and
double-click on it. It’s got a class called Program, and
inside that class is a method called Main (). That
method is the entry point, which means that it’s the
very first thing that’s run in your program.

Heve's some tode the IDE built for You
au'boma{:ida“\/ in the last chapter. You'll

‘(:ind it in P!rog\ram.z‘,s.

Desktop apps are different,
and that’s good for learning.

Windows Desktop applications

: are a lot less slick than Windows
: Store apps because it’s much harder (but not

: impossible) to build the kinds of advanced user

¢ interfaces that Windows Store apps give you. And
i that’s a good thing for now! Beacuse they’re simple
: and straightforward, desktop apps are a great

¢ tool for learning the core C# concepts, and that
will make it much easier for you to understand
Windows Store apps when we return to them later.

QY@ur Code Up Clsse

The first part of every class or
method is called 3 declaration.

92 Chapter 2

The IDE generated Lhis namespate based on
the project name. We n

1 - P‘ro ram 4’)
IDE 5:n2ra{:cd for us. We those

tes and @ hyphen _
avwccr‘cs them to understores in the n

tomments, which You ean add anywheve You want.
The slashes tell C# 4o ignore them.

/// The main entry point for the application.
. You run Your program,
/_\ it starts heve, at the cn-l;y-\/g‘;o',n.b

Application.EnableVisualStyles();
Application.SetCompatibleTextRenderingDefault(false);
Application.Run(new Forml()); € 'hs statement ereates and

using System;
using System.Collections.Generic;
using System.Ling;
using System.Threading.Tasks;
using System.Windows.Forms;‘)
namespacéE%hapter_Z Program 4
{
static class Program
{
/// <summary>
/// </summary>
[STAThread]
static void Main()
{
}
}
}
[do declave!

amed ours “Chapter

" <o fhis is the namespace the
a name Wi

{o show You how the IDE

amespace-

Lines that begin with two or more slashes ave

EVCY‘Y ‘Eimc

displays the form, and ends the
program when the form’s ¢losed.

Remember, this is \)us{: a starting point for you to
dig into the tode. But before you do, you'll need to
know what \/ou’\rc |oo|(in3 at.

it’s all just code

These are some of the “nuts and bolts” of desktop apps. You’ll play with them on the next few pages
so you can see what’s going on behind the scenes. But most of the work you do on desktop apps will
be done by dragging controls out of the toolbox and onto a form—and, obviously, editing C# code.

Ci# AND -NET HAVE LOTS OF BUILT-IN FEATURES -

You’ll find lines like this at the top of almost every C# class file. Your programs will use move and more
System.Windows.Forms is a namespace. The using namespaces like this ?nc as You l.cawf
System.Windows.Forms line makes everything in that «—_ about C# and NET's other built—in
namespace available to your program. In this case, that namespace ~ features £hroughout +he book.

has lots of visual elements in it, like buttons and forms.)

H: ou didn't svcci-c\/ the “using line,
yowd have to explieitly Lype out System.
Windows.Forms every Lime you use

THE TDE CHOSE A NAMESPACE FOR YOUR CODE- [IeiTil ol oy

Here’s the namespace the IDE created for you—it chose a
namespace based on your project’s name. All of the code in your

/Q/ _f‘/am.es‘(fatcs let You use the same name
in different Programs, as long as those

) .
Programs aren’t also in the same namespace.

program lives in this namespace.

YOUR CODE IS STORED IN A CLASS-
This particular class is called Program. The IDE created it
and added the code that starts the program and brings up the

form called Form1. \/0“ tan have mu\b‘)\c

tlasses in a single namespace:

THIS CODE HAS ONE METHOD, AND IT Tethvically, 2 program ean baie "o
CONTAINS SEVERAL STATEMENTS. than one Main0) metheds d ¥ou S50
A namespace has classes in it, and classes have methods. Lell CAF which one ls{-p ; Jd\az, now-
Inside each method is a set of statements. In this need ¢

program, the statements handle starting up the form.
You already know that methods are where the action
happens—every method does something.

but you wont

Every c[esktop app must

EACH DESKTOP APP HAS A SPECIAL KIND
OF METHOD CALLED THE ENTRY POINT-
Every desktop app must have exactly one method
called Main. Even though your program has a lot

of methods, only one can be the first one that gets
executed, and that’s your Main method. C# checks
every class in your code for a method that reads
static void Main (). Then, when the program
1s run, the first statement in this method gets executed,
and everything else follows from that first statement.

have exactly one method
called Main. That method
is the entry mi_n_t_ for

yOUl‘ COC[C.

When you run your code,

the code in your Main()
method is executed FIRST.

you are here » 93

classy things

You can change your
program’s enfry point

As long as your program has an entry point, it doesn’t matter 9’6 *
- e} y
Do ’[1115.

which class your entry point method is in, or what that method

does. There’s nothing magical or mysterious about how it works,
or how your desktop app runs. You can prove it to yourself by *
changing your program’s entry point.

o Go back to the program you just wrote. Edit Program.cs and change the
name of the Main () method to NotMain (). Now try to build and
run your program. What happens? Can you guess why it happened?

Right-click on the
project in Properties
and seleet “Add” and

“Class...”
e Now let’s create a new entry point. Add a new class called AnotherClass.cs. You add a ?
class to your program by right-clicking on the project name in the Solution Explorer and
selecting “Add—Class...”. Name your class file AnotherClass.cs. The IDE will add a class to
your program called AnotherClass. Here’s the file the IDE added:

using
using
using
using
using

yaten These four standard using lines

weve added to the file.

System.Collections.Generic;
System.Ling;
System.Text;
System.Threading.Tasks; This ¢lass is in the same

namespate Jd\a{', the IDE

namespace Chapter 2 Program 4 6\, added when you Liest

{

{
}

treated the project.

class AnotherClass f\

The IDE au

tlass bascd JComaJcicaHy named {he

on the ‘Fi'thamc.

e Add a new using line to the top of the file: using System.Windows.Forms;
Don’t forget to end the line with a semicolon!

e Add this method to the AnotherClass class by typing it in between the curly brackets:

MessaaeBox is a tlass that lives class AnotherClass
in the g‘/S{ZCMWihdows.Fo\rms {
namespace, which is why you had public static void Main()
{0 add the using line in 5{16\7 #ZM{
Chow() is a method that's part of MessageBox.Show ("Pow!") ;
the MessageBox elass.)
}

C# is case-sensitive! Make sure your upper- and lowercase letters match the example code.

94 Chapter 2

it’s all just code

* * Desktop apps use MessageBox.Show() to

, pop up windows with messages and alerts.
Now run ! \ *

* x

So what happened?

Instead of popping up the app you wrote, your program
now shows this message box. When you made the new

Pow! Main () method, you gave your program a new entry
point. Now the first thing the program does is run the
statements in that method—which means running that

MessageBox.Show () statement. There’s nothing else

in that method, so once you click the OK button, the
program runs out of statements to execute and then it ends.

e Figure out how to fix your program so it pops up the app again. Hint: you only have
4o thange +wo lines in
two files o do it.

_ @G harpen your pencil
& 501."'&‘0“ Fill in the annotations so they describe the lines in this C# file

that they're pointing to. We've filled in the first one for you.

C# classes have these ‘using
lines to add methods Lrom

using System;

using System.Ling;

using System.Text;

using System.Windows.Forms;

All of £he tode lives in

namespace SomeNamespace tlasses, so the program This ¢elass has one method.

needs a ¢lass heve. [+s name is “Dogomc{:hihg,"
{ 0/—\ and when it’s ¢alled it pops

class MyClass { Af_/_ wp a Mcssachox

public static void DoSomething () {

MessageBox.Show ("This is a message"); t
This is @ statement.
| When it's exetuted,
| it pops up 3 little
window with 3 L

} mcssagc 'mS'IdC

you are here » 95

let’s dig in

When you change things in the IPE,
you're also changing your code

The IDE is great at writing visual code for you. But don’t
take our word for it. Open up Visual Studio, create a new

Windows Forms Application project, and see for yourself.

2)

You tan thoose the image for the PictureBox by sclct{ing
it and clicking the “Choose mage...” link in the Properties

K—D@ this! *
OPEN UP THE DESIGNER CODE-

Open the FormI.Designer.cs file in the IDE. But this time, instead of opening it in the —*
Form Designer, open up its code by right-clicking on it in the Solution Explorer and
selecting View Code. Look for the Forml class declaration:

Notice how it's a partial elass? Well 4alk about that in a minute.
partial class Forml < —~_/

OPEN UP THE FORM DESIGNER AND ADD A PICTUREBOX TO YOUR FORM.-
Get used to working with more than one tab. Go to the Solution Explorer and open up the Form designer
by double-clicking on Form!.cs. Drag a new PictureBox control out of the toolbox and onto the form. A
PictureBox control displays a picture, which you can import from an image file.
Seleet “Lotal vesouree” and

Ch | cliek the [mport... button
/-% oose Image \ /‘ gk the nprt- tor

®* Local resource: f}, image file 4o import.

— Import.. — Clear

window to pop up a window that lets You seleet the image Sy
to load. Choose any image file on Your Com?u{:cr!

3]

//

//

this
this
this
this
this
this

96

FIND AND EXPAND THE DESIGNER-GENERATED CODE FOR THE PICTUREBOX.-
Then go back to the Form1.Designer.cs tab in the IDE. Scroll down and look for this line in the code:

[Chck on the plus sign.

|.-.'ir'u:|n::'.u'5 Form Designer generated -::n:de|

Click on the + on the lefthand side of the line to expand the code. Scroll down and find these lines:

I£ vou double—tlick on Forml vesx in the Solution Explorer, you'll see the image Jcha{:, You
imported. The [DE imported our image and named it “pictureBoxl.Image”—and here’s the 2

// pictureBoxl tode that it generated to load that image into the PictureBox tontrol so it’s displayed.

.pictureBoxl.Image = ((System.Drawing.Image) (resources.GetObject ("pictureBoxl.Image")))
.pict Box1.L ti = Syst .D i .Point (416, 160); R
p%c ureBox ocation . new System.Drawing.Point (,) Do“,£ worey i£ the numbers in
.pictureBoxl.Name = "pictureBoxl"; / 4 for the Lotation and
tode YO

.pictureBoxl.Size = new System.Drawing.Size (141, 147); Your : It diﬂ:crcn{:

. Gize lines ave a little .
.pictureBoxl.TabIndex = 0; than these. Thc\f“ vary dcvcndmg
.pictureBoxl.TabStop = false; on wheve Yyou draggcd Yyour

PictureBox tontrol-

Chapter 2

it’s all code

Wait, wait! What did that say?

Scroll back up for a minute. There it 1s, at the top of the Windows
Form Designer—generated code section:

Most comments onl\/ start
with two slashes (/7).

/// <summary> But the [DE sometimes
/// Required method for Designer support - do not modify adds these three—slash

/// the contents of this method with the code editor.
Commth{:&
/// </summary>

There’s nothing more attractive to a kid than a big sign that says, “Don’t touch These ave XML tomments,
this!” Come on, you know you’re tempted...let’s go modify the contents of that

and You £an use them to
method with the code editor! Add a button to your form called buttonl

dotument Your tode. Fh? +o

(you’ll need to switch back to the designer), and then go ahead and do this: “Leftovers” seetion #2L in the
Appendix of +his book to learn
€ cHANcE THE coDE THAT SETS THE BUTTONL.TEXT ove about Ehem.
PROPERTY- WHAT DO You THINK IT WILL DO TO THE

PROPERTIES WINDOW IN THE IDE?

Give it a shot—see what happens! Now go back to the form designer and
check the Text property. Did it change?

© s7AYIN THE DESIGNER, AND USE THE PROPERTIES

WINDOW TO CHANGE THE NAME PROPERTY TO
SOMETHING ELSE-

See if you can find a way to get the IDE to change the Name property. It’s in
the Properties window at the very top, under “(Name)”. What happened to don't have 4o save the
the code? What about the comment in the code? \{:o“ C:; vun the program
orm
CHANGE THE CODE THAT SETS THE LOCATION Lo see the thanges. Just
PROPERTY TO (0,0) AND THE SIZE PROPERTY TO MAKE make the ehange in the tode
ITD'HdE.tBUZON REALLY Bl&- editor, and {—\)\;n‘ %\ick |02
1d 1t WOTK! ¢ .Ls
he tab labeled "Form
GO BACK TO THE DESIGNER, AND CHANGE THE BUTTON’S EDccsith" 4o flip over 4o the
BACKCOLOR PROPERTY TO SOMETHING ELSE- Sorm dcsigncr—‘{')\c ¢thanges
Look closely at the Form1.Designer.cs code. Were any lines added? chould show up immediately-

It’s always easier to use the IDE to change your form’s designer-generated
code. But when you do, any change you make in the IDE ends up as a change
to your project’s code.

ﬂie}‘egre no o

(@)
Dum Q«uestl = nS next one, and the next one, etc. Those statements are usually
Q} I don’t quite get what the entry point is. Can you organlzedr:ntog bun_;:z of clas;,e;. ?Ot whentyt/ou trur: yc_)ttrig
explain it one more time? program, how does it know which statement to start with?

That's where the entry point comes in. The compiler will not build
your code unless there is exactly one method called Main (),
which we call the entry point. The program starts running with the
first statementin Main ().

A: Your program has a whole lot of statements in it, but
they’re not all run at once. The program starts with the first
statement in the program, executes it, and then goes on to the

97

ooh, pretty!

Desktop apps aren’t nearly as easy to animate as Windows Store apps, <

but it's definitely possible! Let's build something flashy to prove it.
Start by creating a new Windows Forms Application.

© Heee’s THE Form 3 | FashyThing (=] @)
70 BUILD.

Heve's a hint Lor this exertis

e if you detlave a variablc‘ ihsi?;
i =0;..)— that vaviable’s only vali
loop—For (int & = 0 ™, ’chc.n " r 1
. s(ijc E:E looo\>'s m brackets. So if you \n.avF two (:Tr loo‘:rs h{a Vac
r{')\ use the vaviable, \/ou'll either detlave it in fach oop ol 2 C N
oc detlavation outside 4he loop- And if the vaviable ¢ is alveady _
on

0

detlaved outside of the loops, you can't use it in either one. 3 a
© Make THE FORM BACKGROUND 60 ALL Make the button bigger
PSYCHEDELIC! by ¢licking on a eorner
When the button’s clicked, make the form’s background handle and dragging it.

color cycle through a whole lot of colors! Create a loop that
has a variable ¢ go from 0 to 253. Here’s the block of code
that goes inside the curly brackets:

this.BackColor = Color.FromArgb(c, 255 - ¢, c);

Application.DoEvents () ;

This line ell .) : \LI
other é‘ihgssié:hc Program) S{ZOP our looP momcn‘l‘,arily and do the \,m '\'I\C\(\ed Y‘“ :

as

needs to do, like vefresh the form, 3 bunth

clicks,, ete. Try ‘l:aking out this |i

theek ‘Fo\r mouse
before it deals with those events waifing until the looF is done

For now, \/ou’“ use A?ylica{:ion.DoEvcn{:s() 4o make sure
Your torm S'EaYS vesponsive while it’s in a loop, but it's
kind of a hatk. You shouldn't use this code outside of a
Loy program like this. Later on in the book, you'l learn
about a muth better way to let Yyour programs do more
than one ‘(‘)\ing at a {:imc!

© make T sLowee.
Slow down the flashing by adding this line after the
Application.DoEvents () line:

. . a3 millisecond
System.Threading.Thread.Sleep (3); This statement msltét'sa Ya‘f{'« of the

in the loop: par
?‘fg{l ;\ramcwovk, and it’s in the
S\/s{:Cm.Thvcading namespace:

98 Chapter 2

it’s all just code

Remember, to ereate a Windows Forms
Ayylica{ion You need 1o be using Visual

Studio for Windows Desk+top.
@ Mmake IT smooTHER.

Let’s make the colors cycle back to where they started. Add another loop that has
c go from 254 down to 0. Use the same block of code inside the curly brackets.

© «keepiTcoNs.

Surround your two loops with another loop that continuously executes and doesn’t inside anothey
stop, so that when the button is pressed, the background starts changing colors and one, we ¢all it 3

then keeps doing it. (Hint: the while (true) loop will run forever!)

When one loop is

N/ “"CS‘(ZCd" ,ooP.

Uh oh! The program doesn’t stop!

Run your program in the IDE. Start it looping. Now close the window. Wait a
minute—the IDE didn’t go back into edit mode! It’s acting like the program
1s still running. You need to actually stop the program using the square stop
button in the IDE (or select Stop Debugging from the Debug menu).

O make T sToP.
Make the loop you added in step #5 stop when the program is
closed. Change your outer loop to this:

while (Visible)

ow run the program and click the X box in the corner. The
window closes, and then the program stops! Except...there’s a
delay of a few seconds before the IDE goes back to edit mode.
When you've thetking a Boolean value like Visible
in an if statement or a loop, sometimes it's

ftmy{j"&% to test for (Visible == true). You tan i'ﬁmc AND +the thivd, ete. And
eave the ‘== ‘[‘,V‘uc"—.'{:,s enouah 1o incl d ! tome in hand L i
the Boolean. 3 neuae problem. Y to solve this
When Yyou've working with a

form or tontrol, Visible is Can you figure out what’s causing that

true as long as the form or delay? Can you fix it so the program ends

tontrol is bein disPla\/cd ”"
you set it to false, it makes
the form or ontrol disappear.

immediately when you close the window?

Hn}ml:-' the && operator means “AND
[t's how You s‘(:v-ing a bunth of |
c'ondi{:ior\a, tests {:ogc{:hcr into one
big test that's trye only if the

irst test is frue AND the setond

you are here » 99

<

exercise solution

We used &&
Visible instead—, ¢,
of && Visible
== {rue. |[ts
just like saying

if it's visible”
instead of “if
it’s true that
it's visible”—they
mean the same

{:h'mg.

}

in the solution, ﬁuS{: the bits that LhAngcd. All

for

}

When the [DE added this method, it added an extra

veturn before the eurly bracket. Sometimes we'll put the
bracket on the same line like this to save space—but C#
doesn't ave about extra spate, so this is perfectly valid.

Consistenty is genevally veally important to make it easy

of the logic in the Flash\/Thin5 project is in this £) i .

. or people to vead tode. But we've purpose u"\/ showing You
bu'{:JoonI_Chclf() method that the [DE added when diﬂ'\:vcit ways, betause \/ou'll need to get used to veading
You double-clicked the button in the form designer. tode from diffevent people using different styles.

private void buttonl Click(object sender, EventArgs e)

, 7while (Visible) {
The outer loop

keeps vunning as
lon5 as 'H\c orm
is visible. As soon
as it’s tlosed,
Visible is false,
and the while
will stop looping,

(int ¢ = 0; ¢ < 254 && Visible; c++)

this.BackColor = Color.FromArgb(c, 255 - ¢, c);

Application.DoEvents () ; '\ The first for loop makes the
| eolors eyele one way, and the

System.Threading.Thread.Sleep (3) ; setond for loop reverses th
em

M so Jchcy look smooth.

(int ¢ = 254; ¢ >= 0 && Visible; c—--) {

this.BackColor = Color.FromArgb(c, 255 - ¢, c);

Application.DoEvents () ; We fixed the extra delay by

ke
' . sind the && operator to ma
Sysren-fhreading fhread-Seep (7 :ac\? of the for loops also thetk

Visible. That way the loop ends

wsible urns talse:
Can you figure out what’s causing that 2 " % Visible tuen

delay? Can you fix it so the program ends
immediately when you close the window?

The delay happens because the for loops need to finish before the
while loop can checkif Visible isstill true. You can fix it by
adding && Visible to the conditional test in each for loop.

Was your code a little different than ours? There's more than one way to
solve any Programming prol»lem (e.g., you could have used while loo])s instead
of for loops). I your program works, then you got the exercise riglnt!

100

Chapter 2

3 objects: get oriented!
* X
Maiing code make sense .

---AND THAT’S
WHY MY HUSBAND
CLASS DOESN'T HAVE A
HeLpOurArounpTreHouse()
METHOD OR A
PuLLHrsOwNnWezeHT()
METHOD.

Every program you write solves a problem.

When you're building a program, it'’s always a good idea to start by thinking about what
problem your program’s supposed to solve. That's why objects are really useful. They
let you structure your code based on the problem it’s solving, so that you can spend your
time thinking about the problem you need to work on rather than getting bogged down in
the mechanics of writing code. When you use objects right, you end up with code that's

intuitive to write, and easy to read and change.

this is a new chapter 101

mike’s

places

How Mike thinks about his problems

Mike’s a programmer about to head out to a job
interview. He can’t wait to show off his C# skills, but
first he has to get there—and he’s running late!

o

102

Mike figures out the route he’ll take to get to the interview.

TI’LL TAKE THE
31ST STREET BRIDGE, HEAD
UP LIBERTY AVENUE, AND &0
THROUGH BLOOMFIELD.-

&Mikc sets his destination,

then tomes up with a voute.

9 Good thing he had his radio on. There's
a huge traffic jam that’ll make him late!

Mike geks new THIS IS FRANK LOUDLY
- Cormation 200t 3 s WITH YOUR EYE-IN-THE-SKY SHADOW
" ds o v TRAFFIC REPORT- IT LOOKS LIKE A

street he nee
THREE-CAR PILEUP ON LIBERTY HAS

TRAFFIC BACKED UP ALL THE WAY TO
22ZND STREET-

e Mike comes up with a new route to get
to his interview on time.

Now he ¢an tome up
with a new voute to
the interview. N

NO PROBLEM. IF
I TAKE ROUTE 28
INSTEAD, T'LL
STILL BE ON TIME!

objects: gef oriented!

How Mike’s car navigation system thinks about his problems

Mike built his own GPS navigation system, which he Hcrc'.s a, diagram oﬁ : ('{\lasss re————
uses to help him get around town. in Mike's program. [T show .
the name on top, and the SetCurrentLocation()
methods on the bottom. SetDestination()
ModifyRouteToAvoid()
SetDestination ("Fifth Ave & Penn Ave"); ModifyRouteTolnclude()
i ; GetRoute()
BN Here's the O“{-"M" (:ro.m; the GetTimeToDestination()
route = GetRoute(); éc{:Rou{:co method—it's TotaDistance(
a s{:r'mg that tontains the
/\ diveetions Mike should follow:
The navigation sys{xm sets "Take 31st Street Bridge to Liberty Avenue to Bloomfield"
a destination and tomes up
with a voute.

The navigation system gets

new information about 3

street it needs to avoid. ’l
——— 100 YROUteToAVO1d ("Liberty Ave");

N ik ean tome WY w\f:\\ a new
ow{:c 1o the dcs{:'ma'\:\ov\.
vow

string route;

— route = GetRoute();

"Take Route 28 to the Highland Park Bridge to Washington Blvd"

GetRoute() gives a new voute
that doesn’t intlude the
street Mike wants o avoid.

Mike's navigation system solves the street

navigation pro]alem the same way he does.

you are here » 103

set methods and modify routes

Mike’s Navigator class has methods to set and modify rovtes

Mike’s Navigator class has methods, which are where the action happens. But unlike the
button Click () methods in the forms you've built, they’re all focused around a single
problem: navigating a route through a city. That’s why Mike stuck them together into one
class, and called that class Navigator.

Mike designed his Navigator class so that it’s easy to create and modify routes. To get a
route, Mike’s program calls the SetDestination () method to set the destination, and
then uses the GetRoute () method to put the route into a string. If he needs to change the
route, his program calls the ModifyRouteToAvoid () method to change the route so that was thinking sbout how
it avoids a certain street, and then calls the GetRoute () method to get the new directions. to naviga’cc 3 voute

class Navigator { K through a eity-

public void SetCurrentlLocation(string locationName) { ... }

Mike those method
names that would make
sense to someone who

public void SetDestination(string destinationName) { ... }
public void ModifyRouteToAvoid(string streetName) { ... }

public(string)GetRoute() { ... }

string variable that will tontain 4 '“Cf"’\od £an use it 4o set g string route =
it's void, GetRoute () ;

Some wmethods have a return value

Every method is made up of statements that do things. Some methods just execute
their statements and then exit. But other methods have a return value, or a value
that’s calculated or generated inside the method, and sent back to the statement that
called that method. The type of the return value (like string or int) is called the

return type. Heve's an example of a method
The return statement tells the method to immediately exit. If your method doesn’t fhat has a veturn {yyc——i{

have a return value—which means it’s declared with a return type of void—then vetwens an int. The method uses
the return statement doesn’t need any values or variables (“return;”), and you the two Varamc{:crs to caleulate
don’t always have to have one in your method. But if the method has a return type, the vesult.

then it must use the return statement.

public int MultiplyTwoNumbers (int firstNumber, int secondNumber) {
int result = firstNumber * secondNumber;

return result; <&——— This veturn s{:a{xvncy.{: passes the value back
} 4o the statement that called the method. e
Mcﬂ\ods can take values \\k.cb\cs
\so use vavia
< S. Bu‘\: you tan 3
int myResult = MultiplyTwoNumbers (3, 5); . £y o o e

Here’s a statement that calls a method to multiply two numbers. It returns an int:

104 Chapter 3

objects: gef oriented!

QBUI.I.ET POINTS

m Classes have methods that contain statements that perform actions. You can design a class that is easy to use by
choosing methods that make sense.

m Some methods have a return type. You set a method’s return type in its declaration. A method with a declaration that starts
‘“public int”returnsan int value. Here’s an example of a statement that returns an int value: return 37;

m When a method has a return type, it must have a return statement that returns a value that matches a return type. So if
you've got a method that’s declared “public string”then you need a return statement that returns a string.

m Assoon as a return statementin a method executes, your program jumps back to the statement that called the method.

m Not all methods have a return type. A method with a declaration that starts “public void” doesn't return anything at
all. You can still use a return statement to exita void method: i f (finishedEarly) { return; }

Use what you've learned to build a program that uses a class

Let’s hook up a form to a class, and make its button call a method inside that class. >* Do t}ll S’

o Create a new Windows Forms Application project in the IDE. Then add a class file to it
called Talker.cs by right-clicking on the project in the Solution Explorer and selecting “Class...”
from the Add menu. When you name your new class file “Talker.cs,” the IDE will automatically
name the class in the new file Talker. Then it’ll pop up the new class in a new tab inside the IDE.

e Add using System.Windows.Forms; to the top of the class file. Then add code to the class:

class Talker {
public static int BlahBlahBlah(string thingToSay, int numberOfTimes)

{
This s{,a‘ccmﬂ\£ /-7 string finalString = "";
detlaves 3 LinalString for (int count = 0; count < numberOfTimes; count++)
vaviable and sets it {
Ca\ua\ 4o an cm‘,{:\, finalString = finalString + thingToSay + "\n";
chxing } This line of tode adds the

MessageBox.Show (finalString) ;

contents of thi i
return finalString.Length; <_\ ontents ot thingToSay and a line

break (“\n”) onto the end of it +o
} The BlahBlahBlah() method’s vetuwrn value is an the L\ihalS{ring vaviable.
integer that has the total length of the message it .
displayed. You tan add “Length” to any string to KThis is alled a property. Every chrmg
figure out how long it is. has a property called Lcng’ch.-thn ‘1{:
caleulates the length of a string, a line
break (“\n”) counts as one tharacter.

> Fli]o the page to l(ee]o going!

you are here » 105

introducing objects

To turn off

. . . the minimize

So what did you just build? * * and maximize
buttons, set
the form’s

MaximizeBox

The new class has one method called BlahBlahBlah () that takes two parameters. The first
parameter is a string that tells it something to say, and the second is the number of times to say

it. When it’s called, it pops up a message box with the message repeated a number of times. and
Its return value is the length of the string. The method needs a string for its thingToSay MinimizeBox
parameter and a number for its numberOfTimes parameter. It'll get those parameters properties to
from a form that lets the user enter text using a TextBox control and a number using a False.
NumericUpDown control.

Set the default l

Now add a form that uses your new class! text of this

Tctho*A tontrol to
“Hc"o.," using its Text Say this: |ﬁel|o!

property. #of times: |3 5

| Speak to me!

9 Make your project’s form look like this. >

Then double-click on the button and have it run this code that calls BlahBlahBlah () and assigns its return
value to an integer called len: This is a NumerieUpDown eontrol.

Set its Minimum Propcr-{:\/ to I, its
private void buttonl Click(object sender, EventArgs e) Maimum PVOF"{\/ to ’O, and its
; - Value property to 3.

int len = Talker.BlahBlahBlah (textBoxl.Text, (int)numericUpDownl.Value);
MessageBox.Show ("The message length is " + len);

/ The length is 2| because “Uello!”
is six thavacters, plus the \n
counts as another tharacter,
e Now run your program! Click the button and watch it pop up two .\ gives 7x3 =2l

message boxes. The class pops up the first message box, and the
form pops up the second one.

When the
The BlahBlahBlah() method method veturns
pops up this message box a value, the form The message length is 21

based on what's in its

parameters. _j}

pops it up in this

mcssage box.

*

You can add a class to your project and share
its methods with the other classes in the Project.

106 Chapter 3

objects: gef oriented!

IT'D BE GREAT IF I
COULD COMPARE A FEW
ROUTES AND FIGURE OUT
WHICH IS FASTEST--.-.

Mike gets an idea @ "o

The interview went great! But the traffic)%L
jam this morning got Mike thinking about
how he could improve his navigator.

He could create three different Navigator classes...

Mike could copy the Navigator class code and paste it into two more
classes. Then his program could store three routes at once.

This box is a tlass diagram. [+ lists
all of the methods in a class, and
it’s an easy way to see everything

Navigator that it does at a glance.
SetCurrentLocation() - X/
N tor2
SetDestination() a.V|ga or
ModifyRouteToAvoid() SetCurrentlocation() Navigator3
ModifyRouteTolnclude() SetDestination())
GetRoute() ModifyRouteToAvoid() getgu"t‘?”‘t“?)“°”0
. etDestination
GetTimeToDestination() ModifyRouteTolnclude() ModifyRoute ToAvoid()
TotalDistance() GetRoute() ModifyRouteTolnclude()
GetTimeToDestination() G
TotalDistance() etR,OUte() o
GetTimeToDestination()
TotalDistance()

WHOA, THAT CAN'T BE RIGHT!
WHAT IF T WANT TO CHANGE A
METHOD? THEN I NEED TO GO
BACK AND FIX IT IN THREE PLACES-

Right! Maintaining three copies of the same code
is really messy. A lot of problems you have to solve need a
way to represent one thing a bunch of different times. In this case,
it’s a bunch of routes. But it could be a bunch of people, or aliens,
or music files, or anything. All of those programs have one thing in
common: they always need to treat the same kind of thing in the
same way, no matter how many of the thing they’re dealing with.

you are here » 107

for instance...

Mike can use objects to solve his problem

Objects are C#’s tool that you use to work with
a bunch of similar things. Mike can use objects
to program his Navigator class just once, but
use it as many times as he wants in a program.

e Nav\‘ba{""v (i\ass Navigator

This ‘; s program It lists SetCurrentLocation()

" M}} CJc,\r\c methods that 3 SetDestination()
ar\l\;;:\%a&oY dojetk £an € | ModifyRouteToAvoid(

ModifyRouteToInclude()
GetRoute()
GetTimeToDestination()

TotalDistance()

Mike needed to compare

A
g three different voutes
All you need to create an 3> at onte, so he used

o
object is the new keyword /\/QVlgcr\O(?\»\/ theee Navigator objects
and the name of a class. at the same time.

Navigator navigatorl =(new)Navigator() ;
navigatorl.SetDestination ("Fifth Ave & Penn Ave");
string route;

route =@avigator1-.LGetRoute ()

Now you can use the object! When you
create an object from a class, that object
has all of the methods from that class.

108 Chapter 3

objects: gef oriented!

You use a class to build an object

A class 1s like a blueprint for an object. If you wanted to build
five identical houses in a suburban housing development, you
wouldn’t ask an architect to draw up five identical sets of
blueprints. You’d just use one blueprint to build five houses.

When you define a ¢class, you define
its methods, just like a blueprint
defines the layout of the house.

(iR

.

i

Bl

You tan use one bluc?rin{: to
make any number of houses,
and You an use one ¢tlass 4o
make any number o‘('\ ob\)cd:s.

]

An object gets its methods from its class

Once you build a class, you can create as many objects as you want from
it using the new statement. When you do, every method in your class
becomes part of the object.

House

GiveShelter()
GrowLawn()
MailDelivered()
/ ClogDrainPipes()
AccruePropertyTaxes()
NeedRepairs()

- 38 Pine
Street

%USe o0 \w

you are here » 109

objects improve your code

When you create a new object from a class,

its called an instance of that class

Guess what...you already know this stuff! Everything in the toolbox
is a class: there’s a Button class, a TextBox class, a Label

class, etc. When you drag a button out of the toolbox, the IDE
automatically creates an instance of the Button class and calls

it buttonl. When you drag another button out of the toolbox,

it creates another instance called button?2. Each instance of
Button has its own properties and methods. But every button acts
exactly the same way, because they’re all instances of the same class.

Befove: heve's a picture of Your
tomputer’s memory when Your

program stavts.

iy

House mapleDrivell5 =

YOW Program
exetutes g new
Sfafc'nch{,

new House() ;

After: now ks

ot an instante

o‘(: the Rouse

¢lass in memovy:

*
Check it out for yourself! * V\DQ t}ll'S.’

Open any project that uses a button called buttonl, *
and use the IDE to search the entire project for the

text “buttonl = new”. You'll find the code that

the IDE added to the form designer to create the

instance of the Button class.

In-stance, noun.
an example or one occurrence of
something. The IDE search-and-

replace feature finds every instance
of a word and changes it to another

110 Chapter 3

objects: gef oriented!

A better solution..brought to you by objects! GU1 stands for Graphica

User Intevface, which is

. . . . wha ' ildi
Mike came up with a new route comparison program that uses objects to find t Y: ure ‘Fb“"d"‘ﬂ when
. o ; ou i
the shortest of three different routes to the same destination. Here’s how he 1 ma e. a Yorm in the
R orm dcmancr.
built his program.

o Mike set up a GUI with a textbox—textBox1 contains the destination for the three routes.
Then he added textBox2, which has a street that one of the routes should aveid; and
textBox3, which contains a different street that the third route has to include.

The navigatorl

ob\')cc{: is :E §
. instante he
e He created a Navigator object and set its destination. avigator Naviga‘cov elass.
3.5 miles &
Navigator ~
. ¥
SetCurrentLocation()
SetDestination()
ModifyRoute ToAvoid() i destinati — textBoxl . Text:
ModifyRouteTolnclude() string destination = textbox.k.lext;
GetRoute() Navigator navigatorl = new Navigator();
GetTimeToDestination()
TotalDistance() navigatorl.SetDestination (destination);
 —

route = navigatorl.GetRoute();

The SCJC,Dechma{:\on.() E -
9 Then he added a second Navigator object called navigator2. He Mod\‘c\’Rou{:cToAde .
called its SetDestination () method to set the destination, and Mod\ﬁ\[Rov{eTo\nc\udc(-) »
then he called its ModifyRouteToAvoid () method. AR T o
varamc{:cv.

e The third Navigator object is called navigator3. Mike set its
destination, and then called its Modi fyRouteToInclude () method.

Any time you
create a new
35 miles Jf 38 miles Jf 42 niles ohject from a

class, it's called

avigatorl avigator2 avigator3

, , , creating an
e Now Mike can call each object’s TotalDistance () method to figure
out which route is the shortest. And he only had to write the code once, instance o-[

not three times!
that class.

you are here » 111

a little secret sauce

WAIT A MINUTE! YOU
DIDN/T GIVE ME NEARLY ENOUGH

INFORMATION TO BUILD THE
NAVIGATOR PROGRAM.

That’s right, we didn’t. A geographic navigation program is
a really complicated thing to build. But complicated programs follow
the same patterns as simple ones. Mike’s navigation program is an

example of how someone would use objects in real life.

Theory and practice

Speaking of patterns, here’s a pattern that you’ll see over and over again
throughout the book. We’ll introduce a concept or idea (like objects) over the
course of a few pages, using pictures and short code excerpts to demonstrate the
idea. This 1s your opportunity to take a step back and try to understand what’s
going on without having to worry about getting a program to work.

House mapleDrivell5 = new House() ;

When we've introduting a new tontept
(like objects), keep your eyes open for
pictures and tode excerpts like this.

After we've introduced a concept, we’ll give you a chance to get it into your
brain. Sometimes we’ll follow up the theory with a writing exercise—Tlike the
Sharpen your pencil exercise on the next page. Other times, we’ll jump straight

When you run mto

into code. This combination of theory and practice is an effective way to get

these concepts off of the page and stuck in your brain. a Prﬂlf)le m Wltll

A little advice for the code exercises a coJing exercise,
If you keep a few simple things in mind, it’ll make the code exercises go C[Ol'l,t l:,e a{raic[
smoothly:

to Pee]c at the
solution. You can

* It’s easy to get caught up in syntax problems, like missing parentheses
or quotes. One missing bracket can cause many build errors.

* It’s much better to look at the solution than to get frustrated with a
problem. When you’re frustrated, your brain doesn’t like to learn. also C[OWflloaC[tlle
* Al of: the code in .this book is tes'ted and deﬁnite%y works in Yisual solution {rOm tl‘e
Studio 2012! But it’s easy to accidentally type things wrong (like
typing a one instead of a lowercase L). Heac[First Lal)s

* If your solution just won’t build, try downloading it from the Head

First Labs website: http://www. headfirstlabs.com/hfcsharp WeLSIte‘

112

objects: gef oriented!

_ @G harpen your pencil

A the code to create Navigator objects and call their methods.

We gave you a head stavt. Here's
the tode Mike wrote +o get the
destination and street names from
the text boxes.

string destination = textBoxl.Text;
string route2StreetToAvoid = textBox2.Text;
string route3StreetToInclude = textBox3.Text;

Nav.igator navigatolrl =. new Navligat?r() ; And heve's the tode to treate {',h;
navigatorl.SetDestination (destination) ; naviga{-pr ob\')cc{:, set its destination,
int distancel = navigatorl.TotalDistance(); and 5&‘ the distance.
1. Create the navigator?2 object, set its destination, call its Modi fyRouteToAvoid () method, and
| useits TotalDistance () method to set an integer variable called distance?2. |
| Navigator navigator2 = |
| mavigator2. |
| navigator2. |
| int diStance2 = ... |
L e e e e e e e e e — A
2. Create the navigator3 object, set its destination, call its ModifyRouteToInclude () method,
| and useits TotalDistance () method to set an integer variable called distance3. |

ilt i mbevs and
th.-Min() method built into the NET Framework tompares two nu nd
I:{Cuﬁj the |s':mallc:lc o‘:c‘ Mike used it to find the shortest distante to the dcs{:maho%

int shortestDistance = Math.Min(distancel, Math.Min (distance2, distance3));

Follow the same steps that Mike followed earlier in the chapter to write

you are here »

113

_ @G harpen your pencil

i s I t Follow the same steps that Mike followed earlier in the chapter to write
0 u Ion the code to create Navigator objects and call their methods.
string destination = textBoxl.Text; We gave You a head start. Here's

the tode Mike wrote to get the

string route2StreetToAvoid = textBox2.Text; destinat;
estination and street names from

string route3StreetToInclude = textBox3.Text; the text boxes.
Navigat i torl = Navi t ;

avllga or navige O},r , new avllga (,)r v . Pnd heve's the tode ho chai,: {::c
navigatorl.SetDestination(destination); y\aviga‘l:ov ob\')céjc; set its destination,
int distancel = navigatorl.TotalDistance(); and 5&, the distante.

1. Create the navigator?2 object, set its destination, call its Modi fyRouteToAvoid () method, and

| useits TotalDistance () method to set an integer variable called distance?2. |
| Navigator navigator2 = ewMNavigste) |
| navigator2. SetDestmation(destinstion |
| navigatorZ . MOdi‘c\/ROlA‘tCRAVOid(YOM‘tCZS{YCC{BAVOid),' |
| int distance2 = navigator 2. TotalDistance(); |
L e e e e e e e e e — A

T |

2. Create the navigator3 object, set its destination, call its ModifyRouteToInclude () method,

| and useits TotalDistance () method to set an integer variable called distance3. |
I Navigator navigstor = new NaviagborQ |
b naviqator3 SetDestination(destination); |
| navigaﬁoé.Modif\/Rou{:cTolm‘.ludc(rou‘l:c%S{:\rcc{:Tblm:ludc); l

ilt i mbevs and
th-Min() method built into the NET Framework tompares two nu nd
I:Euﬁj the ls:nallcsc{ c:nc. Mike used it to find the shortest distante to the dcs{:ma{:novfll

int shortestDistance = Math.Min(distancel, Math.Min (distance2, distance3));

114 Chapter 3

objects:

TI'VE WRITTEN A FEW CLASSES NOW, BUT I
HAVEN'T USED “NEW” TO CREATE AN INSTANCE
YET! SO DOES THAT MEAN I CAN CALL METHODS
WITHOUT CREATING OBJIELTS?

class Talker

{

{

When you called the method, you didn’t create a new instance of Talker. You just did this:

Talker.BlahBlahBlah ("Hello hello hello",

they live in classes.

public static int BlahBlahBlah(string thingToSay,

Yes! That’s why you used the static keyword in your methods.

Take another look at the declaration for the Talker class you built a few pages ago:

string finalString = "";

5);

That’s how you call static methods, and you've been doing that all along: If you take away
the static keyword from the BlahBlahBlah () method declaration, then you’ll have to
create an instance of Talker in order to call the method. Other than that distinction, static
methods are just like object methods. You can pass parameters, they can return values, and

There’s one more thing you can do with the static keyword. You can mark your whole
class as static, and then all of its methods must be static too. If you try to add a nonstatic
method to a static class, it won’t compile.

Dum

Q- When I think of something that’s “static,” I think of
something that doesn’t change. Does that mean nonstatic
methods can change, but static methods don’t? Do they
behave differently?

- No, both static and nonstatic methods act exactly the
same. The only difference is that static methods don't require
an instance, while nonstatic methods do. A lot of people have
trouble remembering that, because the word “static” isn’t really
all that intuitive.

Q- So | can’t use my class until | create an instance of
an object?

- You can use its static methods. But if you have methods
that aren’t static, then you need an instance before you can
use them.

therejare no .
b Questions

oriented!

int numberOfTimes)

Q/: Then why would | want a method that needs an
instance? Why wouldn’t | make all my methods static?

A: Because if you have an object that's keeping track of
certain data—like Mike’s instances of his Navigator
class that each kept track of a different route—then you can
use each instance’s methods to work with that data. So when
Mike called his ModifyRouteToAvoid () method

in the navigator?2 instance, it only affected the route
that was stored in that particular instance. It didn't affect the
navigatorl ornavigator3 objects. That's how he
was able to work with three different routes at the same time—
and his program could keep track of all of it.

Q: So how does an instance keep track of data?

AI Turn the page and find out!

115

an object’s state of affairs

An instance uses fields to keep track of things

You change the text on a button by setting its Text property in the chh"iﬂall)’; it's sc*H:ing a
IDE. When you do, the IDE adds code like this to the designer: m‘/ A rochch is very
n " Similar '&O a 'Cld—bu{ WC’“
buttonl.Text = "Text for the button"; /5:& into all that 3 liktle

Now you know that buttonl is an instance of the Button class. ater on.
What that code does is modify a field for the buttonl instance.

You can add fields to a class diagram—just draw a horizontal line in

the middle of it. Fields go above the line, methods go underneath it.

Class
This is wheve a tlass =
diagram shows the Field2
fi(:clds. Every instance Field3
the ¢lass uses Add b b .
HE‘-'L{?EECP e Method1) separate the fields
ok its state. Method2() from the methods.
Method3()
S

Methods are what an object does. Fields are what the object knows.

When Mike created three instances of Navigator classes, his program created three objects.
Each of those objects was used to keep track of a different route. When the program created the
navigator?2 instance and called its SetDestination () method, it set the destination for that
one instance. But it didn’t affect the navigatorl instance or the navigator3 instance.

Navigator Every instance of Navigator knows
Destination its destination and its voute.
Route
SetCurrentLocation()
SetDestination()
ModifyRoute ToAvoid|() What a Navigator objeet does is
ModifyRouteTolnclude() é\ let you set a destination, modify
GetROUte() i‘{:s Vo“";c; and 56‘{', in‘(:mrma-{:ion
GetTimeToDestination() about that voute.
TotalDistance()

An olnject’s hehavior is defined l)y its metllon,
and it uses fields to keep track of its state.

116 Chapter 3

objects: gef oriented!

, . . Renember, vhen you se
Lets create some instances! i Front o 3 method
'C means that it doesn’t
It’s easy to add fields to your class. Just declare return any value.
variables outside of any methods. Now every class Clown {

instance gets its own copy of those variables. public string Name;

Clown ?y’public int Height;
Name /
Height public void TalkAboutYourself () {

/ MessageBox.Show ("My name is "

TalkAboutYourself() - + Name + " and I'm "
+ Height + " inches tall.");

When you want to eveate instantes }
of Your class, don't use the static

keyword in either the elass detlavation

or the method declavation.

_ % harpen our pencl
N Y

Remember, the *= operator tells C#
4o take whatever's on the left of the
operator and multiply it by whatever's
on the vigh{;

Write down the contents of each message box that will be displayed
after the statement next to it is executed.

Clown oneClown = new Clown();
oneClown.Name = "Boffo";

oneClown.Height = 14;

oneClown.TalkAboutYourself () ; “Mynameis_______andI'm______inchestall”

Clown anotherClown = new Clown () ;
anotherClown.Name = "Biff";

anotherClown.Height = 16;

anotherClown.TalkAboutYourself () ; “My nameis_______andI'm_ _inches tall”

Clown clown3 = new Clown () ;
clown3.Name = anotherClown.Name;

clown3.Height = oneClown.Height - 3;

clown3.TalkAboutYourself () ; “My name is __

_andI'm______ inches tall”

anotherClown.Height *= 2;

anotherClown.TalkAboutYourself () ; “My nameis_______andI'm______inchestall”

you are here » 117

toss it in the heap

Thanks for the memory

When your program creates an object, it lives in a part of the
computer’s memory called the heap. When your code creates an
object with a new statement, C# immediately reserves space in the
heap so it can store the data for that object.

Heve's a picture of the heap b]c(:ore the
projett starts. Notice that it's empty.

Let’s take a closer look at what happened here \

% harpen your pencil
} Solutlon Write down the contents of each message box that will be displayed
after the statement next to it is executed.

oneClown.Name

objeet and £illing it up with the object’s data
oneClown.Height = 14; ‘

oneClown.TalkAboutYourself () ;

Clown anotherClown new Clown () ;
anotherClown.Name = "Bi

anotherClown.Height = 16;

anotherClown.TalkAboutYourself () ;
Clown clown3 =

clown3.Name = anotherClown.Name;

clown3.Height = oneClown.Height - 3;

anotherClown.Height *= 2;

Each of these new stat
new ements tres ;
Clown oneClown tlass by reserving a thunk of mcm:;‘:ha'{‘:}:"sta"“;\c e Clewn
R —— € heap for that

“My name is _Bﬂc&_ and I'm __’i_ inches tall” /

“My name is _Bﬁ1c__and I'm __“’__inches tall”]

clown3.TalkAboutYourself () ; “My name is Bt andrm_Ilinchestallr ===

\ O\

|\

anotherClown.TalkAboutYourself () ; “My name is ﬁ'ﬂ’__ and I'm _il__ inches tall!

When your program creates a new ol;ject, it gets added to the hea]o.

118 Chapter 3

objects: gef oriented!

This object is an instance of the
What’s on your program’s mind == Q/

Here’s how your program creates a new instance of the
Clown class:

Clown myInstance = new Clown () ;

That’s actually two statements combined into one. The
first statement declares a variable of type Clown (Clown
myInstance;). The second statement creates a new
object and assigns it to the variable that was just created
(myInstance = new Clown () ;). Here’s what t
looks like after each of these statements:

Clown oneClown = new Clown();
oneClown.Name = "Boffo"; The Steds and i
. 1S CVC
oneClown.Height = 14; \I}‘\c\ds are sev

oneClown.TalkAboutYourself () ;

‘Q'\YS{? ob;)d;\:.

Clown anotherClown = new Clown () ;

anotherClown.Name = "Biff"; These statements ereate

, " the setond object and £ill it
anotherClown.Height = 16; with data.

anotherClown.TalkAboutYourself () ;

Clown clown3 = new Clown () ;
clown3.Name = anotherClown.Name;

clown3.Height = oneClown.Height - 3;

clown3.TalkAboutYourself (); e
/ Then the thivd C\o:ndob)cc

cveated and populated:

e anotherClown.Height *= 2;
mPp-anotherClown.TalkAboutYourself () ;

There's no “new’” statement, which

S e
means these statements don't ereate a /OWn o[@
new ob\')cdb Thc\/’rc Jusjc Mdhcyi'fi/-;?

that’s alveady in memory.

you are here » 119

making methods make sense

You can use class and method
names to make your code intuitive

When you put code in a method, you’re making a choice about how to structure
your program. Do you use one method? Do you split it into more than one? Or do
you even need a method at all? The choices you make about methods can make your
code much more intuitive—or, if you’re not careful, much more convoluted.

o Here’s a nice, compact chunk of code. It’s from a control program that
runs a machine that makes candy bars.

T
h;h?:: itk—,l;CMPO mefhod "C{:W‘hs an
int t = m.chkTemp () ; 9er...but what does it do?

if (t > 160) {

T tb = new ;

; The ¢lsTvepVO
th. clsTrp method has one
ics.Fill(); arameter, but we

ics.Vent () ; don't know what
it's supposed to be.

\\tb“l “.lcs") ahd “mll
are terrible names!
We have no idea

what {:hcy do. And
what’s that T elass
co\r.? m.airsyschk() ;

}

Great Jevelopers
write code

that's easy to
understand.
Comments can
ltel]), but notlling
bheats clwosing
intuitive names
for your metles,
classes, variables,

and fields.

Take a second and look at that code. Can you figure out what it does?

e Those statements don’t give you any hints about why the code’s doing what it’s doing. In this case, the
programmer was happy with the results because she was able to get it all into one method. But making
your code as compact as possible isn’t really useful! Let’s break it up into methods to make it easier to
read, and make sure the classes are given names that make sense. But we’ll start by figuring out what the

code 1s supposed to do.

tow do You fioure out what

2
our tode s suwoscd to dof

o for
Il code is written
Well, 3 ogo it's up to 70\:\ to

General Electronics Type 5 Candy Bar Maker
Specification Manual

eason- : .

i:wc out that veason. In Chis The nougat temperature must be checked every 3 mlonutes by and
caﬁsc we tan look up the page automated system. If the temperature exceeds 160 (.], the can y
i {:;\c 5\"6.‘{:-'{’3{‘0“ manual is too hot, and the system must perform the candy isolation
n

er Sollowed.

¢ Vent the water.

120 Chapter 3

cooling system (CICS) vent procedure.

«+ Close the trip throttle valve on turbine #2.

« Till the isolation cooling system with a solid stream of water.

+ Verify that there is no evidence of air in the system.

objects: gef oriented!

9 That page from the manual made it a lot easier to understand the code. It also gave us some great
hints about how to make our code easier to understand. Now we know why the conditional test checks
the variable t against 160—the manual says that any temperature above 160°C means the nougat
1s too hot. And it turns out that m was a class that controlled the candy maker, with static methods
to check the nougat temperature and check the air system. So let’s put the temperature check into a
method, and choose names for the class and the methods that make the purpose obvious.

public IsNougatTooHot () {

The IsN Sa{TooHoJcO int temp = Maker.CheckNougatTemperature () ;
e [sNow) i
method's veturn {:\/?c if (temp > 160) { B‘/ naming Lhe elass “Maker and {,';he
return true; method “ChcckNouga{:TCmycra{wc)
} else { we make the tode a lot easier to
return false; é_\ understand.
} .
} This method’s veturn type is

Boolean, which means it veturns @
Hrue or false value.

e What does the specification say to do if the nougat is too hot? It tells us to perform the candy isolation
cooling system (or CICS) vent procedure. So let’s make another method, and choose an obvious name
for the T class (which turns out to control the turbine) and the ics class (which controls the isolation
cooling system, and has two static methods to fill and vent the system):

public \woid)DoCICSVentProcedure () {
A void veturn

£YFC 5 Turbine turbineController = new Turbine();
means
the method doesn’t turbineController.CloseTripvalve (2) ;
vreturn any value at all. IsolationCoolingSystem.Fill () ;
IsolationCoolingSystem.Vent () ;
Maker.CheckAirSystem() ;
}

e Now the code’s a lot more intuitive! Even if you don’t know that the CICS vent procedure needs to
be run if the nougat is too hot, it’s a lot more obvious what this code is doing:

if (IsNougatTooHot () == true) {
DoCICSVentProcedure () ;
}
You can make your code easier to read and write l;y tllinl(ing about
the Prol)lem your coJe was built to solve. If you clloose names for your
methods that make sense to someone who understands that problem,

then your code will be a lot easier to Jeci]oller...anc[c[evelo]o!

you are here » 121

classes

Give your classes a natural structure

Take a second and remind yourself why you want to make your methods intuitive:
because every program solves a problem or has a purpose. It might not
be a business problem—sometimes a program’s purpose (like FlashyThing) is just to
be cool or fun! But no matter what your program does, the more you can make your

code resemble the problem you’re trying to solve, the easier your program will be to
write (and read, and repair, and maintain...).

Use ¢lass diagrams {:o ?lah ou‘l', \/ow ¢lasses

A class diageam is a simple way to dvaw Your

ClassName

sses out on paper. [t's a veally valuable tool
?:v ;csigning \/‘:u‘:-ct.odc BEFORE you start
writing it
Wrike the name of the tlass at the top of
the diagram. Then write eath method in the
box at the bottom. Now you ean see all of the
parts of the class at a glancc!

e

Let’s build a class diagram

Method ()
Method ()
Method ()

Take another look at the if statement in #5 on the previous page. You already know that statements
always live inside methods, which always live inside classes, right? In this case, that 1 f statement was
in a method called DoMaintenanceTests (), which is part of the CandyController class.
Now take a look at the code and the class diagram. See how they relate to each other?

class CandyController ({

public void DoMaintenanceTests () {

if (IsNougatTooHot () == true) {
DoCICSVentProcedure () ;

}
public void DoCICSVentProcedure ()

public boolean IsNougatTooHot ()

122

CandyController

DoMaintenanceTests()
DoCICSVentProcedure()
IsNougatTooHot()

objects: gef oriented!

_ @ harpen your pencil

A The code for the candy control system we built on the previous
page called three other classes. Flip back and look through the
code, and fill in their class diagrams.

We filled i the ¢lass name

or {:l’llS one. Wh
9oes here? 3 method

Turbine

of Lhe tlasses had
Oah:\c’d\od called FiNO-
Filli its tlass name
a\‘nd n',s other method.

There was one other
tlass in the tode on the
Previous page. Fill in iks
name and method.

you are here » 123

picture your classes

Class diagrams help you organize your
classes so they make sense

Writing out class diagrams make

s it a lot easier to spot potential problems in your

classes before you write code. Thinking about your classes from a high level before
you get into the details can help you come up with a class structure that will make

sure your code addresses the pro

blems it solves. It lets you step back and make sure

that you’re not planning on writing unnecessary or poorly structured classes or
methods, and that the ones you do write will be intuitive and easy to use.

Dishwasher

CleanDishes()
AddDetergent()
SetWaterTemperature()
ParkTheCar()

— qgaharpen Yo

L Solutio

—

ur pencil

Dishwasher
The class is called CleanDishes()
Dishwasher, so all the AddDetergent()

methods should be about
washing dishes. But one
method—ParkTheCar () —
has nothing to do with dishes,
so it should be taken out and
put in another class.

SetWaterTemperature()

q

n The code for the candy control system we built on the You c°""d figure out that
previous page called three other classes. Flip back and Maker 54 tlass because it
look through the code, and fill in their class diagrams. ~dPpears in front of a dot in

Makcr.ChcckAirS\/s{:cm().
Turbine lsola'l:ionCoolinSSyS'ECm Maker P
Fill ()
CloseTripValve() CheckNougat Temperature()

Vent()

124 Chapter 3

objects: gef oriented!

_ @ harpen Your pencil

P Each of these classes has a serious design flaw. Write down what
you think is wrong with each class, and how you'd fix it.

Class23 This class is part of the candy manufacturing system from earlier.

CandyBarWeight()
PrintWrapper()
GenerateReport()
Go()

DeliveryGuy

AddAPizza() These two classes are part of a system that a pizza parlor uses to

PizzaDelivered() track the pizzas that are out for delivery.

TotalCash()
Retu mTI me() ...

DeliveryGirl

AddAPizza()

PizzaDelivered() | ceeeeereeeeeeee e
| TotalCash()

Retu I'nTI me() ...

The CashRegister classis part of a program that’s used by an

CashRegister automated convenience store checkout system.

MakeSale()
NOSBIE)
PumpGas()
REfUNG) e
TotalCashInRegister()
GetTransactionList() e
AddCash()
RemoveCash() [

you are here » 125

create a class

_ % harpen your pencil

L Solution

Here’s how we corrected the classes. We show just one
possible way to fix the problems—but there are plenty of other ways
you could design these classes depending on how they’ll be used.¥

This class is part of the candy manufacturing system from earlier.

These two classes are part of a system that a pizza parlor uses to
track the pizzas that are out for delivery.

We added the Gender field betause we .
asCSumcd theve was a veason +o tratk delivery
and that's why

quys and girls scyara‘cclz,

Iheve were two tlasses tor them.

The CashRegister class is part of a program that’s used by an
automated convenience store checkout system.

All of the methods in the tlass do stuff that has to do with

CandyMaker

CandyBarWeight()
PrintWrapper()
GenerateReport()
MakeTheCandy()

DeliveryPerson

Gender

AddAPizza()
PizzaDelivered()
TotalCash()
ReturnTime()

CashRegister

MakeSale()

NoSale()

Refund()
TotalCashInRegister()
GetTransactionList()
AddCash()
RemoveCash()

126

Chapter 3

objects: gef oriented!

public partial class Forml : Form ({
public Forml () {
InitializeComponent () ;
}
private void buttonl Click(object sender, EventArgs e) {
string result = "";

_ Poo]

Puzzle

Your job is to take
code snippets
from the pool and
place them into the blank

Echo el = new Echo();

int x = 0; lines in the code. You may use the same
while () A snippet more than once, and you won't
result = result + el.Hello() + "\n"; need to use all the snippets. Your goal is to
make classes that will compile and run and
produce the output listed.
if |) |
e2.count = e2.count + 1; Output
}
if |) |
e2.count = e2.count + el.count; :jtggz:
} helloooo..

helloooo...
x =x + 1; Count: 10

MessageBox.Show (result + "Count: " + e2.count);
}
}
class { Bonus Question!
public int = 0;

If the last line of output was
public string { 24 instead of 10, how would
you complete the puzzle?
You can do it by changing
just one statement.

return "helloooo...";

Note: each
snippet from the
pool can be used

more than once! x<5 Echo

x>0 Tester
e2 x> 1 Echo() e2=el;
Count .
elzelsl: count () Echo e2;
Hello() Echoe2 =el;

el =count+1;
el.count =count+1;
el.count=el.count +1;

Echo e2 = new Echo();

— > Answers on page 138.

you are here » 127
There are two possible solutions to this puzzle. Can you find them both?

working class guys

Build a class to work with some guys

Joe and Bob lend each other money all the time. Let’s create a class to
keep track of them. We’ll start with an overview of what we’ll build.

Q We'll create a Guy class and add two instances of it to a form.
The form will have two fields, one called joe (to keep track of the first object),

and the other called bob (to keep track of the second object).

The new statements
fhat eveate the two
instantes live in the
tode that gets vun as
soon as the Lorm is
eveated. Heve's what » ’é\/
the heap looks like - 7,
after £"hc Lorm is Q/y : \% Q/y ob36°
loaded. 0b3®°

e We'll set each Guy object’s cash and name fields.
The two objects represent different guys, each with his own name and a
different amount of cash in his pocket.

Eath guy has a Name \
field 'l:h;/‘c keeps track of
his name, and a Cash field
that has the number of :
bucks in his Fockc{:- - gy

Q’}" ob'\\@c‘%

e We'll give cash to the guys and take cash from them.
We’ll use each guy’s ReceiveCash () method to increase a guy’s cash,
and we’ll use his GiveCash () method to reduce it.

ieet i 0
m ealls £he object’s ReteiveCash
T:;i:\f:; [t's called Rgccichash() betause

he's veteiving the cash.

% obye®*

Sy obsﬁc'x)&’

128 Chapter 3

The method veturns the
number of butks that the guy
added 1o his Cash field.

N — bob .ReceiveCash (25) ; =

% obye*

Guy

Name
Cash

GiveCash()
ReceiveCash()

We those names for the
methods that make sense.
You eall a 6“)’ ob\)cd{:’s
GiveCash() method to tell
him to give up some of his
¢ash, and his ReteiveCash()
method when You want him
to take some tash back.
We eould have called them
QiveCashToSomeone() and
ReteiveCashFromSomeone(),
but that would have been
very longf

When you take an instante
of éu\/ and eall its
ReceiveCash() method, you
pass the amount of cash
the quy will take as a
pavameter. So ealling bob.
ReteiveCash(25) tells Bob
4o veceive 25 bucks and
add them to his wallet.

objects: gef oriented!

Create a project for your guys

Create a new Windows Forms Application project (because we’ll]
be using a form). Then use the Solution Explorer to add a new DQ J[}HS-
class to it called Guy. Make sure to add “using System. >* ‘*

Windows.Forms;” to the top of the Guy class file. Then fill
in the Guy class. Here’s the code for it:

The éu\/ elass has two fields. The Name field is
a string, and it'll contain the 9uy’s name (“Joe”).
And the Cash field is an int, which will kcc?
class Guy I/ track of how many bucks are in his pocket.
public string Name;

The GiveCash() method has one ya\ramc{:cr
public int Cash;

called amownt that \/ou’\l use 1o tell the
/ guy how muth tash to give you
public int GiveCash (int amount) ({
if (amount <= Cash && amount > 0) {
The auy makes ﬂ

He uses an if statement +o theck
I return amount:. whether he has enough cash—if he
e Hwt ke o amennt does, he takes it out of his Yockc{‘, and
asking him for a } else { ,

it as the vetuen value.
positive amount vetuens it

MessageBox.Show
tash—otherwise, g (

he'd add 4o his "I don’t have enough cash to give you " + amount,
¢ " " .
tash instead of Name + . says. .. 1(.‘) ;)
taking away from return 0; & I the guy doesn’t have enough cash, hell
it } J“,“ You so with a message box, and then
} he'll make GiveCash() veturn O.

The ReteiveCash() method works \')us{: like
public int RecelveCash(int amount) { the GiveCash() method- [£'s passed an
1E (amoun® > 0) § amount as @ ?aramc{:cr, thetks to make
Cash += amount; sure that amount is greater than zevo,
return amount; and then adds it 4o his eash.
} else {

MessageBox.Show (amount + " isn’t an amount I’1l1l take",
Name + " says...");

return 0O; \\ [£ the amount was positive, then the
} RcccichESH() method veturns the amount
} Be carehil ith added. [+ it was zevo or negative, the auy
your turly brackets. [t's easy 4o m
have the wrons ebenn ske e ot cv"\;l . shows a message box and then veturns O.
bracket has a

ma‘[‘,ching Llosins bracket. When the 're What happens if you pass a
all balanced, the [DE will au{wma’cically indent Jchc\{n e toa

i negative amount to a Guy object’s
© You when You type the last closing bratket. ReceiveCash() or GiveCash() method?

you are here » 129

joe says, “where’s my money?”

Build a form to interact with the quys

The Guy class is great, but it’s just a start. Now put together a form that uses two
instances of the Guy class. It’s got labels that show you their names and how much cash *

they have, and buttons to give and take cash from them. They have to get their money
from somewhere before they can lend it to each other, so we’ll also need to add a bank. . .
[— Build this!
* *
Q Add two buttons and three labels to your form.
The top two labels show how much cash each guy has. We’ll also add a field called bank to the
form—the third label shows how much cash is in it. We’re going to have you name some of the
labels that you drag onto the forms. You can do that by clicking on each label that you want

to name and changing its “(Name)” row in the Properties window. That’ll make your code a

lot easier to read, because you’ll be able to use “joesCashLabel” and “bobsCashLabel” instead of
“labell” and “label2”.

Name the top label
JjoesCashL abel, the label
oo has 250 underneath it bobsCashlabel,

and the bottom label
the Joe objeet’s

. The bank has 5100 leave ‘l:hcir TCX"Z PV‘oPcv“{;ics
ReeeiveCash() method,

alone; we'll add a method to
passing it 10 as the form to set them.
the amoun‘l:, and Give §10to ‘ Receive 5
sub'{:\rac{ing from the Joe from Bob A This button will eall the Bob

form’s bank field the

bieet's Gi h() m
tash that Joe veceives. ovect s fiveCas cthod,

passing it 5 as the amount, and
adding the cash that Bob gives
4o the form’s bank field.

e Add fields to your form.

Your form will need to keep track of the two guys, so you’ll need a field for each of them. Call
them joe and bob. Then add a field to the form called bank to keep track of how much money
the form has to give to and receive from the guys.

namespace Your Project Name ({
Sinte we've using

public partial class Forml : Form {

6u\/ ob")cé{‘,s to
keep track of Guy joe; T tof
Joe and Bob, Guy bob; in Eham\guh) tash
you detlare int bank = 100; K\ I8 'dc orm s bank
their Lields in s 9o¢s up and down
the form using public Forml () { m:‘::;dz‘}? OE how ”‘"CL

L . . € Torm Qave
the 6u\/ tlass. InitializeComponent () ; and veceived £r°2 the

} 6!4)’ ob\)cc'l:s.

130 Chapter 3

Notice how £he

are updated using the
opcc’cs' Name and

Guy

Cash fields.

o

objects: gef oriented!

Add a method to the form to update the labels.

The labels on the righthand side of the form show how much cash each guy has and how much

is in the bank field. So add the UpdateForm () method to keep them up to date—make sure

the return type is void to tell C# that the method doesn’t return a value. Type this method

into the form right underneath where you added the bank field: This new method
is sim?lc. H; \')us-{;
updates the three
labels by setting

public void UpdateForm() {

joesCashLabel.Text = joe.Name + " has $" + joe.Cash;

bobsCashLabel.Text bob.Name + " has $" + bob.Cash; their Text on?er{ics.

‘bankCashLabel.Text "The bank has $" + bank; You'” have eath

} button call it to keep
the labels up to date.

Double-click on each button and add the code to interact with the objects.

Make sure the lefthand button is called buttonl, and the righthand button is called button?.

Then double-click each of the buttons—when you do, the IDE will add two methods called

buttonl Click() andbutton2 Click() to the form. Add this code to each of them:

Iabcls

You already
know that
you can
choose
names for
controls.
Are
buttonl
and
button2
really the
best names
we can find?
What names
would you
choose
for these
buttons?

—» private void buttonl Click(object sender, EventArgs e) {
if (bank >= 10) {
bank -=

When the user clicks the “Give §10 o
Joe” b:rl:fon, the form ealls 'Ehcl Joe
ob\)ec-ts ReteiveCash() method—but
if the bank has enough money.

joe.ReceiveCash (10) ;
UpdateForm() ; only

} else {

MessageBox.Show ("The bank is out of money.");

: The bank needs at least 710 to give to
) Joe. [£ there’s not enough, it'll pop up
this message box.
5 private void button2 Click(object sender, EventArgs e) {
bank += bob.GiveCash (5); ,)
UpdateForm() ; The “Reteive % Lrom Bob” button

} doesn't need to theek how muth is
in the bank, because itll ")us{: add

I-(: Bob's out 0‘(" mone\/z

ives back.
whatever Bob gives bat N GiveCash() will veturn zevo.

&)

Start Joe out with $50 and start Bob out with $100.

It’s up to you to figure out how to get Joe and Bob to start out with their Cash and
Name fields set properly. Put it right underneath TnitializeComponent () in the form.
That’s part of that designer-generated method that gets run once, when the form is first initialized.
Once you've done that, click both buttons a number of times—make sure that one button takes
$10 from the bank and adds it to Joe, and the other takes $5 from Bob and adds it to the bank.

public Forml () {
InitializeComponent () ;

Add the lines of code heve to
ereate the two objeets and set
their Name and Cash fields.

|

// Initialize joe and bob here!

you are here » 131

exercise solution

fwo set its fields.

joe =
joe.Name

Make sure you call UpdateForm() so
the labels look vight when the form
Fivst Pops up-

new Guy () ;

joe.Cash = 50;

It’s up to you to figure out how to get Joe and Bob to start out with their Cash and
Name fields set properly. Put it right underneath InitializeComponent () in the

InitializeComponent () ;

new Guy () ;

N Oy
s RC|§Q form.
oLvt\o
Plution public Forml () {
s wheve we set up the fiest
\1::;:;: :E Guy- The Liest line bob =
treates the ob\)cd:, and the next bob .Name

- "Bob" ,.

bob.Cash = 100;

Then we do the same for the

= "Joe"; second instance of the Guy ¢lass.

\/é UpdateForm() ;
}

therejare no
b Questions

Dum

Q,: Why doesn’t the solution start with “Guy bob = new
Guy () ”? Why did you leave off the first “Guy”?

A: Because you already declared the bob field at the top of the
form. Remember how the statement“int i = 5;”is the same
as the two statements “int i”and“i = 5;"? Thisis the same
thing. You could try to declare the bob field in one line like this:
‘Guy bob = new Guy () ;" Butyou already have the first
part of that statement (‘Guy bob ;") at the top of your form. So
you only need the second half of the line, the part that sets the bob
field to create a new instance of Guy ().

Q: OK, so then why not get rid of the “Guy bob;” line at
the top of the form?

A- Then a variable called bob will only exist inside that special
‘public Forml ()” method. When you declare a variable
inside a method, it's only valid inside the method—you can't access
it from any other method. But when you declare it outside of your
method but inside the form or a class that you added, then you've
added a field accessible from any other method inside the form.

132 Chapter 3

Make sure You save the
\Wo\')cc{: now——wcln tome

back to it in d few pages-

\

Q,: What happens if | don’t leave off that first “Guy”? What if
it's Guy bob = new Guy () instead of bob = new Guy ()?

A: You'll run into problems—your form won’t work, because it
won't ever set the form’s bob variable. If you have this code at the
top of your form:

public partial class Forml
Guy bob;

Form {

and then you have this code later on, inside a method:

Guy bob = new Guy/();

then you've declared two variables. It's a little confusing, because
they both have the same name. But one of them is valid throughout
the entire form, and the other one—the new one you added—is only
valid inside the method. The next line (bob .Name = "Bob";)
only updates that local variable, and doesn’t touch the one in the
form. So when you try to run your code, it'll give you a nasty error
message (‘NullReferenceException not handled”), which just means
you tried to use an object before you created it with new.

objects: gef oriented!

Theres an easier way to initialize objects Object initializers

Almost every object that you create needs to be initialized in some way. save you time anc[
And the Guy object is no exception—it’s useless until you set its Name

and Cash fields. It’s so common to have to initialize fields that C# gives malge your COC[e
you a shortcut for doing it called an object initializer. And the IDE’s

IntelliSense will help you do it. more COmPact

and easier to
Here’s the original code that you reac[manc[tlle
wrote to initialize Joe’s Guy object.
joe = new Guy() ; IDE 119[])5 you
joe.Name = "Joe";

joe.Cash = 50; write tllem.

Delete the second two lines and the semicolon after “Guy () ,” and add a right curly bracket.
joe = new Guy () {

Press space. As soon as you do, the IDE pops up an IntelliSense window that shows you all of
the fields that you’re able to initialize.

joe = new Guy() {

¥ Mame

Press Tab to tell it to add the Cash field. Then set it equal to 50.
joe = new Guy() { Cash = 50

Type in a comma. As soon as you do, the other field shows up.

Finish the object initializer. Now you’ve saved yourself two lines of code!

joe = new Guy() { Cash = 50,

You used an object
initializer in your

This new detlavation does exattly the same \/\ g:;v: :2:;’;::‘; 2: d
£hing as the three lines of tode you wrote see if you can spot it!

joe = new Guy() { Cash = 50, Name = "Joe" };

originally. [+'s \')us{‘, shorter and easier to vead.

you are here » 133

a few helpful tips

A few ideas for designing intuitive classes

» You're building your program to solve a problem.
Spend some time thinking about that problem. Does it break down into pieces
easily? How would you explain that problem to someone else? These are good
things to think about when designing your classes.

IT'D BE GREAT IF I
COULD COMPARE A FEW
ROUTES AND FIGURE OUT
WHICH IS FASTEST---

» What real-world things will your program use?
A program to help a zookeeper track her animals’ feeding schedules might have
classes for different kinds of food and types of animals.

» Use descriptive names for classes and methods.
Someone should be able to figure out what your classes and methods do just by

looking at their names. 7
% ObieS /\’Ol/igmoV

» Look for similarities between classes.
Sometimes two classes can be combined into one if they're really similar. The candy
manufacturing system might have three or four turbines, but there’s only one
method for closing the trip valve that takes the turbine number as a parameter.

Vject

|

Detour

BlockedRoad |
L
Namg ClosedRoad
Duration StreetName
' ReasonltsClosed
FindDetour()

Name
Duration
ReasonltsClosed

134 Chapter 3

CalculateDelay()

FindDetour()
CalculateDelay()

objects: gef oriented!

Add buttons to the “Fun with Joe and Bob” program to make the guys give each other cash.

USE AN OBJECT INITIALIZER TO INITIALIZE BOB’S
INSTANCE OF &UY-

You've already done it with Joe. Now make Bob’s instance work with an object
initializer too.
£ you already tlicked the button, just delete it, add it back +o Your

{orm, and vename it. Then delete Lhe old button3 Cliek() method
that the IDE added before, and use the new method it adds now.

ADD TWO MORE BUTTONS TO YOUR FORM-

The first button tells Joe to give 10 bucks to Bob, and the second tells Bob to give 5
bucks back to Joe. Before you double-click on the button, go to the Properties
window and change each button’s name using the “(Name)” row—it’s at the top of

the list of properties. Name the first button joeGivesToBob, and the second one
bobGivesToJoe.

Joe has 550
Bob has 5100
This button tells Joe to The bank has $100
give |0 butks to B&(’)N so p
ou should use the “(Name : .
zow in the Properties G"""'“fmt“ erce“éif .
window £o name it o = This button tells Bob 4o

o)) 9ive 5 butks to Joe. Nam
JocénvcsToBoh ¥/ ;oetgwéii %10 BOI::QQT:: ﬁwb 6ivcs75\)oc_° e

o

I

MAKE THE BUTTONS WORK -

Double-click on the joeGivesToBob button in the designer. The IDE will add a
method to the form called joeGivesToBob Click () that gets run any time the
button’s clicked. Fill in that method to make Joe give 10 bucks to Bob. Then double-
click on the other button and fill in the new bobGivesToJoe Click () method

that the IDE creates so that Bob gives 5 bucks to Joe. Make sure the form updates itself
after the cash changes hands.

Here’s a tip for designing your forms. You can use these buttons on the IDE’s
toolbar in the form designer to align controls, make them equal sizes, space

them evenly, and bring them to the front or back.

- = :l |_| e |_| £ I E " = I.n-l .".l. you are here » 135

exercise solution

Add buttons to the “Fun with Joe and Bob” program to make the guys give each other cash.

public partial class Forml : Form {
Guy joe; Here are the object initializers for
Guy bob; the two instantes of the 6“‘/ elass.
int bank = 100; Bob 9ets initialized with 100 bueks

and his name.
public Forml () {
InitializeComponent () ;
bob = new Guy() { Cash
joe = new Guy() { Cash

100, Name = "Bob" };
50, Name = "Joe" };

UpdateForm() ;
}

public void UpdateForm() {
joesCashLabel.Text = joe.Name + " has $" + joe.Cash;
bobsCashLabel .Text = bob.Name + " has $" + bob.Cash; To make Joe give tash
bankCashLabel.Text = "The bank has $" + bank; to BOb: we ¢all Joe's
} GiveCash() method and
send its vesults into

private void buttonl Click(object sender, EventArgs e) { Bob’s Rcceichash()

if (bank >= 10) { method.
bank -= joe.ReceiveCash (10);
UpdateForm() ;

} else {

Take a ¢lose look at
how the éuy methods
are being called. The
vesults veturned
private void button2 Click(object sender, EventArgs e) { bY 6NcCaﬂK)are
The 4viek heve is bank += bob.GiveCash (5); pumped righ{: into
thinking through UpdateForm () ; ReceiveCash() as its

who's giving the parameter.

MessageBox.Show ("The bank is out of money.");

}
}

)
t‘aSh_ a.“d AWH°S private void joeGivesToBob Click (object sender, EventArgs e) {
receving it bob.ReceiveCash (joe.GiveCash (10)) ;
UpdateForm() ;
}

private void bobGivesToJoe Click (object sender, EventArgs e) ({
joe.ReceiveCash (bob.GiveCash(5)) ;
UpdateForm() ;

Before you go on, take a minute and flip to #2 in the “Leftovers” appendix,
136 Chapter3 pecause there’s some basic syntax that we haven’t covered yet. You won’t
need it to move forward, but it’s a good idea to see what’s there.

Objectcross

It’s time to give your left brain a break, and put that

objects: gef oriented!

right brain to work: all the words are object-related

and from this chapter.

[y
=

[y
w

e
S

Across
2. If a method’s return type is , it doesn’t return anything
7. An object’s fields define its

9. A good method
does

makes it clear what the method

10. Where objects live

11. What you use to build an object

13. What you use to pass information into a method
14. The statement you use to create an object

15. Used to set an attribute on controls and other classes

c

Down

1. This form control lets the user choose a number from a range
you set

3. It's a great idea to create a class
you start writing code

on paper before

4. An object uses this to keep track of what it knows
5. These define what an object does
6. An object’s methods define its

7. Don't use this keyword in your class declaration if you want to
be able to create instances of it

8. An object is an of a class

12. This statement tells a method to immediately exit, and can
specify the value that should be passed back to the statement
that called the method

you are here » 137

puzzle solutions

_ _ 9 _
P@)@I PUZZIG S@Ilfh@n
/\ Your job was to take code snippets from
fi / the pool and place them into the
\ /// blank lines in the code. Your goal

was to make classes that will
compile and run and produce the
output listed.

public partial class Forml : Form {
public Forml () {
InitializeComponent () ;

}

private void buttonl Click(object sender, EventArgs e)
string result = ""; That's the correct answer.
Echo el = new Echo(); And here’s the bonus answer!
Etho e2 = new E¢ho(); -« Etho e = el;
int x = 0;

while (><<ﬂj) |

result = result + el.Hello() + "\n";

el.tount = el.tount + |;

if % ==) | The alternate solution has
e2.count = e2.count + 1; this in the fourth blank:

} % ==

if (x>0) | \ and this in the fifth;
e2.count = e2.count + el.count; % < 4-

}

MessageBox.Show (result + "Count: " + eZ.count);
}
}
class ___ Etho {
public int Count - o;
public stringHCHOO— {
return "helloooco...";

138 Chapter 3

objects: gef oriented!

m Objecteross Solution

PR O PIER TV

171

== o= e
~ =
i i

139

you are here »

THANKS FOR READING THE FIRST

THREE CHAPTERS OF OUR BOOK .-

WE HOPE IT GAVE YOU A NICE
PREVIEW. ..

---BECAUSE
WE KNOW YOU'RE
GOING TO HAVE
AGREAT TIME
LEARNING C#-

Andrew /_\

Flip the page to see what else you'll learn in Head First C#... —

*

The fun's just beginning!
X

I’'M STILL HUNGRY
FOR MORE!

Get C# programming into your brain... fast!
Head First C# is a complete learning experience for programming with C#, XAML, the
.NET Framework, and Visual Studio. Built for your brain, this book keeps you engaged

from the first chapter. You'll learn about classes and object-oriented programming, draw

graphics and animation, query your data with LINQ, and serialize it to files. And you'll
do it all by building games, solving puzzles, and doing hands-on projects. By the time

you're done you'll be a solid C# programmer, and you'll have a great time along the way!

looking for a fun and enganing way 4o et CH# contepts
into your brain? Head Fi?sz C?# i:/ {:"\CS‘FGS{:CS‘E and f
most effective way to learn C#, XAML, and the .NET
Framework. Have a look ‘H\\rough the next few pages
‘('\or a samflc 0‘(" what \/ou,“ ‘Find in the book...

* Do you want to be a great C# developer? Ave you

You'll learn all about objects and
re{erences, and how they llelP make
your data make sense in the real world.

You'll put

ol)ject oriented
programming
tLegyy anto Practice
and get it into
your brain fast

lay LuilJing games,
Joing Projects, and
solving puzzles.

Effective programming means getting a handle on your data.
You'll learn to model your c[ata, manage it in memory, write
it to files, and get into the bits and hytes.

Harness the power of XAML, 1o build sleek, modern apps.
You'll learn how to create a modern user interface with
graphics, animation, pinch—to—zoom, and more.

Advanced
concepts like
MVVM and
c[esign patterns
are made simple
with examples,
projects, and
straigllt{orwarc[
explanations.

You'll build full-featured,
exciting video games! We'll
lceep your brain engageJ,
and give you the]oractice
that you need to become a
solid C# programmer.

Head First C#

by Andrew Stellman and Jennifer Greene

Available in print, e-book, on Safari, and at
book retailers everywhere. Learn more at
http:/ /www.headfirstlabs.com/hfcsharp

	Intro
	Who is this book for?
	We know what you’re thinking.
	And we know what your brain is thinking.
	Metacognition: thinking about thinking
	Here’s what WE did
	Here’s what YOU can do tobend your brain into submission
	What you need for this book
	Read me
	The technical review team
	Acknowledgments

	Chapter 1: Start building with c#: Build something cool, fast!
	Why you should learn C#
	C# and the Visual Studio IDE make lots of things easy
	What you do in Visual Studio…
	What Visual Studio does for you…
	Aliens attack!
	Only you can help save the Earth
	Here’s what you’re going to build
	Start with a blank application
	Set up the grid for your page
	Add controls to your grid
	Use properties to change how the controls look
	Controls make the game work
	You’ve set the stage for the game
	What you’ll do next
	Add a method that does something
	Fill in the code for your method
	Finish the method and run your program
	Here’s what you’ve done so far
	Add timers to manage the gameplay
	Make the Start button work
	Run the program to see your progress
	Add code to make your controls interact with the player
	Dragging humans onto enemies ends the game
	Your game is now playable
	Make your enemies look like aliens
	Add a splash screen and a tile
	Publish your app
	Use the Remote Debugger to sideload your app
	Start remote debugging

	Chapter 2: It’s all just code: Under the hood
	When you’re doing this…
	…the IDE does this
	Where programs come from
	The IDE helps you code
	Anatomy of a program
	Two classes can be in the same namespace
	Your programs use variables to work with data
	C# uses familiar math symbols
	Use the debugger to see your variables change
	Loops perform an action over and over
	if/else statements make decisions
	Build an app from the ground up
	Make each button do something
	Set up conditions and see if they’re true
	Windows Desktop apps are easy to build
	Rebuild your app for Windows Desktop
	Your desktop app knowswhere to start
	You can change your program’s entry point
	When you change things in the IDE, you’re also changing your code

	Chapter 3: Objects: Get oriented!Making code make sense
	How Mike thinks about his problems
	How Mike’s car navigation system thinks about his problems
	Mike’s Navigator class has methods to set and modify routes
	Use what you’ve learned to build a program that uses a class
	Mike gets an idea
	Mike can use objects to solve his problem
	You use a class to build an object
	When you create a new object from a class,it’s called an instance of that class
	A bet ter solution…brought to you by objects!
	An instance uses fields to keep track of things
	Let’s create some instances!
	Thanks for the memory
	What’s on your program’s mind
	You can use class and methodnames to make your code intuitive
	Give your classes a natural structure
	Class diagrams help you organize yourclasses so they make sense
	Build a class to work with some guys
	Create a project for your guys
	Build a form to interact with the guys
	There’s an easier way to initialize objects
	A few ideas for designing intuitive classes

	Chapter 4: Types and References: It's 10:00. Do you know where your data is?
	C# Lab: A Day at the Races
	Chapter 5: Encapsulation: Keep your privates...private
	Chapter 6: Inheritance: Your object's family tree
	Chapter 7: Interfaces and Abstract Classes: Making classes keep their promises
	Chapter 8: Enums and Collections: Storing lots of data
	Chapter 9: Reading and Writing Files: Save the last byte for me!
	C# Lab: The Quest
	Chapter 10: Designing Windows Store Apps with XAML: Taking your apps to the next level
	Chapter 11: Async, Await, and Data Contract Serialization: Pardon the interruption
	Chapter 12: Exception Handling: Putting out fires gets old
	Chapter 13: Captain Amazing: The Death of the Object
	Chapter 14: Querying Data and Building Apps with LINQ: Get control of your data
	Chapter 15: Events and Delegates: What your code does when you're not looking
	Chapter 16: Architecting Apps witht he MVVM Pattern: Great apps on the inside and outside
	C# Lab: Invaders
	Chapter 17: Build a Windows Phone app

