

Download at WoweBook.Com

Advance Praise for Head First JavaScript

“So practical and useful, and so well explained. This book does a great job of introducing a complete
newbie to JavaScript, and it’s another testament to Head First’s teaching style. Out of the other
JavaScript books, Head First JavaScript is great for learning, compared to other reference books the size of
a phone book.”

— Alex Lee, Student, University of Houston

“An excellent choice for the beginning JavaScript developer.”

— Fletcher Moore, Web Developer & Designer, Georgia Institute of Technology

“Yet another great book in the classic ‘Head First’ style.”

— TW Scannell

“JavaScript has long been the client-side engine that drives pages on the Web, but it has also long been
misunderstood and misused. With Head First JavaScript, Michael Morrison gives a straightforward and
easy-to-understand introduction of this language, removing any misunderstanding that ever existed and
showing how to most effectively use it to enhance your web pages.”

— Anthony T. Holdener III, Web applications developer, and the author of Ajax:
The Definitive Guide.

“A web page has three parts—content (HTML), appearance (CSS), and behaviour (JavaScript). Head First
HTML introduced the first two, and this book uses the same fun but practical approach to introduce
JavaScript. The fun way in which this book introduces JavaScript and the many ways in which it
reinforces the information so that you will not forget it makes this a perfect book for beginners to use to
start them on the road to making their web pages interactive.”

— Stephen Chapman, Owner Felgall Pty Ltd., JavaScript editor, about.com

“This is the book I’ve been looking for to recommend to my readers. It is simple enough for complete
beginners but includes enough depth to be useful to more advanced users. And it makes the process of
learning fun. This might just be the only JavaScript book you ever need.”

— Julie L Baumler, JavaScript Editor, BellaOnline.com

Download at WoweBook.Com

Praise for Head First HTML with CSS & XHTML

“Eric and Elisabeth Freeman clearly know their stuff. As the Internet becomes more complex, inspired
construction of web pages becomes increasingly critical. Elegant design is at the core of every chapter here,
each concept conveyed with equal doses of pragmatism and wit.”

— Ken Goldstein, Executive Vice President & Managing Director, Disney Online

“The Web would be a much better place if every HTML author started off by reading this book.”

— L. David Baron, Technical Lead, Layout & CSS, Mozilla Corporation,
http://dbaron.org/

“I’ve been writing HTML and CSS for ten years now, and what used to be a long trial and error learning
process has now been reduced neatly into an engaging paperback. HTML used to be something you
could just hack away at until things looked okay on screen, but with the advent of web standards and
the movement towards accessibility, sloppy coding practice is not acceptable anymore... from a business
standpoint or a social responsibility standpoint. Head First HTML with CSS & XHTML teaches you how
to do things right from the beginning without making the whole process seem overwhelming. HTML,
when properly explained, is no more complicated than plain English, and the Freemans do an excellent
job of keeping every concept at eye-level.”

— Mike Davidson, President & CEO, Newsvine, Inc.

“Oh, great. You made an XHTML book simple enough a CEO can understand it. What will you
do next? Accounting simple enough my developer can understand it? Next thing you know we’ll be
collaborating as a team or something.”

—Janice Fraser, CEO, Adaptive Path

“This book has humor, and charm, but most importantly, it has heart. I know that sounds ridiculous
to say about a technical book, but I really sense that at its core, this book (or at least its authors) really
care that the reader learn the material. This comes across in the style, the language, and the techniques.
Learning – real understanding and comprehension – on the part of the reader is clearly top most in
the minds of the Freemans. And thank you, thank you, thank you, for the book’s strong, and sensible
advocacy of standards compliance. It’s great to see an entry level book, that I think will be widely read
and studied, campaign so eloquently and persuasively on behalf of the value of standards compliance in
web page code. I even found in here a few great arguments I had not thought of – ones I can remember
and use when I am asked – as I still am – ‘what’s the deal with compliance and why should we care?’
I’ll have more ammo now! I also liked that the book sprinkles in some basics about the mechanics of
actually getting a web page live - FTP, web server basics, file structures, etc.”

—Robert Neer, Director of Product Development, Movies.com

If you haven’t read this book yet, and you’re new to JavaScript, we recommed that you do.

Download at WoweBook.Com

Praise for Head First HTML with CSS & XHTML

““Freeman’s Head First HTML with CSS & XHTML is a most entertaining book for learning how to build
a great web page. It not only covers everything you need to know about HTML, CSS, and XHTML,
it also excels in explaining everything in layman’s terms with a lot of great examples. I found the book
truly enjoyable to read, and I learned something new!”

— Newton Lee, Editor-in-Chief, ACM Computers in Entertainment,
http://www.acmcie.org

“My wife stole the book. She’s never done any web design, so she needed a book like Head First HTML
with CSS & XHTML to take her from beginning to end. She now has a list of web sites she wants to build

– for our son’s class, our family, ... If I’m lucky, I’ll get the book back when she’s done.”

— David Kaminsky, Master Inventor, IBM

“Beware. If you’re someone who reads at night before falling asleep, you’ll have to restrict Head First
HTML with CSS & XHTML to daytime reading. This book wakes up your brain.”

— Pauline McNamara, Center for New Technologies and Education,
Fribourg University, Switzerland

“The information covered in this book is the same material the pros know, but taught in an educational
and humorous manner that doesn’t ever make you think the material is impossible to learn or you are
out of your element.”

—Christopher Schmitt, Author of The CSS Cookbook and Professional CSS,
schmitt@christopher.org

“Head First HTML with CSS & XHTML is a thoroughly modern introduction to forward-looking practices
in Web page markup and presentation. It correctly anticipates readers’ puzzlements and handles them
just in time. The highly graphic and incremental approach precisely mimics the best way to learn this
stuff: make a small change and see it in the browser to understand what each new item means.”

—Danny Goodman, author of Dynamic HTML: The Definitive Guide

Download at WoweBook.Com

Other related books from O’Reilly

JavaScript: The Definitive Guide

JavaScript Pocket Reference

Learning JavaScript

JavaScript & DHTML Cookbook

Other books in O’Reilly’s Head First series

Head First Java

Head First Object-Oriented Analysis and Design (OOA&D)

Head Rush Ajax

Head First HTML with CSS and XHTML

Head First Design Patterns

Head First Servlets and JSP

Head First EJB

Head First PMP

Head First SQL

Head First Software Development

Head First C#

Download at WoweBook.Com

Beijing • Cambridge • K�ln • Paris • Sebastopol • Taipei • Tokyo

Head First JavaScript

Wouldn’t it be dreamy if
there was a way to learn JavaScript

from a book without wanting to set fire
to it halfway through and swearing off
the Web forever? I know, it’s probably

just a fantasy...

Michael Morrison

Download at WoweBook.Com

Head First JavaScript
by Michael Morrison

Copyright © 2008 O’Reilly Media, Inc. All rights reserved.

Printed in the United States of America.

Published by O’Reilly Media, Inc., 1005 Gravenstein Highway North, Sebastopol, CA 95472.

O’Reilly Media books may be purchased for educational, business, or sales promotional use. Online editions are
also available for most titles (safari.oreilly.com). For more information, contact our corporate/institutional sales
department: (800) 998-9938 or corporate@oreilly.com.

Series Creators: Kathy Sierra, Bert Bates

Series Editor: Brett D. McLaughlin

Editor: Catherine Nolan

Design Editor: Louise Barr

Cover Designers: Louise Barr, Steve Fehler

Production Editor: Sanders Kleinfeld

Proofreader: Colleen Gorman

Indexer: Julie Hawks

Page Viewers: Masheed Morrison (wife), family, and pet fish

Printing History:
December 2007: First Edition.

The O’Reilly logo is a registered trademark of O’Reilly Media, Inc. The Head First series designations,
Head First JavaScript, and related trade dress are trademarks of O’Reilly Media, Inc.

Many of the designations used by manufacturers and sellers to distinguish their products are claimed as
trademarks. Where those designations appear in this book, and O’Reilly Media, Inc., was aware of a trademark
claim, the designations have been printed in caps or initial caps.

While every precaution has been taken in the preparation of this book, the publisher and the author assume no
responsibility for errors or omissions, or for damages resulting from the use of the information contained herein.

No rocks, stick figures, cube puzzles, or macho moviegoers were harmed in the making of this book. Just me, but
I can handle it...I’m wiry.

ISBN-10: 0-596-52774-8

ISBN-13: 978-0-596-52774-7

[M] [2/08]

My family knows
how to celebrate
a book release...

...but my koi fish
couldn’t care less.

This book uses RepKover™, a durable and flexible lay-flat binding.
TMTM

Download at WoweBook.Com

To the folks at Netscape who, way back in the last century, dreamed
that the Web could be much more than a big online book with a
bunch of linked pages that don’t do anything.

Of course, they also dreamed up that horrific <blink> tag...dare
to dream, just don’t get too carried away!

Download at WoweBook.Com

viii

the author

Author of Head First JavaScript

Michael Morrison has been tinkering with
computers since his first PC, a TI-99/4A, complete with its
supremely ergonomic keyboard, state of the art black and
white TV “monitor,” and sweet cassette tape storage system.
He has owned and tinkered with a few more computers
since then, but still longs for the days of playing Parsec on
that TI in between epic Nerf football games in the backyard.

Now Michael is all grown up and has moved on to much
more mature interests, such as creating interactive web
applications...and skateboarding. Cut, bruised, and often
limping, he approaches tech challenges with the same
reckless intensity as high-risk sports. After developing a few
video games, inventing a couple of toys, writing dozens of
computer books, and creating numerous online courses,
Michael finally felt ready to tackle Head First JavaScript. He
no longer trusts his feelings.

As it turns out, you’re never really ready to write a Head First
book. The best you can be is ready to pop the red pill and
enter the Matrix that is Head First. Having emerged from the
other side with a few intellectual bruises to add to his real
ones, Michael will never look at learning (or teaching) the
same again. And he’s thrilled about that fact. Right about
now he’s with his wife next to their koi pond reflecting on
the wonders of the interactive Web.

Michael Morrison,
child JavaScript
prodigy.

Michael Morrison, full-size
nerd who refuses to grow up.

Download at WoweBook.Com

table of contents

ix

Table of Contents (Summary)

Table of Contents (the real thing)
Intro

Who is this book for? xxiv

We know what you’re thinking xxv

Metacognition xxvii

Bend your brain into submission xxix

Read me xxx

The technical review team xxxii

Acknowledgments xxxiii

 Intro xxiii

1 the interactive web: Reacting to the Virtual World 1

2 storing data: Everything Has Its Place 33

3 exploring the client: Browser Spelunking 85

4 decision making: If There’s a Fork in the Road, Take It 135

5 looping: At the Risk of Repeating Myself 189

6 functions: Reduce, Reuse, Recycle 243

7 forms and validation: Getting the User to Tell All 289

8 wrangling the page: Slicing and Dicing HTML with the DOM 343

9 bringing data to life: Objects as Frankendata 393

10 creating custom objects: Having It Your Way with Custom Objects 449

11 kill bugs dead: Good Scripts Gone Wrong 485

12 dynamic data: Touchy-Feely Web Applications 537

Your brain on JavaScript. You’re sitting around trying to learn something,

but your brain keeps telling you all that learning isn’t important. Your brain’s saying,

“Better leave room for more important things, like which wild animals to avoid and

whether naked water skiing is a bad idea.” So how do you trick your brain into thinking

that your life really depends on learning JavaScript?

Download at WoweBook.Com

table of contents

x

Reacting to the Virtual World1 Tired of thinking of the Web in terms of passive pages?�

Been there, done that. They’re called books. And they’re good for reading, learning...

lots of good things. But they’re not interactive. And neither is the Web without a

little help from JavaScript. Sure, you can submit a form and maybe do a trick here

and there with some crafty HTML and CSS coding, but you’re really just playing

Weekend at Bernie’s propping up a lifeless web page. Real live interactivity requires

a bit more smarts and a little more work... but it has a much bigger payoff.

the interactive web

(Online) people have needs 2

Like talking to a brick wall... nothing happens 3

But JavaScript talks back 4

Lights, camera, interaction! 6

Use the <script> tag to tell the browser you’re writing JavaScript 11

Your web browser can handle HTML, CSS, AND JavaScript 12

Man’s virtual best friend... needs YOUR help 15

Making iRock interactive 16

Create the iRock web page 17

Test drive 17

JavaScript events: giving the iRock a voice 18

Alerting the user with a function 19

Add the iRock greeting 20

Now let’s make the iRock really interactive 22

Interaction is TWO-way communication 23

Add a function to get the user’s name 24

Instant replay: what just happened? 27

Test drive iRock 1.0 28

Download at WoweBook.Com

table of contents

xi

Everything Has Its Place2 In the real world, people often overlook the importance of
having a place to store all their stuff. Not so in JavaScript. You simply

don’t have the luxury of walk-in closets and three-car garages. In JavaScript, everything

has its place, and it’s your job to make sure of it. The issue is data—how to represent it,

how to store it, and how to find it once you’ve put it somewhere. As a JavaScript storage

specialist, you’ll be able to take a cluttered room of JavaScript data and impose your will

on it with a flurry of virtual labels and storage bins.

storing data

Your scripts can store data 34

Scripts think in data types 35

Constants stay the SAME, variables can CHANGE 40

Variables start out without a value 44

Initialize a variable with “=” 45

Constants are resistant to change 46

What’s in a name? 50

Legal and illegal variable and constant names 51

Variable names often use CamelCase 52

Plan the Duncan’s Donuts web page 56

A first take at the donut calculations 58

Initialize your data...or else 61

NaN is NOT a number 62

You can add more than numbers 64

parseInt() and parseFloat() convert text to a number 65

Why are extra donuts being ordered? 66

Duncan discovers donut espionage 70

Use getElementById() to grab form data 71

Validate the web form’s data 72

Strive for intuitive user input 77

Download at WoweBook.Com

table of contents

xii

Browser Spelunking3 Sometimes JavaScript needs to know what’s going on in the
world around it. Your scripts may begin as code in web pages but they ultimately

live in a world created by the browser, or client. Smart scripts often need to know more

about the world they live in, in which case they can communicate with the browser to

find out more about it. Whether it’s finding out the screen size or accessing the browser’s

snooze button, scripts have an awful lot to gain by cultivating their browser relationship.

exploring the client

Clients, servers, and JavaScript 86

What can a browser do for you? 88

The iRock needs to be more responsive 90

Timers connect action to elapsed time 92

Breaking down a timer 93

Set a timer with setTimeout() 94

A closer look: the setTimeout() function 95

Multiple size screens, multiple complaints 99

Use the document object to get the client window’s width 100

Use document object properties to set the client window width 101

Set the height and width of the iRock image 102

The iRock should be sized to the page 103

onresize is triggered when the browser’s resized 107

The onresize event resizes the rock 108

Have we met? Recognizing the user 110

Every script has a life cycle 111

Cookies outlive your script’s life cycle 112

Cookies have a name and store a value...
and can expire 117

Your JavaScript can live OUTSIDE your web page 119

Greet the user with a cookie 120

greetUser() is cookie-powered now 121

Don’t forget to set the cookie, too 122

Cookies affect browser security 124

A world without cookies 126

Talk to the users... it’s better than nothing 129

Download at WoweBook.Com

table of contents

xiii

If There’s a Fork in the Road, Take It4
decision making

Lucky contestant, come on down! 136

"if" this is true... then do something 138

An if statement evaluates a condition... and then takes action 139

Use if to choose between two things 141

You can make multiple decisions with if 142

Adding an else to your if statement 143

Variables drive the story 146

But part of the story is missing 147

Compounding your JavaScript efforts 148

Tiered decision making with if/else 154

An if can go inside another if 155

Your functions control your pages 157

Pseudocode lets you map out your adventure 158

Stick figure inequality 162

!= Psst, I’ve got nothing to tell you… 163

Crafting decisions with comparison operators 164

Comments, placeholders, and documentation 166

Comments in JavaScript start with // 167

Scope and context: Where data lives 169

Check your adventure variable score 170

Where does my data live? 171

Choice of five 174

Nesting if/else can get complicated 175

Switch statements have multiple cases 177

Inside the switch statement 178

A switchy stick figure adventure: test drive 183

Life is all about making decisions. Stop or go, shake or bake, plea bargain

or go to trial... without the ability to make decisions, nothing would ever get done. It works

the same in JavaScript—decisions allow scripts to decide between different possible

outcomes. Decision-making drives the “story” of your scripts, and even the most

mundane scripts involve a story of some sort. Do you trust what the user entered and

book her a trip on a Sasquatch expedition or do you double-check that maybe she really

just wanted to ride a bus to Saskatchewan? The choice is yours to make!

Download at WoweBook.Com

table of contents

xiv

At the Risk of Repeating Myself5
looping

X marks the spot 190

Déjà vu all over again...for loops 191

Treasure hunting with a for loop 192

Dissect the for loop 193

Mandango: a macho movie seat finder 194

First check seat availability 195

Looping, HTML, and seat availability 196

Movie seats as variables 197

Arrays collect multiple pieces of data 198

Array values are stored with keys 199

From JavaScript to HTML 203

Visualizing Mandango seats 204

Test drive: the solo seat finder 209

Too much of a good thing: endless loops 210

Loops always need an exit condition (or two!) 211

A "break" in the action 212

Boolean operator logic uncovered 218

Looping for just a "while"…until a condition is met 222

Breaking down the while loop 223

Use the right loop for the job 225

Movie seat data modeling 231

An array of an array: two-dimensional arrays 232

Two keys to access 2-D array data 233

Mandango in 2-D 235

An entire theater of manly seats 238

Some say repetition is the spice of life. Sure, doing something new and

interesting is certainly exciting, but it's the little repetitive things that really make it possible

to get through the day. Compulsive hand sanitizing, a nervous tick, clicking Reply To All

to every freaking message you receive! Okay, maybe repetition isn't always such a great

thing in the real world. However, it can be extremely handy in the world of JavaScript.

You'd be surprised how often you need a script to run a piece of code several times.

Without loops, you'd be wasting a lot of time cutting and pasting a bunch of wasteful code.

Download at WoweBook.Com

table of contents

xv

Reduce, Reuse, Recycle6
functions

The mother of all problems 244

Functions as problem solvers 246

The nuts and bolts of a function 247

A function you’ve already met 248

Building a better thermostat 251

Passing information to functions 252

Function arguments as data 253

Functions eliminate duplicate code 254

Creating a seat setter function 257

The setSeat() function 259

The significance of feedback 261

Returning data from functions 262

Many happy return values 263

Getting the status of a seat 267

Showing the seat status 268

You can link the function to an image 269

Repetitive code is never a good thing 270

Separating functionality from content 271

Functions are just data 272

Calling or referencing your functions 273

Events, callbacks, and HTML attributes 277

Wiring events using function references 278

Function literals to the rescue 279

Where’s the wiring? 280

A shell of an HTML page 283

If there was an environmental movement within JavaScript,
it would be led by functions. Functions allow you to make JavaScript code

more efficient, and yes, more reusable. Functions are also task-oriented, good at code

organization, and excellent problem solvers. Sounds like the makings of a good resume!

In reality, all but the simplest of scripts stand to benefit from a functional reorganization.

While it’s hard to put a number on the carbon footprint of the average function, let’s just

say they do their part in making scripts as eco-friendly as possible.

Download at WoweBook.Com

table of contents

xvi

Getting the User to Tell All7
forms and validation

The Bannerocity HTML form 291

When HTML is not enough 292

Accessing form data 293

Form fields follow a chain of events 295

Losing focus with onblur 296

Alert box validation 297

Validate fields to make sure you have “not nothing” 301

Validation without aggravating alert boxes 302

A more subtle non-empty validator 303

Size matters… 305

Validating the length of data 306

Validating a ZIP code 311

Validating a date 316

Regular expressions aren’t “regular” 318

Regular expressions define patterns to match 319

Metacharacters represent more than one literal character 321

Drilling into regular expressions: quantifiers 322

Validating data with regular expressions 326

Matching mins and maxes 329

Eliminating three-digit years with this...or that 331

Leave nothing to chance 332

Can you hear me now? Phone number validation 333

You’ve got mail: validating email 334

The exception is the rule 335

Matching optional characters from a set 336

Constructing an email validator 337

You don’t have to be suave or sneaky to successfully get
information from users with JavaScript. But you do have to be

careful. Humans have this strange tendency to make mistakes, which means you

can’t always count on the data provided in online forms being accurate. Enter

JavaScript. By passing form data through the right JavaScript code as it is being

entered, you can make web applications much more reliable, and also take some

load off of the server. We need to save that precious bandwidth for important

things like stunt videos and cute pet pictures.

Download at WoweBook.Com

table of contents

xvii

Slicing and Dicing HTML with the DOM8
wrangling the page

Functional but clumsy…interface matters 344

Describing scenes without alert boxes 345

Accessing HTML elements 347

Getting in touch with your inner HTML 348

Seeing the forest and the trees: the Document Object Model (DOM) 353

Your page is a collection of DOM nodes 354

Climbing the DOM tree with properties 357

Changing node text with the DOM 360

Standards compliant adventuring 365

Designing better options 367

Rethinking node text replacement 368

Replacing node text with a function 369

Dynamic options are a good thing 370

Interactive options are even better 371

A matter of style: CSS and DOM 372

Swapping style classes 373

Classy options 374

Test drive the stylized adventure options 375

Options gone wrong: the empty button 376

A la carte style tweaking 377

No more bogus options 379

More options, more complexity 380

Tracking the decision tree 382

Building the decision history in HTML 383

Manufacturing HTML code 384

Tracing the adventure story 387

Taking control of web page content with JavaScript is a lot
like baking. Well, without the mess... and unfortunately, also without the edible

reward afterward. However; you get full access to the HTML ingredients that go into a

web page, and more importantly, you have the ability to alter the recipe of the page. So

JavaScript makes it possible to manipulate the HTML code within a web page to

your heart’s desire, which opens up all kinds of interesting opportunities all made possible

by a collection of standard objects called the DOM (Document Object Model).

Download at WoweBook.Com

table of contents

xviii

Objects as Frankendata9
bringing data to life

A JavaScript-powered party 394

Data + actions = object 395

An object owns its data 396

Object member references with a dot 396

Custom objects extend JavaScript 401

Construct your custom objects 402

What’s in a constructor? 403

Bringing blog objects to life 404

The need for sorting 409

A JavaScript object for dating 410

Calculating time 411

Rethinking blog dates 412

An object within an object 413

Converting objects to text 416

Accessing pieces and parts of a date 417

Arrays as objects 420

Custom sorting an array 421

Sorting made simple with function literals 422

Searching the blog array 425

Searching within strings: indexOf() 427

Searching the blog array 428

Searching works now, too! 431

The Math object is an organizational object 434

Generate random numbers with Math.random 436

Turn a function into a method 441

Unveiling the shiny new blog object 442

What do objects really offer YouCube? 443

JavaScript objects aren’t nearly as gruesome as the good
doctor might have you think. But they are interesting in that they combine

pieces and parts of the JavaScript language together so that they’re more powerful

together. Objects combine data with actions to create a new data type that is much

more "alive" than data you’ve seen thus far. You end up with arrays that can sort

themselves, strings that can search themselves, and scripts that can grow fur and

howl at the moon! OK, maybe not that last one but you get the idea...

Download at WoweBook.Com

table of contents

xix

Having It Your Way with Custom Objects10
creating custom objects

Revisiting the YouCube Blog methods 450

Method overload 451

Classes vs. instances 452

Instances are created from classes 453

Access an instance’s properties with “this” 454

Own once, run many: class-owned methods 455

Use prototype to work at a class-level 456

Classes, prototypes, and YouCube 457

Class properties are shared, too 462

Creating class properties 463

Signed and delivered 465

A date formatting method 468

Extending standard objects 469

Custom date object = better YouCube 470

A class can have its own method 471

Examine the sort comparison function 473

Calling a class method 474

A picture is worth a thousand words 475

Incorporating images into YouCube 476

Adding imagery to YouCube 478

An object-powered YouCube 480

If it was only that easy, we’d surely have it made. JavaScript doesn’t

have a money-back guarantee, but you can definitely have it your way. Custom objects

are the JavaScript equivalent of a decaf triple shot grande extra hot no whip extra drizzle

no foam marble mocha macchiato. That is one custom cup of coffee! And with custom

JavaScript objects, you can brew up some code that does exactly what you want, while

taking advantage of the benefits of properties and methods. The end result is reusable

code that effectively extends the JavaScript language...just for you!

Download at WoweBook.Com

table of contents

xx

Good Scripts Gone Wrong11
kill bugs dead

Real-world debugging 486

The case of the buggy IQ calculator 487

Try different browsers 488

Debugging on easy street 491

Variables gone wild undefined 495

Crunching the intelligence numbers 497

The case of the radio call-in bugs 498

Opening up the investigation 499

A question of syntax validation (Bug #1) 500

Careful with those strings 501

Quotes, apostrophes, and consistency 502

When a quote isn’t a quote, use escape characters 503

Undefined isn’t just for variables (Bug #2) 504

Everyone’s a winner (Bug #3) 506

Alert box debugging 507

Watching variables with alert 508

Bad logic is legal but buggy 510

Everyone’s a loser! (Bug #4) 514

Overwhelmed by annoying alerts 515

Build a custom console for debugging 517

The peskiest errors of all: runtime 524

The JavaScript bug trifecta 525

Comments as temporary code disablers 528

The dangers of shadowy variables 530

Even the best laid JavaScript plans sometimes fail. When this

happens, and it will, your job is not to panic. The best JavaScript developers are not

the ones who never create bugs - those people are called liars. No, the best JavaScript

developers are those who are able to successfully hunt down and eradicate the bugs

they create. More importantly, top notch JavaScript bug exterminators develop good

coding habits that minimize the sneakiest and nastiest of bugs. A little prevention can

go a long way. But bugs happen, and you’ll need an arsenal of weapons to combat them...

Download at WoweBook.Com

table of contents

xxi

Touchy-Feely Web Applications12
dynamic data

Yearning for dynamic data 538

A data-driven YouCube 539

Ajax is all about communication 541

XML lets you tag YOUR data YOUR way 543

XML + HTML = XHTML 545

XML and the YouCube blog data 547

Injecting YouCube with Ajax 550

JavaScript to the Ajax rescue: XMLHttpRequest 552

Get or Post? A request with XMLHttpRequest 555

Making sense of an Ajax request 559

Interactive pages start with a request object 563

Call me when you’re done 564

Handling a response...seamlessly 565

The DOM to the rescue 566

YouCube is driven by its data 571

Dysfunctional buttons 573

The buttons need data 574

Time-saving web-based blog additions 577

Writing blog data 578

PHP has needs, too 581

Feeding data to the PHP script 582

Getting it up: Posting blog data to the server 585

Making YouCube more, uh, usable 590

Auto-fill fields for your users 591

Repetitive task? How about a function? 592

The modern Web is a very responsive place where pages
are expected to react to the user’s every whim. Or at least that’s

the dream of many web users and developers. JavaScript plays a vital role in this

dream through a programming technique known as Ajax that provides a mechanism for

dramatically changing the “feel” of web pages. With Ajax, web pages act much more like

full-blown applications since they are able to quickly load and save data dynamically

while responding to the user in real time without any page refreshes or browser trickery.

Download at WoweBook.Com

Download at WoweBook.Com

xxiii

how to use this book

Intro

In this section we answer the burning question:
“So why DID they put that in a JavaScript book?”

I can’t believe
they put that in a
JavaScript book?

Download at WoweBook.Com

xxiv intro

how to use this book

Who is this book for?

Who should probably back away from this book?

If you can answer “yes” to all of these:

We’ll help you learn how to write JavaScript code that makes web pages do all kinds of cool things that are impossible with HTML alone.

If you can answer “yes” to any of these:

this book is for you.

this book is not for you.

[Note from marketing: this book is for anyone with a credit card.]

Do you have access to a computer with a web browser, a
text editor, and an Internet connection?

11

Do you want to learn, understand, and remember
how to create web pages that are alive with energy,
turning the Web into a truly interactive experience?

22

Do you prefer stimulating dinner party conversation to
dry, dull, academic lectures?

33

Are you completely new to creating web pages?

(You don’t need to be an HTML guru, but you should
understand the basics of how web pages go together
with HTML and CSS, and how to post them online.)

11

Do you hold a ninth degree black belt in Script Fu, and
are really looking for a JavaScript reference book?

22

Are you afraid to try something different? Would you
rather have a root canal than mix stripes with plaid?
Do you believe that a technical book can’t be serious if
JavaScript code is anthropomorphized?

33

This book makes a great sequel
to Head First HTML with
CSS & XHTML, so definitely
check it out if you want to
brush up on your HTML.

Download at WoweBook.Com

you are here 4 xxv

the intro

“How can this be a serious JavaScript book?”

“What’s with all the graphics?”

“Can I actually learn it this way?”

Your brain craves novelty. It’s always searching, scanning, waiting for something
unusual. It was built that way, and it helps you stay alive.

So what does your brain do with all the routine, ordinary, normal things you
encounter? Everything it can to stop them from interfering with the brain’s
real job—recording things that matter. It doesn’t bother saving the boring
things; they never make it past the “this is obviously not important” filter.

How does your brain know what’s important? Suppose you’re out for a
day hike and a tiger jumps in front of you, what happens inside your head
and body?

Neurons fire. Emotions crank up. Chemicals surge.

And that’s how your brain knows...

This must be important! Don’t forget it!
But imagine you’re at home, or in a library. It’s a safe, warm, tiger-free zone.
You’re studying. Getting ready for an exam. Or trying to learn some tough
technical topic your boss thinks will take a week, ten days at the most.

Just one problem. Your brain’s trying to do you a big favor. It’s trying
to make sure that this obviously non-important content doesn’t clutter
up scarce resources. Resources that are better spent storing the really
big things. Like tigers. Like the danger of fire. Like how you should
never have agreed to house sit for your friend with the pet anaconda.

And there’s no simple way to tell your brain, “Hey brain, thank you
very much, but no matter how dull this book is, and how little I’m
registering on the emotional Richter scale right now, I really do want
you to keep this stuff around.”

We know what you’re thinking

We know what your brain is thinking

Your brain thinks THIS is important.

Your brain t
hinks

THIS isn’t worth

saving.

Great. Only 600
more dull, dry,
boring pages.

Download at WoweBook.Com

xxvi intro

how to use this book

We think of a “Head First” reader as a learner.

So what does it take to learn something?� First, you have to get it, then make sure

you don’t forget it. It’s not about pushing facts into your head. Based on the

latest research in cognitive science, neurobiology, and educational psychology,

learning takes a lot more than text on a page. We know what turns your brain on.

Some of the Head First learning principles:

Make it visual. Images are far more memorable than words alone, and make learning much

more effective (up to 89% improvement in recall and transfer studies). It also makes things

more understandable. Put the words within or near the graphics they relate

to, rather than on the bottom or on another page, and learners will be up to

twice as likely to solve problems related to the content.

Use a conversational and personalized style. In recent studies,

students performed up to 40% better on post-learning tests if the content

spoke directly to the reader, using a first-person, conversational style

rather than taking a formal tone. Tell stories instead of lecturing. Use

casual language. Don’t take yourself too seriously. Which would you pay more

attention to: a stimulating dinner party companion, or a lecture?

Get the learner to think more deeply. In other words, unless you actively

flex your neurons, nothing much happens in your head. A reader has to

be motivated, engaged, curious, and inspired to solve problems, draw

conclusions, and generate new knowledge. And for that, you need challenges,

exercises, and thought-provoking questions, and activities that involve both

sides of the brain and multiple senses.

Get—and keep—the reader’s attention. We’ve all had the “I really want to learn this but

I can’t stay awake past page one” experience. Your brain pays attention to things that are out of the

ordinary, interesting, strange, eye-catching, unexpected. Learning a new, tough, technical topic

doesn’t have to be boring. Your brain will learn much more quickly if it’s not.

Touch their emotions. We now know that your ability to

remember something is largely dependent on its emotional content.

You remember what you care about. You remember when you feel

something. No, we’re not talking heart-wrenching stories about a

boy and his dog. We’re talking emotions like surprise, curiosity, fun,

“what the...?” , and the feeling of “I Rule!” that comes when you solve a puzzle,

learn something everybody else thinks is hard, or realize you know something

that “I’m more technical than thou” Bob from engineering doesn’t.

Download at WoweBook.Com

you are here 4 xxvii

the intro

Metacognition: thinking about thinking
I wonder how

I can trick my brain
into remembering
this stuff...

If you really want to learn, and you want to learn more quickly and more
deeply, pay attention to how you pay attention. Think about how you think.
Learn how you learn.

Most of us did not take courses on metacognition or learning theory when we
were growing up. We were expected to learn, but rarely taught to learn.

But we assume that if you’re holding this book, you really want to learn how
to create interactive web pages that sizzle. And you probably don’t want to
spend a lot of time. If you want to use what you read in this book, you need to
remember what you read. And for that, you’ve got to understand it. To get the most
from this book, or any book or learning experience, take responsibility for your
brain. Your brain on this content.

The trick is to get your brain to see the new material you’re learning as
Really Important. Crucial to your well-being. As important as a tiger.
Otherwise, you’re in for a constant battle, with your brain doing its best to
keep the new content from sticking.

So just how DO you get your brain to treat JavaScript
like it was a hungry tiger?
There’s the slow, tedious way, or the faster, more effective way. The
slow way is about sheer repetition. You obviously know that you are able to learn
and remember even the dullest of topics if you keep pounding the same thing into your
brain. With enough repetition, your brain says, “This doesn’t feel important to him, but he
keeps looking at the same thing over and over and over, so I suppose it must be.”

The faster way is to do anything that increases brain activity, especially different
types of brain activity. The things on the previous page are a big part of the solution,
and they’re all things that have been proven to help your brain work in your favor. For
example, studies show that putting words within the pictures they describe (as opposed to
somewhere else in the page, like a caption or in the body text) causes your brain to try to
makes sense of how the words and picture relate, and this causes more neurons to fire.
More neurons firing = more chances for your brain to get that this is something worth
paying attention to, and possibly recording.

A conversational style helps because people tend to pay more attention when they
perceive that they’re in a conversation, since they’re expected to follow along and hold up
their end. The amazing thing is, your brain doesn’t necessarily care that the “conversation”
is between you and a book! On the other hand, if the writing style is formal and dry, your
brain perceives it the same way you experience being lectured to while sitting in a roomful
of passive attendees. No need to stay awake.

But pictures and conversational style are just the beginning…

Download at WoweBook.Com

xxviii intro

how to use this book

Here’s what WE did:
We used pictures, because your brain is tuned for visuals, not text. As far as your brain’s
concerned, a picture really is worth a thousand words. And when text and pictures work
together, we embedded the text in the pictures because your brain works more effectively
when the text is within the thing the text refers to, as opposed to in a caption or buried in the
text somewhere.

We used redundancy, saying the same thing in different ways and with different media types,
and multiple senses, to increase the chance that the content gets coded into more than one area
of your brain.

We used concepts and pictures in unexpected ways because your brain is tuned for novelty,
and we used pictures and ideas with at least some emotional content, because your brain
is tuned to pay attention to the biochemistry of emotions. That which causes you to feel
something is more likely to be remembered, even if that feeling is nothing more than a little
humor, surprise, or interest.

We used a personalized, conversational style, because your brain is tuned to pay more
attention when it believes you’re in a conversation than if it thinks you’re passively listening
to a presentation. Your brain does this even when you’re reading.

We included more than 80 activities, because your brain is tuned to learn and remember
more when you do things than when you read about things. And we made the exercises
challenging-yet-do-able, because that’s what most people prefer.

We used multiple learning styles, because you might prefer step-by-step procedures,
while someone else wants to understand the big picture first, and someone else just wants to
see an example. But regardless of your own learning preference, everyone benefits from seeing
the same content represented in multiple ways.

We include content for both sides of your brain, because the more of your brain you
engage, the more likely you are to learn and remember, and the longer you can stay focused.
Since working one side of the brain often means giving the other side a chance to rest, you
can be more productive at learning for a longer period of time.

And we included stories and exercises that present more than one point of view,
because your brain is tuned to learn more deeply when it’s forced to make evaluations and
judgments.

We included challenges, with exercises, and by asking questions that don’t always have
a straight answer, because your brain is tuned to learn and remember when it has to work
at something. Think about it—you can’t get your body in shape just by watching people at
the gym. But we did our best to make sure that when you’re working hard, it’s on the right
things. That you’re not spending one extra dendrite processing a hard-to-understand
example, or parsing difficult, jargon-laden, or overly terse text.

We used people. In stories, examples, pictures, etc., because, well, because you’re a person.
And your brain pays more attention to people than it does to things.

Download at WoweBook.Com

you are here 4 xxix

the intro

So, we did our part. The rest is up to you. These tips are a
starting point; listen to your brain and figure out what works
for you and what doesn’t. Try new things.

Drink water. Lots of it.
Your brain works best in a nice bath of fluid.
Dehydration (which can happen before you ever
feel thirsty) decreases cognitive function.

Make this the last thing you read before
bed. Or at least the last challenging thing.

Just do it!
There’s only one way to learn JavaScript: writing
a lot of JavaScript code. And that’s what you’re
going to do throughout this book. Don’t just skip
over the JavaScript exercises—a lot of the learning
happens when you solve problems, even unusual ones
like Stick Figure Adventure, the Mandango macho
movie seat finder, and the YouCube blog. And
definitely stick with an exercise and get it working
before you move on to the next part of the book. Oh,
and if you have an interactive web project you’ve
been dreaming about, don’t be afraid to build it as
you work through the book and add to your shiny
new bag of JavaScript programming tricks.

Listen to your brain.

Keep it real!
Your brain needs to know that this matters. Get
involved with the stories. Make up your own
captions for the photos. Groaning over a bad joke
is still better than feeling nothing at all.

Pay attention to whether your brain is getting
overloaded. If you find yourself starting to skim
the surface or forget what you just read, it’s time
for a break. Once you go past a certain point, you
won’t learn faster by trying to shove more in, and
you might even hurt the process.

Talk about it. Out loud.
Speaking activates a different part of the brain.
If you’re trying to understand something, or
increase your chance of remembering it later, say
it out loud. Better still, try to explain it out loud
to someone else. You’ll learn more quickly, and
you might uncover ideas you hadn’t known were
there when you were reading about it.

Part of the learning (especially the transfer to
long-term memory) happens after you put the
book down. Your brain needs time on its own, to
do more processing. If you put in something new
during that processing time, some of what you
just learned will be lost.

Read the “There are No Dumb Questions”
That means all of them. They’re not optional
sidebars—they’re part of the core content!
Don’t skip them.

Slow down. The more you understand,
the less you have to memorize.
Don’t just read. Stop and think. When the
book asks you a question, don’t just skip to the
answer. Imagine that someone really is asking
the question. The more deeply you force your
brain to think, the better chance you have of
learning and remembering.

Cut this out and stick it on your refrigerator.

Here’s what YOU can do to bend
your brain into submission

Do the exercises. Write your own notes.
We put them in, but if we did them for you,
that would be like having someone else do
your workouts for you. And don’t just look at
the exercises. Use a pencil. There’s plenty of
evidence that physical activity while learning
can increase the learning.

1

2

3

4

5

6

7

8

9

Download at WoweBook.Com

xxx intro

how to use this book

Read Me
This is a learning experience, not a reference book. We deliberately stripped out everything
that might get in the way of learning whatever it is we’re working on at that point in the
book. And the first time through, you need to begin at the beginning, because the book
makes assumptions about what you’ve already seen and learned.

We teach JavaScript on a “need to know” basis.
If you’re looking for a history of JavaScript, keep on looking because this book won’t help.
The goal here is to teach you how to do cool, practical things in JavaScript to amp up the
interactivity of web pages, turning them into responsive web applications that people
will want to experience. We forego formalities, and only teach the JavaScript concepts
you need to know to do real things, in real time. Really.

We don’t cover every hidden nuance of the JavaScript language.
While we could have put every single JavaScript statement, object, event, and keyword in
this book, we thought you’d prefer a reasonably portable book that doesn’t require a forklift
to carry from your desk to the gym. Oh yeah, it’s a great workout read, but you might want
to invest in a sweat-proof pencil! We focus on the parts of JavaScript you need to know, the
ones you’ll use 95 percent of the time. And when you’re done with this book, you’ll have
the confidence to go look up that elusive method you need to finish off that killer script you
just dreamed up in the shower.

Since JavaScript includes a huge built-in library of reusable code, it’s important to
understand when you’re dealing with standard JavaScript code, as opposed to custom code
that you create. Any time you see the word “custom,” that means the code is custom built
by you, and not a built-in part of JavaScript.

We encourage you to use more than one browser with this book.
Even though all modern web browsers support JavaScript, there are sometimes subtle
differences in how they handle certain JavaScript code. So, we encourage you to pick at
least two up-to-date browsers and test your scripts using them. We’ve found Firefox to
currently be a superior browser for helping track down JavaScript coding errors, but your
scripts will ultimately need to run consistently on a variety of different browsers. Don’t
hesitate to get your friends, family members, co-workers, and highly trained pets to help
test out your scripts in their browsers.

Download at WoweBook.Com

you are here 4 xxxi

the intro

The activities are NOT optional.

The exercises and activities are not add-ons; they’re part of the core content of the
book. Some of them are to help with memory, some are for understanding, and some
will help you apply what you’ve learned. Don’t skip the exercises. The crossword
puzzles are the only thing you don’t have to do, but they’re good for giving your brain a
chance to think about the words and terms you’ve been learning in a different context.
And the Page Benders, well those are optional too if you hate the thought of creasing
these beautiful pages. But you’ll miss out on some fun.

The redundancy is intentional and important.
One distinct difference in a Head First book is that we want you to really get it. And we
want you to finish the book remembering what you’ve learned. Most reference books
don’t have retention and recall as a goal, but this book is about learning, so you’ll see some
of the same concepts come up more than once.

The examples are as lean as possible.
Our readers tell us that it’s frustrating to wade through 200 lines of an example looking
for the two lines they need to understand. Most examples in this book are shown within
the smallest possible context, so that the part you’re trying to learn is clear and simple.
Don’t expect all of the examples to be robust, or even complete—they are written
specifically for learning, and aren’t always fully-functional.

We’ve placed the complete code for all of the examples on the Web so you can copy and
paste it into your text editor and explore. You can also play around with the finished
scripts online. You’ll find them at:
 http://www.headfirstlabs.com/books/hfjs/

The Brain Power exercises don’t have answers.
For some of them, there is no right answer, and for others, part of the learning
experience of the Brain Power activities is for you to decide if and when your answers
are right. In some of the Brain Power exercises, you will find hints to point you in the
right direction. It’s your brain...feel its power!

Download at WoweBook.Com

xxxii intro

Alex Lee

the review team

Fletcher Moore Elaine Nelson Stephen Tallent

Zachary Kessin

TW Scannell

Anthony T. Holdener IIITechnical Reviewers:

Alex Lee is a student at
the University of Houston
majoring in Management
Information Systems. Enjoys
running, video games and
staying up late learning new
programming languages.

TW Scannell of Sisters,
Oregon has been tweaking the
bits since 1995 and is currently
a Ruby on Rails developer.

Katherine St. John

The technical review team

Elaine Nelson has been designing websites for nearly 10 years. As she tells her mother, an English degree comes in
handy everywhere. Elaine’s current musings and obsessions can be found at elainenelson.org.

Fletcher Moore is a web developer and designer at Georgia Tech. In his spare time he’s an avid cyclist, musician,
gardener, and Red Sox fan. He resides in Atlanta with his wife Katherine, daughter Sailor, and son Satchel.

Anthony T. Holdener III is a web applications developer and the author of Ajax: The Definitive Guide (O’Reilly).

Zachary Kessin has been programming on the Web since rocks were soft and dirt was a fresh new idea, which is
to say about 15 years. He lives in Israel with his wife and 3 children.

Katherine St. John is an associate professor of computer science and mathematics at the City University of New
York, and her research focuses on computational biology and random structures.

Stephen Tallent lives and works in Nashville, Tennessee primarily developing sports applications and coping
with the chaos that is parenting small children. When not all consumed with the aforementioned tasks, he enjoys
skateboarding and preparing for a second career as a short order cook.

Download at WoweBook.Com

you are here 4 xxxiii

the intro

Acknowledgments
My editor:

Remember in elementary school when you were assigned some kid across the country
(or world) to become your pen pal, and then you got to share stuff about your life
with them through letters? Well, Catherine Nolan became my Head First pen pal
when we started this project. But we communicate with telephones, chat clients,
emails, fax machines, and anything else that accepts OMG, LOL, and my personal
favorite, BHH (Bless Her Heart). In the process, Catherine became much more than
my JavaScript cognitive learning online collaborator. She became my friend. It’s not
every day that a “business” call meanders from JavaScript to jam bands to home
remodeling, and back. It was a pleasure going through the ups and downs of this
crazy process with a consummate pro. Thanks, Catherine! I owe you a few martinis.

Lou Barr,
design goddess.

Lou Barr became my other virtual pen pal during this
project, as well as my cultural guide to navigating the subtle
differences between the U.S. and England (her home). I think
she’s really just on loan to us from the gods of design. The
layout of this book would’ve simply been impossible without
her magic.

Sanders Kleinfeld operates a bit more stealthily but his
presence is always felt, keeping production running smoothly
and offering that elusive “big idea” just when you need it most.

The rest of the O’Reilly team is also not forgotten in the
thank-you department. Laurie Petrycki trusted me
enough to green light the project, Caitrin McCullough
manages a killer support site (www.headfirstlabs.com), and
Keith McNamara fills in the gaps with military precision.
Thanks, guys!

Finally, Kathy Sierra and Bert Bates deserve perhaps
the biggest thanks of all for their incredible vision with the
Head First series. It’s truly a privilege to be a part of it...

The O’Reilly team:

Wow, it’s hard to say enough glowing things about the Head First team.
But I’ll try.

Brett McLaughlin initially fed me to the educational psych wolves
in the Head First boot camp I attended, and hasn’t backed down since.
The guy is as serious about reverse-engineering the learning process as
he is about guitars. I’m fairly convinced he doesn’t go to sleep without
first posing the question, “what’s my motivation?” But his undying
commitment is what makes these books so awesome. Thanks, Brett!

Catherine Nolan, fellow
Phish and Dewey Decimal
afficionado.

Brett McLaughlin,
Head First expedition
leader and blues man.

Download at WoweBook.Com

xxxiv intro

safari books online

Safari® Books Online
When you see a Safari® icon on the cover of your favorite
technology book that means the book is available online
through the O’Reilly Network Safari Bookshelf.

Safari offers a solution that’s better than e-books. It’s a virtual library that lets you
easily search thousands of top tech books, cut and paste code samples, download
chapters, and find quick answers when you need the most accurate, current
information. Try it for free at http://safari.oreilly.com.

Download at WoweBook.Com

this is a new chapter 1

the interactive web1

Reacting to the Virtual World

Tired of thinking of the Web in terms of passive pages?�

Been there, done that. They’re called books. And they’re good for reading, learning...

lots of good things. But they’re not interactive. And neither is the Web without a

little help from JavaScript. Sure, you can submit a form and maybe do a trick here

and there with some crafty HTML and CSS coding, but you’re really just playing

Weekend at Bernie’s propping up a lifeless web page. Real live interactivity requires

a bit more smarts and a little more work... but it has a much bigger payoff.

Tired of thinking of the Web in terms of passive pages?�

Been there, done that. They’re called books. And they’re good for reading, learning...

lots of good things. But they’re not interactive. And neither is the Web without a

little help from JavaScript. Sure, you can submit a form and maybe do a trick here

and there with some crafty HTML and CSS coding, but you’re really just playing

Weekend at Bernie’s propping up a lifeless web page. Real live interactivity requires

a bit more smarts and a little more work... but it has a much bigger payoff.

Oh my stars! I didn’t realize the Web
could be so “feely.” Does it know what
I’m thinking right now?

Download at WoweBook.Com

2 Chapter 1

(Online) people have needs
All right, we know the Web is virtual, but the people on the Web are real
people, with real world needs. Needs like searching for a killer meatloaf
recipe, downloading their favorite song by Meatloaf, or something even
as huge as shopping for a new home. Fortunately, the Web differentiates
when it comes to prioritizing your needs!

Finally, an easy way to buy a
house online. Type in my income
and what I’m looking for and
the rest is automatic.

User input

needy users

Download at WoweBook.Com

you are here 4 3

the interactive web

Like talking to a brick wall... nothing happens
The Web isn’t always as responsive as it could be. In fact, it can sometimes
feel downright cold and unfeeling, detached from the outside world and
unresponsive to the needs of its many users. You would expect that entering
data like this would generate some sort of response...but nothing happened.
Don’t take it personally; the static Web just doesn’t know better.

Is anybody there?

User input... and still
nothing’s happening.

Download at WoweBook.Com

4 Chapter 1

But JavaScript talks back
JavaScript flips the switch that turns a web page into an interactive
experience. It powers things that can listen to your needs, process your
input, and respond to your deepest desires. OK, perhaps that’s a stretch,
but JavaScript can turn a web page into an interactive application as
opposed to a static, lifeless page, and that’s a good thing!

JavaScript brings a web page to life by
allowing it to respond to a user’s input.

JavaScript goes to work in response to user actions.
The user clicks a button
to get results.

The user enters information into the form.

click! click!

interactivity with javascript

Download at WoweBook.Com

you are here 4 5

the interactive web

The user’s input is
validated for accuracy.

Information on a server is
searched using parameters
supplied by the user.

A calculation is made
based upon data the
user entered.

Download at WoweBook.Com

6 Chapter 1

Lights, camera,
JavaScript sits with HTML and CSS as one of the three pieces of modern
Web page construction. HTML provides the structure, CSS adds the
style, and JavaScript puts the rubber to the road and makes things happen.
To find the path to an interactive web page, you must follow the trail of
structure (HTML) to style (CSS), and then to action (JavaScript).
Similar to CSS, JavaScript code often resides right there in the web page.

<html>
 <head>
 ...
 </head>
 <body>
 <div id="frame">

 <div id="header">Rea
dy to find a new house?</di

v>

 <div id="left">

 <img src="house.pn
g" alt="House" />

 </div>

 <form name="orderfor
m" action="…" method="POST

">

 <div class="field">
Enter your annual income:

 <input id="incom
e" type="text" size="12" /

>

 </div>

 <div class="field">
Enter the number of bedroo

ms:

 <input id="bedro
oms" type="text" size="6"

/>

 </div>

 <div class="field">
Enter your ZIP code:

 <input id="zip"
type="text" size="10" />

 </div>

 <input type="butto
n" value="Calculate Price"

/>

 <input type="butto
n" value="Shop for Houses"

/>

 </form>

 </div>
 </body>
</html>

<style type="text/css">

 body {
 font:14px arial;

 text‑align:center;

 }

 #frame {
 width:400px;

 }

 #header {

 font:16px arial;

 font‑weight:bold;

 margin‑bottom:15px;

 }

 #left {
 float:left;

 width:110px;

 }

 div.field {

 margin‑bottom:10px;

 text‑align:right;

 }
</style>

<script type="text/javascr
ipt">

 function validateNumber(
value) {

 // Validate the number

 // if (!isNumber(value
))

 alert("Please enter a
number.");

 }

 function validateZIPCode

(value) {

 // Validate the ZIP co
de

 // if (!isZIPCode(valu
e))

 alert("Please enter a
ZIP code in the form XXXXX

.");

 }

 function calcPrice() {

 var maxPrice =

 document.getElementB
yId("income").value * 4;

 alert("You can afford
a house that costs up to $

" +

 maxPrice + ".");

 }

 function findHouses(form)

 {

 var bedrooms =

 document.getElementB
yId("bedrooms").value;

 var zipCode =

 document.getElementB
yId("zip").value;

 // Display a list of m

atching houses from the se
rver

 form.submit();

 }
</script>

HTML

CSS

HTML provides
the framework.

CSS adds the
visual pizzazz.

JavaScript injects
the functional sizzle, allowing the page to
take action.

inter
action!

JavaScript

STrUCTUrE

STyLE

ACTION!

HTML, CSS, and JavaScript

Download at WoweBook.Com

you are here 4 7

the interactive web

JavaScript springs
into action when the
user asks the page
to perform a task.

The pieces of the page are all there, but they aren’t formatted and lack visual flair...

The page looks much
better but it doesn’t
do a whole lot..

Now the page actually
does something!

Thanks for listening, JavaScript!
I’m well on the way to finding the
bachelor pad of my dreams.

Download at WoweBook.Com

8 Chapter 1

Can’t you do all the same
stuff with HTML and CSS?
The Web was still pretty cool
before JavaScript, you know.

HTML and CSS aren’t really interactive
The problem is that HTML and CSS aren’t really interactive. There
certainly are CSS tricks you can use to manipulate styles in very specific
situations, such as mouse hovers over links, but your options are fairly
limited if you’re using just HTML and CSS.

JavaScript allows you to detect just about anything that takes place in
a web page, like a user clicking buttons, resizing the browser window,
or entering data into a text field. And since JavaScript is a scripting
programming language, you can learn to write code to respond to these
user interactions, like performing a calculation, dynamically swapping
images on the page, or even validating data.

HTML + CSS + JavaScript = REAL Interactivity

 Don’t sweat the JavaScript details,
at least not yet.

Although JavaScript is capable of doing
all sorts of things, We know you’re at

the beginning of your journey. Rest assured that events,
functions, and many other pieces of the JavaScript puzzle
will come together in time. Besides, you’re probably
further ahead of the game than you realize.

why add JavaScript?

Download at WoweBook.Com

you are here 4 9

the interactive web

You already know more than you think. Look at the code for the
House Finder web page, and write down what you think each
circled chunk of JavaScript code is doing. It’s okay to guess.

<html>
 <head>
 <title>House Finder</title>

 <script type="text/javascript">

 function validateNumber(value) {

 // Validate the number

 // if (!isNumber(value))

 alert("Please enter a number.");

 }

 function validateZIPCode(value) {

 // Validate the ZIP code

 // if (!isZIPCode(value))

 alert("Please enter a ZIP code in
the form XXXXX.");

 }

 function calcPrice() {

 var maxPrice = document.getElement
ById("income").value * 4;

 alert("You can afford a house that
 costs up to $" + maxPrice + ".");

 }

 function findHouses(form) {

 var bedrooms = document.getElement
ById("bedrooms").value;

 var zipCode = document.getElementB
yId("zip").value;

 // Display a list of matching hous

es from the server

 form.submit();

 }
 </script>
 </head>

 <body>
 <div id="frame">

 <div id="header">Ready to find a new
house?</div>

 <div id="left">

 <img src="house.png" alt="House" /
>

 </div>
 <form name="orderform" action="…" me

thod="POST">

 <div class="field">Enter your annua
l income:

 <input id="income" type="text" s
ize="12"

 onblur="validateNumber(this.valu
e)"/></div>

 <div class="field">Enter the number
 of bedrooms:

 <input id="bedrooms" type="text"
 size="6"

 onblur="validateNumber(this.valu
e)"/></div>

 <div class="field">Enter your ZIP c
ode:

 <input id="zip" type="text" size
="10"

 onblur="validateZIPCode(this.val
ue)"/></div>

 <input type="button" value="Calcul
ate Price"

 onclick="calcPrice();" />

 <input type="button" value="Shop f
or Houses"

 onclick="findHouses(this.form);"
/>

 </form>
 </div>
 </body>
</html>

Download at WoweBook.Com

10 Chapter 1

<html>
 <head>
 <title>House Finder</t

itle>

 <script type="text/jav
ascript">

 function validateNum
ber(value) {

 // Validate the nu
mber

 // if (!isNumber(v
alue))

 alert("Please ente
r a number.");

 }

 function validateZIP

Code(value) {

 // Validate the ZI
P code

 // if (!isZIPCode(
value))

 alert("Please ente
r a ZIP code in the form X

XXXX.");

 }

 function calcPrice()

 {

 var maxPrice = doc
ument.getElementById("inco

me").value * 4;

 alert("You can aff
ord a house that costs up

to $" + maxPrice + ".");

 }

 function findHouses(f

orm) {

 var bedrooms = doc
ument.getElementById("bedr

ooms").value;

 var zipCode = docu
ment.getElementById("zip")

.value;

 // Display a list

of matching houses from th
e server

 form.submit();

 }
 </script>

 </head>

 <body>
 <div id="frame">

 <div id="header">Rea
dy to find a new house?</di

v>

 <div id="left">

 <img src="house.pn
g" alt="House" />

 </div>

 <form name="orderfor
m" action="…" method="POST

">

 <div class="field">
Enter your annual income:

 <input id="incom
e" type="text" size="12"

 onblur="validate
Number(this.value)"/></div

>

 <div class="field">
Enter the number of bedroo

ms:

 <input id="bedro
oms" type="text" size="6"

 onblur="validate
Number(this.value)"/></div

>

 <div class="field">
Enter your ZIP code:

 <input id="zip"
type="text" size="10"

 onblur="validate
ZIPCode(this.value)"/></di

v>

 <input type="butto
n" value="Calculate Price"

 onclick="calcPri
ce();" />

 <input type="butto
n" value="Shop for Houses"

 onclick="findHous
es(this.form);" />

 </form>

 </div>
 </body>
</html>

You already know more than you think. Take a look at the code for
the House Finder web page, and write down what you think each
circled chunk of JavaScript code is doing. It’s okay to guess.

Tells the user to enter a
ZIP code in the five-digit
format, XXXXX.

Calculates the maximum
house price as four times
the user’s income.

Validates the income
field to make sure a
number was entered.

Calculates the maximum house
price when the user clicks the
Calculate Price button.

The value of the ZIP
code input field.

sharpen solution

Download at WoweBook.Com

you are here 4 11

the interactive web

Use the <script> tag to tell the
browser you’re writing JavaScript
For now, we’re going to put JavaScript directly into an HTML web page,
just like you saw on the last page. The first thing you have to do is let
the web browser know that we’re about to give it JavaScript, instead of
HTML... and that’s where the <script> tag comes in.

You can add a <script> tag anywhere in your HTML, but it’s usually
best to put it in the <head> of our web page, like this:

<html>
 <head>
 <title>House Finder</title>

 <script type="text/javascript">

 function validateNumber(value) {
 // Validate the number
 // if (!isNumber(value))
 alert("Please enter a number.");
 }

 </script>
 </head>

 <body>
 <!‑‑ All the rest of your HTML ‑‑>
 </body>
</html>

This script tag says that anything after it is a scripting language... ...and in this case
, the type

of the scripting l
anguage

is JavaScript.

The closing script tag tells the browser
that normal HTML is continuing now.

Everything between the opening and
closing script tags is JavaScript... the
browser knows to treat this as a
scripting language, and not HTML.

You can put
the script tag
into a normal
HTML page,
usually in the
head section.

Q: So anything I put inside the
<script> tag is JavaScript?

A: Not necessarily... the <script>
tag tells the browser that a scripting
language is coming, but it doesn’t have to be
JavaScript. The type part, type="text/
javascript", is what lets the browser
know you’re about to give it JavaScript
specifically.

Q: So are there other scripting
languages I can use?

A: Absolutely. Microsoft has a couple of
varieties like VBScript (a scripting version of
Visual Basic) and their flavor of Ajax, called
ASP.NET AJAX. We’ll talk more about Ajax
in Chapter 12, too. And there are several
other scripting languages you can use. But
for our purposes, we’ll always use text/
javascript in this book.

Q: Do my <script> elements have to
be in the <head> part of my HTML page?

A: That’s a good catch. You can put
<script> elements anywhere in your
web page... but it’s generally considered
bad practice to put them anywhere but the
<head> of your web page. It’s kind of like
putting CSS in the middle of a web page...
it’s usually better to separate the JavaScript
out, and the <head> of your page is a
perfect place to do that.

Download at WoweBook.Com

12 Chapter 1

Your web browser can handle
HTML, CSS, AND JavaScript
You already know that a web browser knows how to take your
HTML and display it. And you’ve used CSS to tell the browser how
to show different parts of your HTML. Think of JavaScript as just
another way to talk to the browser... but instead of telling the browser
how to display something (like in HTML or CSS), you’re giving the
browser some commands to follow.

telling the browser what to do

Web Page

<html>
 <head>
 ...
 </head>

 <body>
 ...
 </body>
</html>

Web Server

You open up a web
browser and type
in a URL...

The web server figures
out which page to
return for that URL.

The server gives your web browser a page full of HTML tags, CSS rules, and JavaScript.

The browser displays the
HTML using the CSS rules,
all from the web page...

...and knows how to run any JavaScript, like inside of <script> tags, to give the web page interactivity.

1

3

2

4

4.5

Download at WoweBook.Com

you are here 4 13

the interactive web

Q: How do web browsers run
JavaScript code?

A: Web browsers have a special piece
of software inside them called a JavaScript
interpreter, and its job is to run JavaScript
code that appears within a page. This is why
you might have heard JavaScript described
as an interpreted language, as opposed to
a compiled language. Compiled languages,
such as C++ or C#, must be converted by
a tool called a compiler into an executable
program file. It isn’t necessary to compile
JavaScript programs because JavaScript
code is interpreted directly by the browser.

Q: How do I tell a web page to start
running JavaScript code?

A: Most JavaScript code is run when
something takes place within the page, such
as the page being loaded or the user clicking
a button. A JavaScript mechanism known as
an “event” allows you to trigger a piece of
JavaScript code when something of interest
happens to the page.

Q: Considering the Web’s security
problems, is JavaScript safe?

A: Yes, for the most part. JavaScript is
designed from the ground up to prevent
malicious code from causing problems. For
example, JavaScript doesn’t allow you to
read or write files on the user’s hard drive.
This limitation wipes out the potential for
a lot of viruses and similarly evil code. Of
course, this doesn’t mean you can’t write
buggy JavaScript code that makes web
pages a pain to use, it just means you’re
unlikely to put users in serious jeopardy with
JavaScript. And for the record, browser bugs
and crafty hackers have figured out ways to
breach JavaScript security in the past, so it’s
certainly not bulletproof.

Q: So about that <script> tag in
the House Finder code... Is it HTML or
JavaScript?

A: The <script> tag itself is HTML,
and its purpose is to provide a way to blend
script code with the HTML code. The code
appearing inside the <script> tag is
JavaScript code. Since the <script>
tag is designed to support multiple script

languages, you indicate that the code is
JavaScript code by using its type attribute.

Q: I’ve seen web pages that have
interactivity, such as forms that check to
make sure a date is entered correctly, and
they seem to do it without JavaScript. Is
this possible?

A: Yes. It’s possible to get interactivity
in web pages without JavaScript, but in
many cases it’s inefficient and clunky. For
example, data validation on forms can be
handled on the web server when you submit
the form. However, this means you have to
submit the entire form and then wait for the
server to do the validating and return the
results as a new page. You might as well
validate the form with paper and pencil!
JavaScript interactivity occurs entirely within
the browser without loading a new page,
eliminating the unnecessary passing of data
back and forth to a server. Not only that,
but a great deal of what JavaScript has to
offer in terms of interactivity cannot be done
any other way without third party browser
add‑ons.

Identify each piece of code of as being part of the standard JavaScript language,
or a custom piece of code created by a programmer for the House Finder
web page.

JavaScript / Custom

JavaScript / Custom

JavaScript / Custom

JavaScript / Custom

JavaScript / Custom

JavaScript / Custom

JavaScript / Custom

JavaScript / Custom

alert

calcPrice

zipCode

var

onblur

onclick

findHouses

value

Download at WoweBook.Com

14 Chapter 1

Identify each piece of code of as being part of the standard JavaScript
language, or a custom piece of code created by a programmer for the House
Finder web page.

JavaScript / Custom

JavaScript / Custom

JavaScript / Custom

JavaScript / Custom

JavaScript / Custom

JavaScript / Custom

JavaScript / Custom

JavaScript / Custom

alert

calcPrice

zipCode

var

onblur

onclick

findHouses

value

 <head>
 <title>House Finder</t

itle>

 <script type="text/jav
ascript">

 function validateNum
ber(value) {

 // Validate the nu
mber

 // if (!isNumber(v
alue))

 alert("Please ente
r a number.");

 }

 function validateZIP

Code(value) {

 // Validate the ZI
P code

 // if (!isZIPCode(
value))

 alert("Please ente
r a ZIP code in the form X

XXXX.");

 }

 function calcPrice()

 {

 var maxPrice = doc
ument.getElementById("inco

me").value * 4;

 alert("You can aff
ord a house that costs up

to $" + maxPrice

+ ".");
 }

 function findHouses(f

orm) {

 var bedrooms = doc
ument.getElementById("bedr

ooms").value;

 var zipCode = docu
ment.getElementById("zip")

.value;

 // Display a list

of matching houses from th
e server

 form.submit();

 }
 </script>

 </head>

 <body>
 <div id="frame">

 <div id="header">Rea
dy to find a new house?</di

v>

 <div id="left">

 <img src="house.pn
g" alt="House" />

 </div>

 <form name="orderfor
m" action="…" method="POST

">

 <div class="field">
Enter your annual income:

 <input id="incom
e" type="text" size="12"

 onblur="validate
Number(this.value)"/></div

>

 <div class="field">
Enter the number of bedroo

ms:

 <input id="bedro
oms" type="text" size="6"

 onblur="validate
Number(this.value)"/></div

>

 <div class="field">
Enter your ZIP code:

 <input id="zip"
type="text" size="10"

 onblur="validate
ZIPCode(this.value)"/></di

v>

 <input type="butto
n" value="Calculate Price"

 onclick="calcPri
ce();" />

 <input type="butto
n" value="Shop for Houses"

 onclick="findHous
es(this.form);" />

 </form>

 </div>
 </body>
</html>

A storage location used to hold the ZIP code entered by the user.

The current value of the
ZIP code input field.

The pop-up box that
indicates an invalid number.

A custom chunk of code that
calculates the house price.

Sets aside a storage location for a piece of data.

Custom code that
finds matching houses.

Indicates that the user’s moved
onto the next input field.

Indicates that the Shop button has been clicked.

exercise solution

Download at WoweBook.Com

you are here 4 15

the interactive web

Man’s virtual best friend... needs YOUR help
Fresh off of a successful gig writing HTML and CSS pages, you’ve
been called into your boss’s office to see his latest online invention:
the iRock. The virtual pet is making waves at all the toy conferences,
but beta users are really unhappy with the online pet.

Apparently, the users are clicking on the rock, and expecting
something cool to happen...but your boss never thought about that.
Now, it’s up to you to make the irock interactive, and get the
glory...or go down in flames with the iRock.

Is there something
wrong with my browser?

It won’t respond
to me!

Is it something I said?

Just give me a sign!

Do you feel the clicks that are
coming out of my mouse?

Users are clicking their iRock
and nothing’s happening.

Irate beta
users clogging the tech
support lines.

Here’s the iRock so far... just some HTML and CSS. And that means no interaction with the user.

What sorts of things do you
think the iRock should be able
to do to interact with its users?

Download at WoweBook.Com

16 Chapter 1

game plan for interaction

Making iRock interactive
Not only is it up to you to make the iRock interactive, but
you’re going to have to learn some JavaScript along the way.
That’s okay, though, you’ll have that pet rock saying hello in
no time.

Here’s what you’re going to do in the rest of this chapter:

 Create the iRock HTML web page.11

 Add a JavaScript alert to make the
rock greet users when the iRock
web page is loaded.

22

 Write JavaScript code to ask for the
user’s name, print out a personalized
greeting, and make the rock smile.

33

 Add an event handler so that when
users click on the rock, the code you
wrote in step 3 runs.

44

 Win the admiration and lavish
gratitude of your boss.

55

You already know how
to do this.

An alert is JavaScript’s way of popping up a simple message box.

You’re connecting
something the user
does, like clicking the
virtual pet rock...

...with activity that you design.

Download at WoweBook.Com

you are here 4 17

the interactive web

In just a few
pages, you’ll have
this boring rock
smiling and talking
to its users.

Create the iRock web page
You couldn’t find a much simpler HTML page than the iRock. Go
ahead and type this HTML into your favorite editor, and save it
as iRock.html. You can download the pet rock images from the
Head First Labs web site, at http://www.headfirstlabs.com.

<html>
 <head>
 <title>iRock ‑ The Virtual Pet Rock</title>
 </head>

 <body>
 <div style="margin‑top:100px; text‑align:center">

 </div>
 </body>
</html>

irock.html

<html>
 <head>
 ...
 </head>

 <body>
 ...
 </body>
</html>

The pet rock’s HTML page is about as boring as the rock itself... no wonder your boss needs your help.

Be sure to download rock.png
from the online examples at the

Head First Labs web site.

Q: Is that CSS in the <div> tag?

A: Sure is. Good catch there.

Q: I thought it was a really bad idea to put CSS
directly into an HTML page. What gives?

A: You’ve been reading Head First HTML with CSS &
XHTML, haven’t you? Yes, you’re right, it’s usually better to
put your CSS in a <style> tag in your page’s <head>,
or in an external stylesheet. But your boss isn’t much of a
coder, and besides, it makes this first example a lot simpler.
But if you want to go ahead and write your own external
stylesheet for the iRock, we think that would be pretty cool.

Test drive
Before you go any further, save and test out your iRock
web page in your web browser. Make sure yours looks
like ours, because we’re about to start adding some
interactivity, JavaScript style.

Download at WoweBook.Com

18 Chapter 1

JavaScript events: giving the iRock a voice
To use JavaScript to greet the user when the page first loads, we’ll have
to solve two main JavaScript-related problems: knowing when the page
finishes loading and knowing how to display a greeting so that the user
can see it.

The first problem involves responding to an event (the page load event),
while the second problem involves using a built-in JavaScript feature, the

“alert” box. Events are JavaScript notifications that let you know when
something of interest has happened, such as a page loading (onload) or
a button getting clicked (onclick). You can respond to events with your
own custom JavaScript code.

onload!

The alert() function tells the
browser to display an alert
box that greets the user.

The onload event is triggered
when the iRock page finishes
loading in the browser.

The code for the onload
event is set using the onload
attribute of the <body>
tag in the iRock web page.

Events are notifications
that you can respond to
with JavaScript code.<body onload="alert('Hello, I am your pet rock.');">

getting started with events

Download at WoweBook.Com

you are here 4 19

the interactive web

Alert Up Close

A JavaScript alert is a pop-up window, or box, that you can use to display
information to the user. Displaying an alert box involves writing code to
call the JavaScript alert() function and passing it the text you want
to display. Functions are reusable chunks of JavaScript code that perform
common tasks, such as displaying information in a pop-up window.

+ + + +

alert()

alert is the name of the built-in function
that displays an alert box.

Every JavaScript function uses
parentheses to enclose the information
being passed to the function—in this
case, the text to be displayed.

This is the text to be displayed in the alert
box-make sure you put it between quotes.

A semicolon marks
the end of a line of JavaScript code, kind of like the period at the end of a sentence.

When you pull it all together, you get a complete line of JavaScript code
that calls a function to display greeting text in an alert box:

alert('Hello, I am your pet rock.');

The text to be displayed is placed within a pair of apostrophes or quotes.

When you see parentheses immediately
next to a name in JavaScript code,
it’s often a function.

Functions are reusable
pieces of code that
perform common tasks.

 Don’t stress
over events.

If all this
event stuff

seems like a buzz kill, don’t
worry about it because events
will continue to unfold (and
make more sense) as you work
through the book.

Alerting the user with a function

(alert)Text to display ;

Download at WoweBook.Com

20 Chapter 1

<html>
 <head>
 <title>iRock ‑ The Virtual Pet Rock</title>

 </head>

 <body onload="alert('Hello, I am your pet rock.');">

 <div style="margin‑top:100px; text‑align:center">

 </div>
 </body>
</html>

irock.html

<html>
 <head>
 ...
 </head>

 <body>
 ...
 </body>
</html>

Add the iRock greeting
So to greet users when they load the iRock page, you need to add an
onload event handler, and a greeting by using JavaScript’s alert()
function. Add this line of JavaScript into your irock.html page:

Even though the
onload event
applies to the
entire page, you
set it as an
attribute of
the <body> tag
because the body
of a page is the
part that is visible
in a browser.

The iRock page is now a touch more interactive thanks to an alert box
greeting that is displayed in response to the onload event. Load up irock.
html in your web browser, and see what happens:

saying hello with an event

Test drive your interactive rock

As soon as the page loads, an alert box should pop up on your screen with a greeting.

Remember, your JavaScript goes right in your web page. The web browser knows how to handle JavaScript, just like it does HTML and CSS.

Download at WoweBook.Com

you are here 4 21

the interactive web

Q: Where do events come from?

A: Although events are initiated by a user,
they ultimately come from the browser. For
example: a “key press” is an event triggered
by the user but the browser must package
up information about the event (like which
key was pressed) and then pass it along to a
function that has been designated to respond
to the event.

Q: What happens to events that don’t
have code tied to them?

A: If a tree falls and no one is around to
hear it, does it make a sound? Same deal
with events. If you don’t respond to an event,
the browser goes about its business and no
one is the wiser. In other words, responding
or not responding to onload has no
bearing on the page actually loading.

Q: Didn’t you say that JavaScript code
belonged in <script> tags?

A: It usually does. But you can also put it
directly in an event handler, like we did with
the onload event. And, when you need
to run just a single line of JavaScript, like for
the iRock, that’s often a simpler approach.

Q: Are there other built‑in functions
like the alert() function?

A: Yes, lots of them. alert() is
just the tip of the iceberg when it comes to
built‑in reusable JavaScript code. We’ll cover
a lot of the standard functions as we journey
through the features of JavaScript. By the
end of the book you’ll even be creating your
own custom functions.

Q: Why does the iRock onload code
mix quotes and apostrophes?

A: HTML and JavaScript require you to
close a sequence of text before starting
another one... unless you use a different
delimiter (quote or apostrophe). So in cases
where JavaScript code appears in an HTML
attribute (text within text), you have to mix
quotes and apostrophes to work around this
problem. It doesn’t matter which ones you
use for the attribute or the JavaScript text,
but whatever you choose—you’ll have to
be consistent. Maybe an example of quotes
and apostrophes in language will clear
things up…according to the iRock, “The user
clicked and said, ‘Hello there.’”

Display a text message in a pop-up window

Terminate a line of JavaScript code

Indicate that the web page has finished loading

Enclose the information passed into a function

onload

()

alert

;

Match each piece of JavaScript code to what it does.

Events are used to
respond to web page
happenings with
JavaScript code.

The onload event is
triggered when a page
finishes loading.

You respond to the
onload event by setting
the onload attribute of
the <body> tag.

Functions allow you to
bundle JavaScript code
into reusable modules.

Some functions require
you to pass them
information to complete
their task.

The alert() function
is a built‑in JavaScript
function that displays a
text message in a small
pop‑up window.

Download at WoweBook.Com

22 Chapter 1

Match each piece of JavaScript code to what it does.

You’re making some progress toward a more interactive iRock, but
there’s still more to do before the virtual pet rock is going to win
over any customers... remember our check list?

Now let’s make the iRock
really interactive

Done!

Display a text message in a pop-up window

Terminate a line of JavaScript code

Indicate that the web page has finished loading

Enclose the information passed into a function

onload

()

alert

;

adding a personal touch

 Create the iRock HTML web page.11

 Add a JavaScript alert to make the
rock greet users when the iRock
web page is loaded.

22

 Write JavaScript code to ask for the
user’s name, print out a personalized
greeting, and make the rock smile.

33

 Add an event handler so that when
users click on the rock, the code you
wrote in step 3 runs.

44

 Win the admiration and lavish
gratitude of your boss.

55

Got this one
finished, too.

Download at WoweBook.Com

you are here 4 23

the interactive web

Interaction is TWO-way communication
Right now, our rock says hi, but doesn’t let the user do much with it. We
really want the rock to respond to users. With help from a little JavaScript,
though, the iRock can be turned into an engaging pet that is surprisingly
sociable and downright friendly by changing its facial expression and
greeting the owner by name...

When users click the rock,
it should ask them for
their name.

Now the iRock
can greet its user
personally.

The iRock also should
show emotion by smiling
at the user.

User satisfaction then soars to a new high (well, that’s the idea).

Take a guess at writing down the name of the JavaScript event
used to respond to a mouse click.

JavaScript allows the user to interact with the iRock, turning key presses
and mouse clicks (more events) into pleasantries between a pet and its
owner. A JavaScript-powered friendship is born!

Download at WoweBook.Com

24 Chapter 1

Ready Bake
JavaScript

function touchRock() {
 var userName = prompt("What is your name?", "Enter your name here.");

 if (userName) {
 alert("It is good to meet you, " + userName + ".");
 document.getElementById("rockImg").src = "rock_happy.png";
 }
}

Here’s a JavaScript function, all baked up and ready to go. Whenever you see
Ready Bake JavaScript, that means you should just type the code in, as-is. But
trust us, you’ll learn everything about this code before long, and be writing
your own functions.

This code is for a custom function called touchRock(), which prompts the
user to enter their name, and then displays a personalized greeting in an alert
box. The function also changes the rock image to a smiling iRock. It’s all you
need to add personalization to the iRock.

Can you figure out where this function
should go in your irock.html page?

Take a guess at writing down the name of the JavaScript event
used to respond to a mouse click.

onclick

The onclick event is triggered
whenever the user clicks the mouse
on an element on the page—each
web page element can have its own
unique onclick response code.

sharpen solution

Just like alert(), every function
in JavaScript has a name. This
function’s name is touchRock.

Add a function to get the user’s name

prompt() is a function to pop up a
box and get a value from the user.

Once we have a name, we greet the user personally...

...and change the rock image to a
smiling rock.

Download at WoweBook.Com

you are here 4 25

the interactive web

JavaScript Magnets
The user-friendly iRock code is missing a few key code pieces.
Can you fill in the missing pieces to make the page whole?

script

touchRock()
alert

onload

'Hello, I am your pet rock.'

onclick

<html>
 <head>
 <title>iRock ‑ The Virtual Pet Rock</title>

 < type="text/javascript">
 function touchRock() {
 var userName = prompt("What is your name?", "Enter your name here.");

 if (userName) {
 alert("It is good to meet you, " + userName + ".");
 document.getElementById("rockImg").src = "rock_happy.png";
 }
 }
 </script>
 </head>

 <body =" ();">
 <div style="margin‑top:100px; text‑align:center">

 <img id="rockImg" src="rock.png" alt="iRock" style="cursor:pointer"
 =" ;" />
 </div>
 </body>
</html>

Hint: Not sure about your answers? Test out your answers by typing
them into your irock.html page.

Download at WoweBook.Com

26 Chapter 1

JavaScript Magnets Solution
The user-friendly iRock code is missing a few key code pieces.
Your job was to use the magnets to fill in those missing pieces.

<html>
 <head>
 <title>iRock ‑ The Virtual Pet Rock</title>

 <script type="text/javascript">
 function touchRock() {
 var userName = prompt("What is your name?", "Enter your name here.");

 if (userName) {
 alert("It is good to meet you, " + userName + ".");
 document.getElementById("rockImg").src = "rock_happy.png";
 }
 }
 </script>
 </head>

 <body onload ="alert ('Hello, I am your pet rock.);">
 <div style="margin‑top:100px; text‑align:center">

 <img id="rockImg" src="rock.png" alt="iRock" style="cursor:pointer"
 onclick="touchRock();;" />
 </div>
 </body>
</html>

JavaScript functions are placed
in a special <script> tag that
goes in the <head> of the page.

The onload event attribute of
the <body> tag wires the alert
box greeting to the page.

The onclick event attribute
of the rock image causes the
touchRock() function to get
called when the rock is clicked.

The type attribute of the
<script> tag is used to identify
the type of the script language,
in this case JavaScript.

Change the rock image
to a happy rock.

Change the mouse cursor
to a hand when hovering
over the rock.

JavaScript Magnets solution

script

touchRock()

alertonload 'Hello, I am your pet rock.'

onclick

Download at WoweBook.Com

you are here 4 27

the interactive web

Clicking the iRock image
causes an event to trigger a
custom JavaScript function.

<img id="rockImg" src="roc
k.png" alt="iRock"

 style="cursor:pointer" on
click="touchRock();"

/>

onclick!

The function asks for the user’s name, and then greets them personally.

Instant replay: what just happened?
A little bit of JavaScript triggered a lot of changes, resulting in a more
endearing version of the iRock. Let’s view an instant replay of what
changes were made and how they impact the page.

The rock image
changes to a
smiling iRock.

function touchRock() {
 var userName = prompt("What is your name?",
 "Enter your name here.");
 if (userName) {
 alert("It is good to meet you, " + userName + ".");
 document.getElementById("rockImg").src = "rock_happy.png";
 }
}

Download at WoweBook.Com

28 Chapter 1

JavaScript
allows web
pages to DO
THINGS, not
just play show
and tell.

Test drive iRock 1.0
Make sure you’ve made your version of irock.html look like the one
on page 26, and that you’ve downloaded both rock images from Head
First Labs (http://www.headfirstlabs.com/books/hfjs/). Then, open up your
web page, and give the rock a spin:

iRock rocks!

Done!
 Create the iRock HTML web page.11

 Add a JavaScript alert to make the
rock greet users when the iRock
web page is loaded.

22

 Write JavaScript code to ask for the
user’s name, print out a personalized
greeting, and make the rock smile.

33

 Add an event handler so that when
users click on the rock, the code you
wrote in step 3 runs.

44

 Win the admiration and lavish
gratitude of your boss.

55

Got this one
finished, too.

We used the
onclick event
handler for this.

Here’s where we used the touchRock() function.

Boss man’s happy...
can a raise and a
widescreen monitor
be far behind?

Download at WoweBook.Com

you are here 4 29

the interactive web

JavaScriptcross
Take some time to sit back and give your right brain
something to do. It’s your standard crossword; all of
the solution words are from this chapter.

1

2

3

4 5

6

7

8

Across
2. The name of a chunk of code that provides the iRock with a
personalized greeting,
4. To respond to a mouse click, just set some JavaScript code to
the attribute of an HTML element.
7. Without this, you might as well just stick with HTML and CSS.
8. To display text to the user, just call the function.

Down
1. A reusable piece of JavaScript code that performs a common
task.
3. Something just happened and the browser is trying to let you
know.
5. "The feel good online toy of the season."
6. Lets you know that a Web page has finished loading.

1

2

3

4 5

6

7

8

Across
2. The name of a chunk of code that provides the iRock with a
personalized greeting,
4. To respond to a mouse click, just set some JavaScript code to
the attribute of an HTML element.
7. Without this, you might as well just stick with HTML and CSS.
8. To display text to the user, just call the function.

Down
1. A reusable piece of JavaScript code that performs a common
task.
3. Something just happened and the browser is trying to let you
know.
5. "The feel good online toy of the season."
6. Lets you know that a Web page has finished loading.

Download at WoweBook.Com

30 Chapter 1

JavaScriptcross Solution

F
1

U

N

T
2

O U C H R O C K

T

I E
3

O
4

N C L I
5

C K V

N R E

O
6

O N

I
7

N T E R A C T I V I T Y

L K

O

A
8

L E R T

D

Across
2. The name of a chunk of code that provides the iRock with a
personalized greeting, [TOUCHROCK]
4. To respond to a mouse click, just set some JavaScript code to
the attribute of an HTML element. [ONCLICK]
7. Without this, you might as well just stick with HTML and CSS.
[INTERACTIVITY]
8. To display text to the user, just call the function. [ALERT]

Down
1. A reusable piece of JavaScript code that performs a common
task. [FUNCTION]
3. Something just happened and the browser is trying to let you
know. [EVENT]
5. "The feel good online toy of the season." [IROCK]
6. Lets you know that a Web page has finished loading.
[ONLOAD]

JavaScriptcross solution

Download at WoweBook.Com

you are here 4 31

the interactive web

Page Bender

It’s a meeting of the minds!

Fold the page vertically
to line up the two brains
and solve the riddle.

 Searching the Inter‑
 net for this answer is an
 action that probably won’t help you very
 much. You should just spend time with
 users instead. All web pages want it.

There are

cold rocks... ... and there are

warm rocks.

But they all crave the same thing!

Woof!
Meow... Hey, how’s it going?

What does JavaScript add to web pages?

onclick!

Now the iRock has
something in common with
these real, non-virtual
pets. What is it?

Download at WoweBook.Com

Download at WoweBook.Com

this is a new chapter 33

storing data2

Everything Has Its Place

In the real world, people often overlook the importance of
having a place to store all their stuff. Not so in JavaScript. You simply

don’t have the luxury of walk-in closets and three-car garages. In JavaScript, everything

has its place, and it’s your job to make sure of it. The issue is data—how to represent it,

how to store it, and how to find it once you’ve put it somewhere. As a JavaScript storage

specialist, you’ll be able to take a cluttered room of JavaScript data and impose your will

on it with a flurry of virtual labels and storage bins.

In the real world, people often overlook the importance of
having a place to store all their stuff. Not so in JavaScript. You simply

don’t have the luxury of walk-in closets and three-car garages. In JavaScript, everything

has its place, and it’s your job to make sure of it. The issue is data—how to represent it,

how to store it, and how to find it once you’ve put it somewhere. As a JavaScript storage

specialist, you’ll be able to take a cluttered room of JavaScript data and impose your will

on it with a flurry of virtual labels and storage bins.

Every lady needs a special
place to store treasured
belongings...not to mention
some petty cash and a bogus
passport for a quick getaway.

Download at WoweBook.Com

34 Chapter 2

Your scripts can store data
Just about every script has to deal with data in one way or another, and
that usually means storing data in memory. The JavaScript interpreter that
lives in web browsers is responsible for setting aside little areas of storage
for JavaScript data. It’s your job, however, to spell out exactly what the
data is and how you intend to use it.

Think of the different real world pieces of
information you deal with on a daily basis.
How are they alike? Different? How would you
organize those different pieces of data?

Scripts use stored data to carry out calculations and remember
information about the user. Without the ability to store data, you’d never
find that new house or really get to know your iRock.

The information associated
with a house search must all
be stored within the script
that performs the calculations.

The user’s name entered into
the iRock page is stored away so
that the script can show you a
personalized greeting.

data storing scripts

Download at WoweBook.Com

you are here 4 35

storing data

Scripts think in data types
You organize and categorize real world data into types without even
thinking about it: names, numbers, sounds, and so on. JavaScript also
categorizes script data into data types. Data types are the key to
mapping information from your brain to JavaScript.

Data types directly affect how you work with data in JavaScript code.
For example, alert boxes only display text, not numbers. So numbers are
converted to text behind the scenes before they’re displayed.

Human Brain
JavaScript

JavaScript uses three basic data types:
text, number, and boolean.

$19.95

Turn dishwasher ON

Take me out to the

ballgame

number

text

boolean

Text
Text data is really just a sequence of characters, like the name of your favorite breakfast cereal. Text is usually words or sentences, but it doesn’t have to be. Also known as strings, JavaScript text always appears within quotes ("") or apostrophes ('').

Number

Boolean

Numbers are used to store numeric

data like the weights and quantities

of things. JavaScript numbers can

be either integer/whole numbers (2

pounds) or decimals (2.5 pounds).

Boolean data is always in one
of two possible states—true
or false. So you can use a
boolean to represent anything
that has two possible settings,
like a toaster with an On/Off
switch. Booleans show up
all the time and you can
use them to help in making
decisions. We’ll talk more
about that in Chapter 4.

Download at WoweBook.Com

36 Chapter 2

Find everything that could be represented by a JavaScript
data type, and write down what type that thing should be.

sharpen your pencil

Download at WoweBook.Com

you are here 4 37

storing data

Download at WoweBook.Com

38 Chapter 2

Your job was to find everything that JavaScript could
represent, and figure out the type JavaScript would use.

Boolean

Boolean

Object (more on

these in Chapter 9).

Text

Number

sharpen solution

Download at WoweBook.Com

you are here 4 39

storing data

Number

Text

Number (different

number for each state).Boolean

Boolean

Text

Number

Number

Text. When numbers and
characters are mixed, the data
is ALWAYS considered text.

Download at WoweBook.Com

40 Chapter 2

Constants stay the SAME,
variables can CHANGE
Storing data in JavaScript isn’t just about type, it’s also about purpose.
What do you want to do with the data? Or more specifically, will the data
change throughout the course of your script? The answers determine
whether you code your data type in JavaScript as a variable or a constant.
A variable changes throughout the course of a script, while a
constant never changes its value.

What other information types could involve both variables and constants?

Constant Variable

324 total page hits—a
variable since users are
constantly visiting the
page and changing the
hit count.

24 hours in a day—a
constant as far as
humans are concerned,
even though the moon
is slowly leaving us.

Land area of 3.5 million
square miles—a constant
(unless you wait around
long enough for the
Earth’s tectonic plates
to shift).

Sunrise at 6:43am—a
variable since the sunrise
changes every day.

Population of 300 million
people—a variable since the
U.S. population is still on
the rise.

URL of web page is
www.duncansdonuts.com—a
constant, unless the donut
biz takes a dramatic
downturn.

Variable data can
change—constant
data is fixed.

same versus difference

Download at WoweBook.Com

you are here 4 41

storing data

Circle all of the data at Duncan’s Donuts, and then identify each
thing you circled as being either a variable or a constant.

Download at WoweBook.Com

42 Chapter 2

Your job was to find all the variables and constants.

Constant

Constant

Variable

Variable

Variable

sharpen solution

Download at WoweBook.Com

you are here 4 43

storing data

Tonight’s talk: Variable and Constant square off
over data storage.

Variable:
When it comes to storing data, I offer the most in
flexibility. You can change my value all you want. I
can be set to one value now and some other value
later—that’s what I call freedom.

Sure, but your mule-headed resistance to change
just won’t work in situations where data has to take
on different values over time. For example, a rocket
launch countdown has to change as it counts down
from 10 to 1. Deal with that!

Yeah, sure, whatever. How do you get off calling
variation a bad thing. Don’t you realize that change
can be a good thing, especially when you’ve got to
to store information entered by the user, perform
calculations, anything like that?

I suppose we’ll just have to agree to disagree.

Constant:

And I call that flip-flopping! I say pick a value and
stick to it. It’s my ruthless consistency that makes
me so valuable to scripters...they appreciate the
predictability of data that always stays the course.

Oh, so you think you’re the only data storage option
for mission critical applications, huh? Wrong! How
do you think that rocket ever got to the launch pad?
Because someone was smart enough to make the
launch date a constant. Show me a deadline that’s a
variable and I’ll show you a project behind schedule.

I say the more things change, the more they stay
the same. And really, why change in the first place?
Settle on a good value from the start and leave it
alone. Think about the comfort in knowing that
a value can never be changed, accidentally or
otherwise.

Actually, I’ve disagreed with you all along.

Download at WoweBook.Com

44 Chapter 2

Variables start out without a value
A variable is a storage location in memory with a unique name, like
a label on a box that’s used to store things. You create a variable using a
special JavaScript keyword called var, and the name of the new variable.
A keyword is a word set aside in JavaScript to perform a particular task,
like creating a variable.

var Variable name ;+ +

The var keyword
indicates that you’re
creating a new variable.

The variable name can
be just about anything
you want, as long as it’s
unique within your script.

The semicolon
ends this line of
JavaScript code.

When you create a variable using the var keyword, that variable’s
initially empty.... it has no value. It’s fine for a variable to start off being
empty as long as you don’t attempt to read its value before assigning
it a value. It’d be like trying to play a song on your MP3 player before
loading it with music.

var pageHits;

Yep, this is a
new variable.

The variable
name is pageHits.

The end of the line.

A newly-created variable has reserved storage space set aside, and is
ready to store data. And the key to accessing and manipulating the data
it stores is its name. That’s why it’s so important for the name of every
variable to be unique AND meaningful. For example, the name
pageHits gives you a pretty good clue as to what kind of data that
variable stores. Naming the page hit variable x or gerkin wouldn’t
have been nearly as descriptive.

Empty—ready
for storage.

pageHits

building a variable

Download at WoweBook.Com

you are here 4 45

storing data

= ;var Variable name+

Initialize a variable with "="
You don’t have to create variables without an initial value. In fact, it’s
usually a pretty good idea to give a variable a value when you first create it.
That’s called initializing a variable. That’s just a matter of adding a tiny
bit of extra code to the normal variable creation routine:

+

300

Initial value+ +

The equals sign connects
the variable name to its
initial value.

This initial value is
stored in the variable.

Terminates the
line of code.

var population = 300;

Unlike its blank counterpart, an initialized variable is immediately
ready to be used... it already has a value stored in it. It’s like buying a
preloaded MP3 player—ready to play right out of the box.

Remember data types? Another thing this line of script does is assign the
data type of the variable automatically. In this case, JavaScript creates
the population variable as a number because you gave it a numeric
initial value, 300. If the variable is ever assigned some other type, then
the type of the variable changes to reflect the new data. Most of the time
JavaScript handles this automatically; there will be cases where you will
need to be explicit and even convert to a different data type...but we’ll get
to all that a bit later.

Now the variable
contains numeric data.

Create the variable.

Give it a name.

Assign the value to the variable.

Specify its value.

The end.

population

Download at WoweBook.Com

46 Chapter 2

Constants are resistant to change
Initializing a variable is all about setting its first value—there’s nothing
stopping that value from being changed later. To store a piece of data
that can never change, you need a constant. Constants are created just like
initialized variables, but you use the const keyword instead of var. And
the “initial” value becomes a permanent value...constants play for keeps!

TAXRATE

.925

This creates a constant
that can’t be changed.

It’s all over.

const TAXRATE = .925;

The biggest difference between creating a constant and a variable is you
have to use the const keyword instead of var. The syntax is the same as
when you’re initializing a variable. But, constants are often named using
all capital letters to make them STANDOUT from variables in your code.

The name of
the constant.

The constant value—this
value can never change.

Assign a value to
the constant.

Constants are handy for storing information that you might directly code in
a script, like a sales tax rate. Instead of using number like 0.925, your code
is much easier to understand if you use a constant with a descriptive name,
like TAXRATE. And if you ever need to change the value of the constant
in the script, you can make the change in one place—where the constant is
defined—instead of trying to find each time it appears in your script, which
could get really complicated.

This data will never,
ever, ever change...ever!

The ALL CAPS constant name helps to make it easily identifiable as compared to variables, which use mixedCase.

The value the constant
will have throughout
all eternity. This data

cannot change.

= ;const Constant name+ +Constant value+ +

 Not all
browsers
support
the const
keyword.

The const keyword is
fairly new to JavaScript,
and not all browsers
support it. Be sure
to double check your
target browsers before
releasing JavaScript
code that uses const.

constants are stubborn

Download at WoweBook.Com

you are here 4 47

storing data

Decide whether each of the following pieces of information should be a variable or a constant,
and then write the code to create each, and initialize them (if that’s appropriate).

Hang on, I thought constants
couldn’t change.

The current temperature, which is initially unknown

The conversion unit from human years to dog years (1 human year = 7 dog years)

The countdown for a rocket launch (from 10 to 0)

The price of a tasty donut (50 cents)

Constants can’t change, at least
not without a text editor.
It’s true that constants can’t change while a script is
running...but there’s nothing stopping you from changing
the value of a constant where it’s first created. So from your
script’s perspective, a constant is absolutely fixed, but from
your perspective, it can be changed by going back to the point
where you created the constant. So a tax rate constant can’t
change while the script is running, but you can change the
rate in your initialization code, and the new constant value
will be reflected in the script from then on out.

Download at WoweBook.Com

48 Chapter 2

Your job was to decide whether each of the following pieces of information should be a variable
or a constant, and then write the code to create them, and initialize them when appropriate.

The current temperature, which is initially unknown

The conversion unit from human years to dog years (1 human year = 7 dog years)

The countdown for a rocket launch (from 10 to 0)

The price of a tasty donut (50 cents)

var temp;

const HUMANTODOG = 7;

var countdown = 10;

var donutPrice = 0.50; or const DONUTPRICE = 0.50;

The temperature changes all the
time and the value is unknown, so
a blank variable is the ticket.

This conversion rate doesn’t change, so it makes perfect sense as a constant.

The countdown has to count from
10 to 1, so it’s a variable, and it
has to be initialized to the start
count (10).

If the donut price changes, it makes sense as a variable that’s initialized to the current price.

...or maybe the donut price is
fixed, in which case a constant
set to the price works better.

exercise solution

Download at WoweBook.Com

you are here 4 49

storing data

Q: If I don’t specify the data type of
JavaScript data, how does it ever know
what the type is?

A: Unlike some programming languages,
JavaScript doesn’t allow you to explicitly set
the type of a constant or variable. Instead,
the type is implied when you set the value
of the data. This allows JavaScript variables
a lot of flexibility since their data types can
change when different values are assigned
to them. For example: if you assign the
number 17 to a variable named x, the
variable is a number. But if you turn around
and assign x the text “seventeen”, the
variable type changes to string.

Q: If the data type of JavaScript data
is taken care of automatically, why should
I even care about data types?

A: Because there are plenty of situations
where you can’t rely solely on JavaScript’s
automatic data type handling. For example,
you may have a number stored as text that
you want to use in a calculation. You have
to convert the text type to the number type
in order to do any math calculations with the
number. The reverse is true when displaying
a number in an alert box—it must first be
converted to text. JavaScript will perform the
number‑to‑text conversion automatically, but
it may not convert exactly like you want it to.

Q: Is it OK to leave a variable
uninitialized if I don’t know what it’s value
is up front?

A: Absolutely. The idea behind
initialization is to try to head off problems
where you might try to access a variable
when it doesn’t have a value. But, there are
also times where there’s no way to know
the value of a variable when you first create
it. If that happens, just make sure that the
variable gets set before you try to use it. And
keep in mind that you can always initialize
a variable to a “nothing” value, such as ""
for text, 0 for numbers, or false for
booleans. This helps eliminate the risk of
accidentally accessing uninitialized data.

Q: Is there any trick to knowing when
to use a variable and when to use a
constant?

A: While it’s easy to just say constants
can’t change and variables can, there’s a
bit more to it than that. In many cases you’ll
start out using variables for everything, and
only realize that there are opportunities to
make some of those variables into constants
later. Even then, it’s rare that you’ll be able
to turn a variable into a constant. More
likely, you’ll have a fixed piece of text or
number that is used in several places, like
a repetitive greeting or conversion rate.

Instead of duplicating the text or number
over and over, create a constant for it and
use that instead. Then if you ever need to
adjust or change the value, you can do it in
one place in your code.

Q: What happens to script data when
a web page is reloaded?

A: Script data gets reset to its initial
values, as if the script had never been run
before. In other words, refreshing a web
page has the same effect on the script as if
the script was being run for the first time.

Script data can usually be represented by one of the
three basic data types: text, number, or boolean.

A variable is a piece of data that can change over the
course of a script.

A constant is a piece of information that cannot change.

The var keyword is used to create variables, while
const is used to create constants.

The data type of a piece of JavaScript data is
established when you set the data to a certain value,
and for variables the type can change.

Data
types are
established
when
variable’s and
constant’s
values are set.

Download at WoweBook.Com

50 Chapter 2

What’s in a name?
Variables, constants, and other JavaScript syntax constructs are identified
in scripts using unique names known as identifiers. JavaScript identifiers
are like the names of people in the real world, except they aren’t as
flexible (people can have the same name, but JavaScript variables can’t).
In addition to being unique within a script, identifiers must abide by a few
naming laws laid down by JavaScript:

When you create a JavaScript identifier for a variable or constant, you’re
naming a piece of information that typically has meaning within a script.
So, it’s not enough to simply abide by the laws of identifier naming. You
should definitely try to add context to the names of your data pieces so
that they are immediately identifiable.

Of course, there are times when a simple x does the job—not every piece
of data in a script has a purpose that is easily described.

Identifiers should be descriptive
so that data is easily identifiable,
not to mention legal...

I’m not going to tolerate
law breakers when it
comes to identifiers.

Sheriff J.S. Justice,
dedicated lawman.

An identifier must be at least one character in length.

The first character in an identifier must be a letter, an
underscore (_), or a dollar sign ($).

Each character after the first character can be a letter,
an underscore (_), a dollar sign ($), or a number.

Spaces and special characters other than _ and $ are
not allowed in any part of an identifier.

my name is

Download at WoweBook.Com

you are here 4 51

storing data

!guilty

The pastry wizards over at Duncan’s Donuts are trying to decide on a promotional cap design.
Unfortunately, they don’t realize that some of the designs violate JavaScript’s rules for naming
identifiers. Mark an X over the names on the caps that won’t cut it in JavaScript.

donuts! glaze1_tasty
#1crullerhot now

ka_chow

top100

_topSecret

firstName

5to10

$total

Not legal: can’t start
with a number.

Not legal: can’t
start with a special
character other
than _ or $.

Legal: all letters, so
everything is fine. Legal: numbers don’t

appear at the beginning,
so this is A-OK.

Legal: letters
and underscores
are all good.

Legal: although it looks
a little strange, starting
with a dollar sign is
perfectly legal.

Legal: Starting with an
underscore isn’t a problem at
all—some people even use this
technique to name variables
that have a special meaning.

Legal and illegal variable and constant names

Download at WoweBook.Com

52 Chapter 2

Variable names often use CamelCase
Although there aren’t any JavaScript laws governing how you style
identifier names, the JavaScript community has some unofficial
standards. One of these standards is using CamelCase, which means
mixing case within identifiers that consist of more than one word
(remember, you can’t have spaces in a variable name). Variables usually
use lower camel case, in which the first word is all lowercase, but
additional words are mixed-case.

Your job was to mark an X over the caps that have variable names that won’t cut it in JavaScript.

donuts! glaze1_tasty
#1crullerhot now

Exclamation points
aren’t allowed anywhere
in an identifier.

Sorry, spaces aren’t
allowed either.

The pound symbol is only
going to invoke the wrath
of Sheriff Justice.

num_cake_donuts

NumCakeDonuts

numCakeDonuts

Separating multiple words
with an underscore in a
variable identifier isn’t illegal,
but there’s a better way.

Better... this style is known
as camel case, but it still isn’t
quite right for variables.

Ah, there it is—lower camel
case is perfect for naming
variables with multiple words.

lowerCamelCase is used to
name multiWord variables.

exercise solution

The first letter
of each word is
capitalized.

The first letter
of each word
except the first
is capitalized.

Download at WoweBook.Com

you are here 4 53

storing data

employee*of*the*Month

ALARM-STATUS

cups-o-coffee

eclairRECORDHOLDER

Employee of the Month
alarm_status

JavaScript Magnets
The identifier magnets have gotten separated from the variables
and constants they identify at Duncan’s Donuts. Match up the
correct magnet to each variable/constant, and make sure you avoid
magnets with illegal names. Bonus points: identify each data type.

numCups

FLOURPERBATCH

TAXNUM

employeeOfMonth

The number of
cups of coffee
sold today

The amount of
flour that goes
into a single
batch of donuts

The name of the employee of the month

The business tax number used to file sales taxThe record holder for most eclairs eaten in a sitting

alarmStatus

eclairRecord

The status of
the alarm system

Tax#

eclairWinner!

flour quantity
#OfCups

Download at WoweBook.Com

54 Chapter 2

JavaScript Magnets Solution
The identifier magnets have gotten separated from the variables
and constants they identify at Duncan’s Donuts. Match up the
correct magnet to each variable/constant, and make sure you avoid
magnets with illegal names. Bonus points: identify each data type.

The number of
cups of coffee
sold today

The amount of
flour that goes
into a single
batch of donuts

The name of the employee of the month

The business tax number used to file sales taxThe record holder for most eclairs eaten in a sitting

The status of
the alarm system

numCups

FLOURPERBATCH

TAXNUM

employeeOfMonth

alarmStatus

eclairRecord

employee*of*the*Month

ALARM-STATUS

cups-o-coffee

eclairRECORDHOLDER

Employee of the Month
alarm_status

Tax#

eclairWinner!

flour quantity
#OfCups

Number

Text
Number

Text Boolean
Number

JavaScript magnets solution

All these leftovers
are illegal names in
JavaScript.

Download at WoweBook.Com

you are here 4 55

storing data

The next big thing (in donuts)
You may know about Duncan’s Donuts, but you haven’t met Duncan
or heard about his big plan to shake up the donut market. Duncan
wants to take the “Hot Donuts” business to the next level...he wants to
put it online! His idea is just-in-time donuts, where you place an
order online and enter a specific pick-up time, and have a hot order
of donuts waiting for you at the precise pick-up time. your job is
to make sure the user enters the required data, as well as
calculate the tax and order total.

Hey, I’m Duncan. This online
ordering system for making
hot donuts is going to ROCK!

12 glazed

Hot and
on time!

x 12

The Donut
Blaster 3000.

Pick up in 45 minutes for Paul

JavaScript captures the user input and calculates the tax and total.

DB3000

Download at WoweBook.Com

56 Chapter 2

Plan the Duncan’s Donuts web page
Processing a just-in-time donut order involves both checking (or validating)
the order form for required data, and calculating the order total based
upon that data. The subtotal and total are calculated on the fly as the
data is entered so that the user gets immediate feedback on the total
price. The Place Order button is for submitting the final order, which isn’t
really a JavaScript issue...we’re not worrying about that here.

This information is
calculated on the fly
using JavaScript.

This information is required for
the order, and so it should be
validated by JavaScript.

JavaScript isn’t required for
the final form submission to
the web server.

JavaScript donut forms

Download at WoweBook.Com

you are here 4 57

storing data

subtotal + tax

subtotal x tax rate

With a little help from
JavaScript, each order is
filled just in time...genius!

The subtotal is calculated by multiplying the total number of donuts
by the price per donut:

(# of cake donuts + # of glazed donuts) x price per donut

The tax is calculated by multiplying the subtotal by the tax rate:

The order total is calculated by adding the subtotal and the tax:

What variables and constants will you
need to carry out these calculations?
What would you name them?

It looks like Duncan has a fair amount of data to keep track of in his form.
Not only does he have to keep up with the various pieces of information
entered by the user, but there are also several pieces of data that get
calculated in JavaScript code.

Download at WoweBook.Com

58 Chapter 2

A first take at the donut calculations
Duncan tried to write the JavaScript for the calculations himself, but
ran into problems. As soon as a user enters a number of donuts, the
on-the-fly calculations immediately go haywire. They’re coming up with
values of $NaN, which doesn’t make much sense. Even worse, orders
aren’t getting filled and customers aren’t exactly thrilled with Duncan’s
technological “advancements.”

x 0
That’s not good!

No donuts = big problem.

It’s time to take a look at the code for the donut script
and see exactly what’s going on. Look over on the next
page (or at the code samples you can download from
http://www.headfirstlabs.com/books/hfjs/), and see if you
can figure out what happened.

$NaN, is that code for
something terribly bad?

does not compute

Download at WoweBook.Com

you are here 4 59

storing data

<html>
 <head>
 <title>Duncan's Just‑In‑Time Donuts</title>
 <link rel="stylesheet" type="text/css" href="donuts.css" /> <script type="text/javascript">
 function updateOrder() {
 const TAXRATE;
 const DONUTPRICE;
 var numCakeDonuts = document.getElementById("cakedonuts").value; var numGlazedDonuts = document.getElementById("glazeddonuts").value; var subTotal = (numCakeDonuts + numGlazedDonuts) * DONUTPRICE; var tax = subTotal * TAXRATE;
 var total = subTotal + tax;
 document.getElementById("subtotal").value = "$" + subTotal.toFixed(2); document.getElementById("tax").value = "$" + tax.toFixed(2); document.getElementById("total").value = "$" + total.toFixed(2); }
 function placeOrder() {
 // Submit order to server...
 form.submit();
 }
 </script>
 </head>
 <body>
 <div id="frame">
 ...
 <form name="orderform" action="donuts.php" method="POST"> ...
 <div class="field">
 # of cake donuts: <input type="text" id="cakedonuts" name="cakedonuts" value="" onchange="updateOrder();" />
 </div>
 <div class="field">
 # of glazed donuts: <input type="text" id="glazeddonuts" name="glazeddonuts" value="" onchange="updateOrder();" /> </div>
 ...
 <div class="field">
 <input type="button" value="Place Order"
 onclick="placeOrder(this.form);" />
 </div>
 </form>
 </div>
 </body>
</html>

Write down what you think went wrong with Duncan’s just-in-
time donut script code.

This code is called to
update the order by
calculating the subtotal
and total on the fly.

This code submits the
order to the server
and confirms the
order with the user.

The order is updated
when either number of
donuts changes.

The order is submitted
when the Place Order
button is clicked.

Since the data entered by the user looks OK, there must be something wrong with the constants.

Download at WoweBook.Com

60 Chapter 2

Write down what you think went wrong with Duncan’s just-in-
time donut script code.

OK, I understand that a constant always
has the same value, but if that’s the case
then how can it be uninitialized?

The two constants, TAXRATE and DONUTPRICE, aren’t initialized, which means
the calculations that depend on them can’t be completed.

You shouldn’t ever uninitialize a constant.
You can uninitialize a constant by never giving it a value,
but it’s a very bad idea. When you don’t initialize a
constant when you create it, that constant ends up in no
man’s land—it has no value, and even worse, it can’t
be given one. An uninitialized constant is essentially a
coding error, even though browsers don’t usually let
you know about it.

Always initialize constants
when you create them.

sharpen solution

Download at WoweBook.Com

you are here 4 61

storing data

Initialize your data...or else
When you don’t initialize a piece of data, it’s considered undefined,
which is a fancy way of saying it has no value. That doesn’t mean it
isn’t worth anything, it just means it doesn’t contain any information...
yet. The problem shows up when you try to use variables or constants
that haven’t been initialized.

const DONUTPRICE;

var numCakeDonuts = 0;

var numGlazedDonuts = 12;

var subTotal = (numCakeDonuts + numGlazedDonuts) * DONUTPRICE;

Uninitialized

Initialized

0 12 ?

subtotal = (0 + 12) * ?

This is a
big problem.

The DONUTPRICE constant is uninitialized, which means it has no
value. Actually JavaScript has a special value just for this “non-value”
state: undefined. It’s sort of like how your phone’s voice mail will
report “no messages” when you don’t have any messages—“no messages”
is technically still a message but it’s purpose is to represent the lack of
messages. Same deal with undefined—it indicates a lack of data.

A piece of data
is undefined
when it has
no value.

DONUTPRICE

You have no
messages.

No data
here, so it’s
undefined.

In JavaScript you
multiply numbers
using * instead of x

Download at WoweBook.Com

62 Chapter 2

Q: What does it mean that identifiers
must be unique within a script?

A: The whole point of identifiers is to
serve as a unique name that you can use to
identify a piece of information in a script. In
the real world, it isn’t all that uncommon for
people to have the same name... but then
again, people have the ability to deal with
such “name clashes” and figure out who
is who. JavaScript isn’t equipped to deal
with ambiguity, so it needs you to carefully
distinguish different pieces of information by
using different names. You do this by making
sure identifiers within your script code are
all unique.

Q: Does every identifier I create have
to be unique, or unique only in a specific
script?

A: Identifier uniqueness is really only
important within a single script, and in
some cases only within certain portions of
a single script. However, keep in mind that
scripts for big web applications can get quite
large, spread across lots of files. In this
case, it becomes more challenging to ensure
uniqueness among all identifiers. The good
news it that it isn’t terribly difficult to maintain
identifier uniqueness in scripts of your own,
provided you’re as descriptive as possible
when naming them.

Q: I still don’t quite understand when
to use camel case and lower camel case.
What gives?

A: Camel case (with the first word
capitalized) only applies to naming
JavaScript objects, which we’ll talk about
in Chapter 9. Lower camel case applies to
variables and functions, and is the same

as camel case, except the first letter in
the identifier is lowercase. So camel case
means you would name an object Donut,
while lower camel case means you would
name a function getDonut() and a
variable numDonuts. There isn’t a cute
name for constants—they’re just all caps.

Q: Are text and boolean data
considered NaN?

A: Theoretically, yes, since they definitely
aren’t numbers. But in reality, no. The
purpose of NaN is to indicate that a
number isn’t what you think it is. In other
words, NaN isn’t so much a description of
JavaScript data in general as it is an error
indicator for number data types. You typically
only encounter NaN when performing
calculations that expect numbers but for
some reason are given non‑numeric data to
work with.

NaN is NOT a number
Just as undefined represents a special data condition, there’s another
important value used to indicate a special case with JavaScript variables:
NaN. NaN means Not a Number, and it’s what the subTotal variable
gets set to since there isn’t enough information to carry out the calculation.
In other words, you treated a missing value as a number... and got NaN.

subtotal = (0 + 12) * ? = NaN

Not a number!
NaN is a value
that isn’t a
number even
though you’re
expecting the
value to be one.

A number

Since this data is undefined, the
calculation can’t be carried out.

const DONUTPRICE = 0.50;

So solving the NaN problem requires initializing the DONUTPRICE
constant when you create it:

NaN not naan

Download at WoweBook.Com

you are here 4 63

storing data

Help!

Meanwhile, back at Duncan’s...
Back at Duncan’s Donuts, things have gone from bad to worse.
Instead of empty boxes, now there are donuts everywhere—every
order is somehow getting overcalculated. Duncan is getting
overwhelmed with complaints of donut overload and pastry gouging.

What could be wrong with how the donut quantity data is being handled?

I don’t get it. I’ve
gone from too few
donuts to too many.

The customer only ordered
9 donuts but he somehow
ended up getting a lot more.

Download at WoweBook.Com

64 Chapter 2

You can add more than numbers
In JavaScript, context is everything. Specifically, it matters what
kind of data you’re manipulating in a given piece of code, not
just what you’re doing with the data. Even something as simple
as adding two pieces of information can yield very different
results depending upon the type of data involved.

1 + 2 = 3 "do" + "nuts" = "donuts"

Numeric Addition

Adding two numbers does what

you might expect—it produces a

result that is the mathematical

addition of the two values.

String Concatenation
Adding two strings also does
what you might expect but it’s
very different than mathematical
addition—here the strings are
attached end-to-end.

Fancy word
for “stick these things together”.

Knowing that strings of text are added differently than
numbers, what do you think happens when an attempt is
made to add two textual numbers?

"1" + "2" = ?
Addition, concatenation,
what gives?

JavaScript doesn’t really care what’s in a string of text—it’s
all characters to JavaScript. So the fact that the strings hold
numeric characters makes no difference... string concatenation
is still performed, resulting in an unexpected result if the
intent was numeric addition.

"1" + "2" = "12"

Since these are strings and
not numbers, they are “added”
using string concatenation.

The result is a string
that doesn’t look like
mathematical addition at all.

 Always make
sure you’re
adding what
you think
you’re adding.

Accidentally concatenating
strings when you intend to
add numbers is a common
JavaScript mistake. Be sure
to convert strings to numbers
before adding them if your
intent is numeric addition.

different types of addition

Download at WoweBook.Com

you are here 4 65

storing data

parseInt() and parseFloat(): converts
text to a number
Despite the addition/concatenation problem, there are legitimate
situations where you need to perform a mathematical operation
on a number that you’ve got stored as a string. In these cases, you
need to convert the string to a number before performing any
numeric operations on it. JavaScript provides two handy functions
for carrying out this type of conversion:

parseInt() parseFloat()

Give this function a string and it

converts the string to an integer
Give this function a string and it converts the string to a floating point (decimal) number

Each of these built-in functions accepts a string and returns
a number after carrying out the conversion:

parseInt("1") + parseInt("2") = 3

The string “2” is converted to the number 2.

1 2
parseInt() turns “1” into 1. This time the result

is the mathematical
addition of 1 and 2.

 Don’t worry if
this function
stuff is still a
little confusing.

You’ll get the formal lowdown on
functions a little later—for now
all you really need to know is that
functions allow you pass them
information and then give you back
something in return.

Keep in mind that the parseInt() and parseFloat()
functions aren’t guaranteed to always work. They’re
only as good as the information you provide them. They’ll
do their best at converting strings to numbers, but the idea
is that you should be providing them with strings that only
contain numeric characters.

parseFloat("$31.50") = NaN

This code is a problem
because the $ character
confuses the function.

Surprise, surprise, the result is Not a Number.

Download at WoweBook.Com

66 Chapter 2

Why are extra donuts being ordered?
Take a closer look at the just-in-time donut order form. We
should be able to figure out why so many donuts are being
accidentally ordered...

$31.50 / $0.50 = 63 donuts

More donuts are being charged for than are actually being ordered...but how many more?

The order subtotal.

The price per donut.
The total number of donuts actually ordered... hmmm.

This looks a whole lot like the numeric string addition problem, especially
when you consider that form data is always stored as strings regardless of
what it is. Even though numbers are entered into the form fields, from a
JavaScript perspective, they’re really just text. So we just need to convert
the strings to actual numbers to prevent a numeric addition from being
misinterpreted as a string concatenation.

when things don’t add up

We can divide the subtotal by the price for each
donut...and the answer is how many donuts are
getting ordered.

Remember “1” + “2” = “12”? Looks
kind of like that, doesn’t it?

Download at WoweBook.Com

you are here 4 67

storing data

Using the pieces of code below to grab the contents of the donut
quantity form fields, write the missing lines of code in Duncan’s
updateOrder() function so that the donut quantities are
converted from strings to numbers.

function updateOrder() {
 const TAXRATE = 0.0925;
 const DONUTPRICE = 0.50;
 var numCakeDonuts =

 var numGlazedDonuts =

 if (isNaN(numCakeDonuts))
 numCakeDonuts = 0;
 if (isNaN(numGlazedDonuts))
 numGlazedDonuts = 0;
 var subTotal = (numCakeDonuts + numGlazedDonuts) * DONUTPRICE;
 var tax = subTotal * TAXRATE;
 var total = subTotal + tax;
 document.getElementById("subtotal").value = "$" + subTotal.toFixed(2);
 document.getElementById("tax").value = "$" + tax.toFixed(2);
 document.getElementById("total").value = "$" + total.toFixed(2);
}

document.getElementById("cakedonuts").value

document.getElementById("glazeddonuts").value

This code gets the number of
cake donuts entered by the
user in the donut form.

This code grabs the number of glazed donuts entered into the donut form.

Download at WoweBook.Com

68 Chapter 2

Using the pieces of code below to grab the contents of the donut
quantity form fields, write the missing lines of code in Duncan’s
updateOrder() function so that the donut quantities are
converted from strings to numbers.

function updateOrder() {
 const TAXRATE = 0.0925;
 const DONUTPRICE = 0.50;
 var numCakeDonuts =

 var numGlazedDonuts =

 if (isNaN(numCakeDonuts))
 numCakeDonuts = 0;
 if (isNaN(numGlazedDonuts))
 numGlazedDonuts = 0;
 var subTotal = (numCakeDonuts + numGlazedDonuts) * DONUTPRICE;
 var tax = subTotal * TAXRATE;
 var total = subTotal + tax;
 document.getElementById("subtotal").value = "$" + subTotal.toFixed(2);
 document.getElementById("tax").value = "$" + tax.toFixed(2);
 document.getElementById("total").value = "$" + total.toFixed(2);
}

document.getElementById("glazeddonuts").value

parseInt(document.getElementById(“cakedonuts”).value);

parseInt(document.getElementById(“glazeddonuts”).value);

Since both numbers are
integers, parseInt() is
used for the conversion.

The toFixed() function rounds the
dollar values to two decimal places.

document.getElementById("cakedonuts").value

sharpen solution

Download at WoweBook.Com

you are here 4 69

storing data

Although not a strict JavaScript requirement, it’s a
good coding convention to name constants in ALL
UPPERCASE and variables in lowerCamelCase.

Always initialize constants when you create them, and
initialize variables whenever possible.

When a variable isn’t initialized, it remains undefined
until a value is eventually assigned to it.

NaN stands for Not a Number, and is used to
indicate that a piece of data is not a number when the
expectation is that it should be.

String concatenation is very different from mathematical
addition, even though both use the familiar plus sign (+).

The built‑in parseInt() and parseFloat()
functions are used to convert strings to numbers.

You figured out the problem...
Duncan is thrilled with the JavaScript code fixes you made. He’s finally
receiving orders that are accurate.... and business is booming.

Great, you got the online
order system working

perfectly!.

Of course, it’s risky to assume that a few quick fixes here and there
will solve your problems for all eternity. In fact, sometimes the peskiest
problems are exposed by unexpected outside forces...

6 cake
3 glazed
Pick up in 20 minutes for Greg

Download at WoweBook.Com

70 Chapter 2

Duncan discovers donut espionage
Duncan’s got a new problem: a weasel competitor named Frankie.
Frankie runs the hotdog business across the street from Duncan, and is
now offering a Breakfast Hound. Problem is, Frankie’s playing dirty and
submitting bogus donut orders with no names. So now we have orders
with no customers—and that’s not good.

I’m not worried about my
competitors, I just need to
make the donut code smarter
about how it accepts data.

18 cake
30 glazed
Pick up in 15 minutes for ?

Even though no
name has been
entered, the order
is still accepted.

Duncan is wasting precious time, energy, and donuts filling bogus orders...
and he needs you to make sure all the form data has been entered before
allowing an order to go through.

the d’oh thickens

Download at WoweBook.Com

you are here 4 71

storing data

Use getElementById() to grab form data
In order to check the validity of form data, you need a way to grab the
data from your Web page. The key to to accessing a web page element
with JavaScript is the id attribute of the HTML tag:

document.getElementById("cakedonuts")

document.getElementById()

Give this method the ID of an

element on a web page and it gives

you back the element itself, which

can then be used to access web data

<input type="text" id="cakedonuts" name="cakedonuts" />

JavaScript allows you to retrieve a web page element with its ID using a
function called getElementById(). This function doesn’t grab an
element’s data directly, but instead provides you with the HTML field
itself, as a JavaScript object. You then access the data through the field’s
value property.

The id attribute is what you use to access the form field in JavaScript code.

document.getElementById("cakedonuts").value

With this code in hand, you’re now ready to check Duncan’s form data to
make sure the fields aren’t empty before accepting an order.

 Don’t sweat objects, properties,
and methods right now.

JavaScript supports an advanced data
type called an object that allows you to

do some really cool things. In fact, the JavaScript language
itself is really just a bunch of objects. We’ll talk a lot more
about objects later in the book—for now, just know that a
method is a lot like a function, and a property is a lot like a
variable.

The cake donut quantity
HTML input element.

The ID is the
key to accessing
an element.

The value property gives
you access to the data.

The getElementById()
method belongs to
the document object.

Technically, getElementById() is a method on the document object, and not a function.

Download at WoweBook.Com

72 Chapter 2

Validate the web form’s data
You need to check to make sure a name is entered into the donut form.
Not entering the number of minutes until pick-up could also be a problem,
since the whole point is to provide hot donuts just in time. So, best case,
you want to ensure both pieces of data are filled-in and valid.

Checking for empty data in a form field is a matter of checking to see if
the form field value is an empty string ("").

document.getElementById("name").value

"" If the value
is an empty
string, we have
a problem.

Empty
form field.

If the name field value is an empty string, then you know the order needs
to be halted and the user should get asked to enter their name. The same
thing goes for the minutes field, except it’s also helpful to go a step further
and look to see if the data in that field is a number. The built-in isNaN()
function is what makes this check possible—you pass it a value and it tells
you whether the value is not a number (true) or if it is a number (false).

18 cake
30 glazed
Pick up in NaN minutes for ?

Donut order.

isNaN(document.getElementById("pickupminutes").value);

true
If the value is true, the data is not a number, so the order can’t be processed.

Bad form data—it’s
not actually a number.

isNaN() checks
to see if a value
is not a number.

An empty string is
a clue that a form
field has no data.

did you fill everything out?

Download at WoweBook.Com

you are here 4 73

storing data

JavaScript Magnets
The placeOrder() function is where the name and pick-up minutes
data validation takes place. Use the magnets to finish writing the code
that checks for the existence of name and pick-up minutes data, along
with making sure that the pick-up minutes entered is a number. You’ll
need to use each magnet, and some magnets more than once.

function placeOrder() {

 if (

 ==)

 alert("I'm sorry but you mus
t provide your name before submi

tting an order.");

 else if (

 == ||

)

 alert("I'm sorry but you mus
t provide the number of minutes

until pick‑up" +

 " before submitting an ord
er.");

 else
 // Submit the order to the s

erver

 form.submit();

}

“if” is used to test for a condition and then take
action accordingly—if this, then do something.

This means one of two
conditions can result in the
action—if this OR that,
then do something.

This is an equality
test—is one thing equal
to another thing?

"name" .

getElementById

""

"pickupminutes"

isNaN

document

value

)

(

Download at WoweBook.Com

74 Chapter 2

function placeOrder() {

 if (

 ==)

 alert("I'm sorry but you mus
t provide your name before submi

tting an order.");

 else if (

 == ||

)

 alert("I'm sorry but you mus
t provide the number of minutes

until pick‑up" +

 " before submitting an ord
er.");

 else
 // Submit the order to the s

erver

 form.submit();

}

JavaScript Magnets Solution
The placeOrder() function is where the name and pick-up
minutes data validation takes place. Use the magnets to finish writing
the code that checks for the existence of name and pick-up minutes
data, along with making sure that the pick-up minutes entered is a
number. All of the magnets are used, and some are used several times.

document . getElementById ("name") ""

. getElementById ("pickupminutes"
""

isNaN (
getElementById ("pickupminutes")

This says, if the name value is empty, then pop up an alert...else do something
different.

Here, we’re saying if the
value is empty, OR if the
value is not a number.

This checks the value
of the name field to
see if it’s equals to “”.

document

document .

.)
value

. value

. value

JavaScript magnets solution

)

Download at WoweBook.Com

you are here 4 75

storing data

You saved Duncan’s Donuts... again!
The new and improved just-in-time donut form with data validation has
put an end to Frankie’s pastry espionage, and also made the page more
robust for real customers. Using JavaScript to protect the integrity of data
entered by the user is a win-win, especially in the cutthroat breakfast biz!

Non-numeric data
is no longer a
problem in the pick-
up minutes field.

Leaving the
name field blank
now results in a
warning instead
of allowing the
order to go
through.

Download at WoweBook.Com

76 Chapter 2

Q: How does the plus sign (+) know to
add or concatenate?

A: Like many things in JavaScript,
functionality is determined by context. This
means the plus sign takes a look at the two
things being “added” and decides whether to
numerically add them or concatenate them
as text based upon their data types. You
already know that “adding” two words means
sticking them end‑to‑end. But problems can
occur when you mistakenly assume that
you’re working with one type of data when
it’s actually another. That’s another reason
why it’s always a good idea to check to
make sure you provide numeric data when
you intend numeric addition, and text for text.

Q: What happens when you attempt to
add a string to a number?

A: Since number‑to‑string conversion
is automatic in JavaScript, mixing the two
data types in an addition always results in
a string concatenation. So, the number first
gets converted to a string, and then the two
strings get concatenated. If you intended to
add the two numbers, you need to explicitly
convert the string to a number using
parseInt() or parseFloat().

Q: What happens if you use
parseInt() to convert a string
containing a decimal number?

A: Don’t worry, nothing catches on fire.
All that happens is that JavaScript assumes
you don’t care about the fractional part of the
number, so it returns only the integer portion
of the number.

Q: How does the id HTML attribute
tie web elements to JavaScript code?

A: Think of the id attribute as the portal
through which JavaScript code accesses
HTML content. When people say JavaScript
code runs on a web page, they don’t literally
mean the web page itself—they mean the
browser. In reality, JavaScript code is fairly
insulated from HTML code, and can only
access it through very specific mechanisms.
One of these mechanisms involves the id
attribute, which lets JavaScript retrieve an
HTML element. Tagging a web element
with an ID allows the element to be found
by JavaScript code, opening up all kinds of
scripting possibilities.

Q: That’s pretty vague. How
specifically does JavaScript code access
an HTML element?

A: The getElementById()
method of the document object is
the key to accessing an HTML element
from JavaScript, and this method uses
the id attribute of the element to find it
on the page. HTML IDs are like JavaScript
identifiers in that they should be unique
within a given page. Otherwise, the
getElementById() method would
have a tough time knowing what web
element to return.

Q: I know you said we’ll talk more
about them in Chapter 9, but objects have
already come up a few times. What are
they?

A: We’re jumping ahead a little here, so
don’t tell anyone. Objects are an advanced
JavaScript data type that can combine
functions, constants, and variables into one
logical entity. A method is just a function
that is part of an object, while a property
is a variable or constant in an object. On
a practical level, JavaScript uses objects
to represent just about everything—the
browser window is an object, as is the
web page document. That’s why the
getElementById() method must be
called through the document object—it’s
a part of the object, which represents the
entire web page. OK, back to Chapter 2...

Q: I still don’t understand the
difference between a web page element
and its value. What gives?

A: Web page elements are exposed to
JavaScript as objects, which means they
have properties and methods you can use to
manipulate them. One of these properties is
value, which holds the value stored in the
element. As an example, the value of a form
field is the data entered into the field.

Q: Why is it necessary to know if a
value is not a number? Wouldn’t it make
more sense to see if it is a number?

A: Good question. What it boils down to is
why you care about a value being a number
or not. In most cases the assumption is
that you’re dealing with a number, so it
makes sense to check for the exception (the
unexpected). By checking for NaN, you’re
able to make number‑handling script code
more robust, and hopefully alleviate a weird
computation involving a non‑number.

ask them... you know you want to

Download at WoweBook.Com

you are here 4 77

storing data

Strive for intuitive user input
Now that Duncan is no longer putting out fires, he really wants to improve
the user experience of the just-in-time donut form. Just as the “hot donuts”
sign is intuitive to people passing by his storefront, he wants the online
form to be similarly intuitive. Duncan knows that donuts are typically
ordered and served in dozens. Very few people order 12 or 24 donuts—
they order 1 or 2 dozen donuts. He thinks the donut form should allow
users to enter data in the most natural way possible.

Problem is, the current script doesn’t take into account the user entering
the word “dozen” when specifying the quantity of donuts.

Is it possible for the donut script to allow users to enter either a number or a number and the
word “dozen” for ordering by the dozen? How?

The script doesn’t complain when the user enters the word “dozen”
alongside a number... the parseInt() function ignores any text present
after a number in a string. So, the word “dozen” is just discarded, and all
that’s kept is the number.

“3 dozen” donuts gets converted into the number 3 thanks to the parseInt() function.

parseInt("3 dozen")

3

This is a number,
not a string.

Download at WoweBook.Com

78 Chapter 2

Is it possible to search the user
input text for the word “dozen”?

If the user wants a “dozen,” multiply by 12!
The order-by-the-dozen option can be added to the donut
script by checking the user input for the word “dozen”
before calculating the subtotal. If the word “dozen”
appears, just multiply the number by 12. Otherwise, use
the number as-is since it refers to individual donuts.

parseInt("18")
parseInt("3 dozen")

18 3 * 12 = 36

The number entered
is the exact number
of donuts ordered.

The number entered is multiplied by 12 since the word “dozen” appears in the input data.

cheaper by the dozen…or not

Download at WoweBook.Com

you are here 4 79

storing data

Ready Bake
JavaScript

The custom parseDonuts() function is responsible for processing donut
quantity input data. It first converts the data to a number, and then checks for
the appearance of the word “dozen” in the input data. If “dozen” appears,
the number of donuts is multiplied by 12. Get this recipe at http://www.
headfirstlabs.com/books/hfjs/.

function parseDonuts(donutString) {
 numDonuts = parseInt(donutString);
 if (donutString.indexOf("dozen") != ‑1)
 numDonuts *= 12;
 return numDonuts;
}

function updateOrder() {
 const TAXRATE = 0.0925;
 const DONUTPRICE = 0.50;
 var numCakeDonuts = parseDonuts(document.getElementById("cakedonuts").value); var numGlazedDonuts = parseDonuts(document.getElementById("glazeddonuts").value); if (isNaN(numCakeDonuts))
 numCakeDonuts = 0;
 if (isNaN(numGlazedDonuts))
 numGlazedDonuts = 0;
 var subTotal = (numCakeDonuts + numGlazedDonuts) * DONUTPRICE; var tax = subTotal * TAXRATE;
 var total = subTotal + tax;
 document.getElementById("subtotal").value = "$" + subTotal.toFixed(2); document.getElementById("tax").value = "$" + tax.toFixed(2); document.getElementById("total").value = "$" + total.toFixed(2); }

Check to see if the word “dozen” appears in the input data.

Parsing dozens of donuts
The parseDonuts() function is called in the updateOrder()
function, which is when the subtotal and total are calculated from the
user-entered data.

Multiply the number
of donuts by 12.

Initialize the two
constants. Get the number of donuts

from the form field.

If the number of donuts entered is not a number, set them to 0.

Show the dollar amounts
on the page.

Calculate the subtotal, tax, and total.

Round the dollar amounts to two decimal places (cents).

Download at WoweBook.Com

80 Chapter 2

Just-in-time donuts a smashing success!
Life is good now that Duncan and his just-in-time hot donut idea has
been fully realized in a JavaScript-powered page that carefully validates
orders entered by the user.

Now donut lovers can
order their piping hot
donuts online and just
in time.

Hot Donuts

Just in time!

slam dunc donuts

Download at WoweBook.Com

you are here 4 81

storing data

JavaScriptcross
Data isn’t always stored in JavaScript code. Sometimes
it gets stored in the rows and columns of a crossword
puzzle, where it waits patiently for you to uncover it.

Untitled Puzzle
Header Info 1

Header Info 2

etc...

1

2 3

4

5

6

7

8

9

10

11

12

13

Across
4. When you set the value of a piece of data upon creating it,
you it.
6. The unique name used to reference a piece of data.
7. The JavaScript keyword used to create a variable.
9. 3.14, 11, and 5280 are all this data type.
10. A coding convention that involves naming identifiers with
mixed case, as in ThisIsMyName.
11. It's not a num-bah.
12. A piece of information whose value can change.
13. An piece of data with an on/off value would be stored as this
data type.

Down
1. A piece of data whose value cannot change.
2. The data type used to store characters, words, and phrases.
3. When a value isn't set for a variable or constant, the data is
considered
5. The built-in JavaScript function used to convert a string to an
integer.
8. The process of checking to make sure user-entered data is
accurate is called
10. The JavaScript keyword used to create a constant.

Untitled Puzzle
Header Info 1

Header Info 2

etc...

1

2 3

4

5

6

7

8

9

10

11

12

13

Across
4. When you set the value of a piece of data upon creating it,
you it.
6. The unique name used to reference a piece of data.
7. The JavaScript keyword used to create a variable.
9. 3.14, 11, and 5280 are all this data type.
10. A coding convention that involves naming identifiers with
mixed case, as in ThisIsMyName.
11. It's not a num-bah.
12. A piece of information whose value can change.
13. An piece of data with an on/off value would be stored as this
data type.

Down
1. A piece of data whose value cannot change.
2. The data type used to store characters, words, and phrases.
3. When a value isn't set for a variable or constant, the data is
considered
5. The built-in JavaScript function used to convert a string to an
integer.
8. The process of checking to make sure user-entered data is
accurate is called
10. The JavaScript keyword used to create a constant.

Untitled Puzzle
Header Info 1

Header Info 2

etc...

1

2 3

4

5

6

7

8

9

10

11

12

13

Across
4. When you set the value of a piece of data upon creating it,
you it.
6. The unique name used to reference a piece of data.
7. The JavaScript keyword used to create a variable.
9. 3.14, 11, and 5280 are all this data type.
10. A coding convention that involves naming identifiers with
mixed case, as in ThisIsMyName.
11. It's not a num-bah.
12. A piece of information whose value can change.
13. An piece of data with an on/off value would be stored as this
data type.

Down
1. A piece of data whose value cannot change.
2. The data type used to store characters, words, and phrases.
3. When a value isn't set for a variable or constant, the data is
considered
5. The built-in JavaScript function used to convert a string to an
integer.
8. The process of checking to make sure user-entered data is
accurate is called
10. The JavaScript keyword used to create a constant.

Download at WoweBook.Com

82 Chapter 2

JavaScriptcross Solution

Untitled Puzzle
Header Info 1

Header Info 2

etc...

1

2 3

4

5

6

7

8

9

10

11

12

13

Across
4. When you set the value of a piece of data upon creating it,
you it.
6. The unique name used to reference a piece of data.
7. The JavaScript keyword used to create a variable.
9. 3.14, 11, and 5280 are all this data type.
10. A coding convention that involves naming identifiers with
mixed case, as in ThisIsMyName.
11. It's not a num-bah.
12. A piece of information whose value can change.
13. An piece of data with an on/off value would be stored as this
data type.

Down
1. A piece of data whose value cannot change.
2. The data type used to store characters, words, and phrases.
3. When a value isn't set for a variable or constant, the data is
considered
5. The built-in JavaScript function used to convert a string to an
integer.
8. The process of checking to make sure user-entered data is
accurate is called
10. The JavaScript keyword used to create a constant.

Untitled Puzzle
Header Info 1

Header Info 2

etc...

C
1

O T
2

U
3

I
4

N I T I A L I Z E N

S X D P
5

T I
6

D E N T I F I E R A

V
7

A R F R

N V
8

I S

T A N
9

U M B E R

C
10

A M E L C A S E I

O I D N

N
11

A N D T

S A

T T

V
12

A R I A B L E

O

B
13

O O L E A N

Across
4. When you set the value of a piece of data upon creating it,
you it. [INITIALIZE]
6. The unique name used to reference a piece of data.
[IDENTIFIER]
7. The JavaScript keyword used to create a variable. [VAR]
9. 3.14, 11, and 5280 are all this data type. [NUMBER]
10. A coding convention that involves naming identifiers with
mixed case, as in ThisIsMyName. [CAMELCASE]
11. It's not a num-bah. [NAN]
12. A piece of information whose value can change. [VARIABLE]
13. An piece of data with an on/off value would be stored as this
data type. [BOOLEAN]

Down
1. A piece of data whose value cannot change. [CONSTANT]
2. The data type used to store characters, words, and phrases.
[TEXT]
3. When a value isn't set for a variable or constant, the data is
considered [UNDEFINED]
5. The built-in JavaScript function used to convert a string to an
integer. [PARSEINT]
8. The process of checking to make sure user-entered data is
accurate is called [VALIDATION]
10. The JavaScript keyword used to create a constant. [CONST]

JavaScriptcross solution

Download at WoweBook.Com

you are here 4 83

storing data

 User input is the kind of data that
 you shouldn’t trust. It’s just not safe
 to assume that users will enter data and
 check to make sure it is OK. A more secure
 storage solution involves using JavaScript.

What do we all want for our script data?

There are lots of things
I want for my script
data, but one thing in
particular comes to mind.

Yum.

Page Bender

It’s a meeting of the minds!

Fold the page vertically
to line up the two brains
and solve the riddle.

Download at WoweBook.Com

Download at WoweBook.Com

this is a new chapter 85

Look at this guy, he’s the dream
client, I tell ya. He’s made of money
but he can’t put it to work without a
couple of thinkin’ guys like us...

exploring the client3

Browser Spelunking

Sometimes JavaScript needs to know what’s going on in the
world around it. Your scripts may begin as code in web pages, but they ultimately

live in a world created by the browser, or client. Smart scripts often need to know more

about the world they live in, in which case they can communicate with the browser to

find out more about it. Whether it’s finding out the screen size or accessing the browser’s

snooze button, scripts have an awful lot to gain by cultivating their browser relationships.

Sometimes JavaScript needs to know what’s going on in the
world around it. Your scripts may begin as code in web pages, but they ultimately

live in a world created by the browser, or client. Smart scripts often need to know more

about the world they live in, in which case they can communicate with the browser to

find out more about it. Whether it’s finding out the screen size or accessing the browser’s

snooze button, scripts have an awful lot to gain by cultivating their browser relationships.

Download at WoweBook.Com

86 Chapter 3

Clients, servers, and JavaScript
When you click a hyperlink or type a URL into your web browser, the
browser requests the page from a web server, which then delivers the page
back to the browser, or web client. JavaScript doesn’t enter the picture
until just before the browser displays the page. The JavaScript code in the
page then works in concert with the web browser to respond to user
interactions and modify the page as needed. The part of the web
browser that runs JavaScript code is called the JavaScript interpreter.

Once a page has been delivered to the browser, the server
is largely out of the equation. Virtually everything that
JavaScript does from there on out is confined to the browser.
This makes pages more responsive since they don’t
have to wait for the server to process and return data. This
process is why JavaScript is known as a client language.

Client

JavaScript code
runs entirely on the
client, asking nothing
of the server.

1 The browser requests the
page from the server.

3 The browser displays
the page.

4 JavaScript validates
form fields as the user
enters data on the page.

5 The order is...

JavaScript, client, server love triangle

Download at WoweBook.Com

you are here 4 87

exploring the client

<html>
 <head>
 <title>Duncan's Just‑In‑Time Donuts</title>
 <link rel="stylesheet" type="text/css" href="donuts.css" />

 <script type="text/javascript"> function updateOrder() { ...
 }

 function parseDonuts(donutString) { ...
 }

 function placeOrder() { ...
 }
 </script>
 </head>

 <body>
 <div id="frame"> <div class="heading">Duncan's Just‑In‑Time Donuts</div>
 <div class="subheading">All donuts 50 cents each, cake or glazed!</div>
 <div id="left">
 </div>
 <div id="right"> ...
 </div>
 </div>
 </body>
</html>

Serve page
HTML tells what’s
on the page.

CSS makes the page pretty.

JavaScript makes the
page interactive, in this
case validating data
entered by the user.

Are there other tasks that make more sense to carry out on the client instead of the server?

GET / HTTP/1.1
Host: www.duncansdonu

ts.com

Connection: close

Accept‑Encoding: gzip

Accept: image/gif, im
age/x‑xbitmap, image/

jpeg, image/pjpeg, ..
.

Accept‑Language: en‑u
s

User‑Agent: Mozilla/5
.0 (Macintosh; U; Int

el Mac OS X; en‑US; r
v:1.8.1.7) ...

Request page

2 The server responds
with the page.

5 ... to the server.

Server

5 ... submitted...

Download at WoweBook.Com

88 Chapter 3

What can a browser do for you?
Your client web browser is responsible for running JavaScript code,
which allows scripts access to the client environment. For example, a script
can get the width and height of the browser window, as well as a history
of visited web pages. Other interesting browser features that are open to
JavaScript include a timing mechanism that works sort of like an alarm
clock, and access to cookies, which allow you to store data that hangs
around even after you leave a page or close the browser.

Timers
Timers allow you
to trigger a piece of

JavaScript code after

a specified amount of

time has elapsed.

Cookies
Cookies are like variables that
get stored on the user’s hard
drive by the browser so that
they last beyond a single web
session. In other words, you
can leave a page and come
back, and the data’s still there.

Browser metrics
Browser metrics include
various measurements
associated with the size of
the browser window, the
viewable web page, and even
information about the browser
vendor and version number.

Browser history

The browser history is the list

of recent pages visited. You

can use JavaScript to access

this list of pages and direct

the browser to one of them,

effectively creating your own

browser navigation controls.

These features are not all the client has to offer your scripts, but they
should give you the idea that there’s more to JavaScript than what exists
within the page. In fact, there are plenty of situations where it’s helpful to
look beyond the page and get a little help from the browser.

ask not what you can do for your browser...

Download at WoweBook.Com

you are here 4 89

exploring the client

The iRock is too happy
Remember the iRock? Your JavaScript was such a success that it got
bought out by Alan, a young entrepreneur. But he’s called you back in,
because there are some problems... Users are unnerved by the iRock’s
persistent state of happiness. Sure, we all want our pets to be
happy, but the iRock seems to have a severely limited emotional range.

Q: So JavaScript is part of the
client?

A: Yes. Web browsers that support
JavaScript come with a JavaScript
interpreter that’s responsible for reading
JavaScript code from a page and then
running that code.

Q: If JavaScript code runs on the
client, how does it relate to the server?

A: JavaScript code doesn’t typically
have a direct association with a web
server since it runs solely on the client.
JavaScript is commonly used to intercept
web data as it is relayed from server to
browser. However, it’s possible to write
scripts that request information from the
server and then process and display that
information on the page. That scripting
technique is called Ajax, and we talk about
how to use it in Chapter 12.

Q: Does JavaScript allow you to
control the client?

A: Yes and no. Although web browsers
allow JavaScript to access certain parts
of the client environment, they don’t allow
JavaScript unlimited freedom for security
reasons. For example, most browsers
don’t allow scripts to open or close
windows without the user’s approval.

I’m digging the idea of a pet that’s
permanently happy but users want
a tad more realism. So I guess you’ll
need to revisit that code...

The problem with the iRock has to do with user expectations. The idea
behind a virtual pet is that it should be as much like a real pet as possible.
Your challenge is to figure out how to improve the behavior of the
iRock to make it more realistic. And it seems as if the client web browser
may hold some of the solutions to the iRock problem...

Once clicked...
I’ll smile forever!

Alan, the new iRock owner.

He’s got deep poc
kets,

and money to spend...

possibly on you!

Download at WoweBook.Com

90 Chapter 3

The iRock needs to be more responsive
Let’s consider some possible behaviors for the iRock, with the goal of
trying to make the rock more realistic and engaging to the user, not
to mention more interactive. Ideally, the iRock should become more
responsive to the user as it increases its range of emotional behavior.

Which of these behaviors makes sense for the iRock to have? How would you
use JavaScript to implement these behaviors in the iRock script?

Rock rage
The iRock randomly

gets mad for no reason

whatsoever, which makes

the owner have to calm

the rock down.

Depressed
The iRock cries every time you close the page, requiring the user to leave the browser open to keep the rock from having a breakdown.

Lonely
The iRock reverts back
to being lonely when left
alone, requiring the user
to click it periodically to
give it attention.

iRock emotions

Download the latest code for iRock 2.0 at
http://www.headfirstlabs.com/books/hfjs.

Download at WoweBook.Com

you are here 4 91

exploring the client

I like the idea of a rock that gets
lonely after a while, because that’s what
pets do in the real world. Can we change
the iRock’s behavior over time?

JavaScript lets you know when the user is
doing something... and when they’re not.
The idea of a rock that gets lonely is interesting because it
prods the user to interact with the rock without guilt overload,
and it rewards the user with a positive response from
the iRock. The challenge is to somehow use JavaScript to
change the emotional state of the iRock over time. The idea
is to wait for a certain amount of time, and then change the
iRock’s state if the user hasn’t clicked it and the time elapses.

Rock is lonely.Rock is happy.

User doesn’t touch the
rock for a period of time.

00:00
00:05

...5 seconds later.

Start the timer...

5 seconds,
for example.

Tick Tock

Download at WoweBook.Com

92 Chapter 3

Timers connect action to elapsed time
JavaScript allows you to set timers. A JavaScript timer works like an
alarm clock: you tell it how long to wait, and when that amount of time
expires, a certain piece of code will run. Unlike an alarm clock, however,
JavaScript timers are triggered when a certain amount of time
has passed, as opposed to triggering at a certain time. This isn’t a
problem, it just means you need to think in terms of time delays instead
of exact times of day.

The cool thing about JavaScript timers is that they allow you to run any
code you want when they expire. Some web pages with regularly changing
data use timers to refresh themselves after a certain delay, while others use
timers to detect when the user hasn’t interacted with the page in a while.

alert("Wake up!");

Now Later

Delay

This code gets called
when the timer expires.

The delay controls the
duration of the timer.

The timer expires
when the delay elapses.

The timer starts as
soon as you set it.

Timers let you run
JavaScript code after
a certain amount of
time has elapsed.

time is on my side, yes it is

Download at WoweBook.Com

you are here 4 93

exploring the client

Match the following amounts of time in milliseconds with their equivalents.

500ms

300,000ms

5,000ms

5 minutes

5 seconds

1/2 second

alert("wake up!")
;

Breaking down a timer
The two key pieces to setting a timer in JavaScript are 1) establishing
the time delay and 2) letting the timer know what code to run
when the delay elapses. The timer starts ticking down from the
moment you set it.

The time delay is expressed in milliseconds,

which is 1,000th of a second. Multiply the

number of seconds you want by 1,000 to figure

out the number of milliseconds. For example, 2

seconds is 2,000 milliseconds.

The code that is run when the timer expires can be
any JavaScript code you want, including a single

statement, multiple statements (each with a
terminating semicolon), or a call to either a
built-in or custom function.

When normal JavaScript timers expire and the timer code is run, the timer
is over, kaput. This type of timer is known as a one-shot timer because
it triggers a piece of code exactly one time. It is also possible to create
an interval timer, which sets multiple intervals instead of a single delay.
An interval timer continues to call the timer code repeatedly after each
interval until you tell it to stop. Although interval timers certainly have
their place, the iRock’s loneliness timer is definitely a one-shot timer.

refresh(); setTimeout(refresh, 120000);

The timer expires,
I get lonely, end
of story.

Display a message.

Refresh the web page. Set another timer.

Download at WoweBook.Com

94 Chapter 3

Match the following amounts of time in milliseconds with their equivalents in seconds

Set a timer with setTimeout()
The built-in JavaScript function that makes (one-shot) timers possible
is setTimeout(). The two pieces of information you’ll need for the
function are the timer delay and the code to run when the timer
expires (available at http://www.headfirstlabs.com/books/hfsd/), but not
necessarily in that order. Here’s an example:

500ms

300,000ms

5,000ms

5 minutes

5 seconds

1/2 second

setTimeout("alert('Wake up!');", 600000);

When the timer expires,
an alert box is displayed.

The timer delay is 600,000 milliseconds, which is 600 seconds, which is 10 minutes.
The setTimeout() function
sets a one-shot timer.

The JavaScript code is
provided to setTimeout() as
a string of text, which is
why it must be inside quotes.

This call to the setTimeout() function creates a timer
that waits 10 minutes and then displays an alert box.

600,000
milliseconds!

10 minute delay

time is limited act now

Don’t ever put commas in a JavaScript number, even if it’s a really big one.

Download at WoweBook.Com

you are here 4 95

exploring the client

Write the code to change the iRock image from happy to lonely
after 5 minutes. Hint: The iRock image element’s ID is rockImg,
and the name of the lonely image file is rock.png.*

 The timer
delay must be
specified in
milliseconds.

A millisecond is
a fraction of a second, so if
you forget to use milliseconds,
you’ll end up with some
ridiculously short (fast) timers.

();setTimeout Timer code+ +Timer delay+ +, +

Here’s the general form that the setTimeout()
function takes:

Setting an interval timer is similar to setting a one-shot timer,
except you call the setInterval() function instead of
setTimeout(). The end result of setting an interval timer is
code that gets run over and over as each interval delay expires:

The delay, in
milliseconds.

Enclose the two
function arguments.

Separate the two
function arguments. Terminate the

statement.
The code to be run
when the timer expires.

An interval timer
results in the
timer code getting
run repeatedly at
regular intervals.

10 minutes.

10 minutes.
10 minutes.

10 minutes.

var timerID = setInterval("alert('Wake up!');", 600000);

Store away the
timer ID.

Set a recurring timer.
The minutes in
milliseconds.

A closer look: the setTimeout() function

Try this code out
in your version of
irock.html to see
if it works before
turning the page.

* Download this file from http://www.headfirstlabs.com/books/hfjs/

Download at WoweBook.Com

96 Chapter 3

Now the iRock gets lonely!
Be sure you made the changes in your irock.html that are detailed
above, and give the iRock a spin. The iRock now exhibits loneliness when
left alone (not clicked by the user) for five minutes. Granted, this time
delay may make the rock seem a bit needy but the idea is to keep the user
engaged. Besides, a pet in need is a pet indeed! Or something like that...

Geek BitsGeek Bits

You can speed up the iRock’s emotional
changes by using a smaller timer delay
when calling the setTimeout()
function. This is a great way to test the
script without having to wait around.

Write the code to change the iRock image from happy to lonely
after 5 minutes. Hint: The iRock image element’s ID is rockImg,
and the name of the lonely image file is rock.png.

setTimeout(“document.getElementById(‘rockImg’).src = ‘rock.png’;”,
 5 * 60 * 1000);

The five-minute delay is
calculated in milliseconds by first converting to minutes (x60) and then to milliseconds (x1000).

The iRock image is changed
by setting a new image
file to the src attribute
of the image element.

The lonely
rock image.The image

element ID.

Quotes and apostrophes
are alternated to nest the
functions properly.

Happiness is now fleeting
for the iRock, which is
much more realistic.

A timer literally counts down the amount of “happy time” remaining for the iRock.

Tick
Tock

sharpen solution

Download at WoweBook.Com

you are here 4 97

exploring the client

Q: If the idea is for the iRock to always
return to the lonely state after 5 minutes,
why isn’t an interval timer used?

A: The answer has to do with how the one‑
shot timer is used. Even though the rock is
capable of periodically getting lonely, it only
gets lonely following a period of happiness.
A timer gets set at the initial click, the rock
becomes lonely when the timer expires 5
minutes later, and then stays lonely until it
is clicked again. That doesn’t sound like the
role of an interval timer. It’s different than
how an interval timer works—an interval
timer would trigger every five minutes, no
matter what the user does.

Q: What happens if the user closes
the browser before a timer expires?

A: Nothing. The JavaScript interpreter is
shut down when the browser closes, and all
JavaScript code is stopped, including any
outstanding timers.

Q: How can I create a timer that
triggers code at a certain time of day?

A: Since timers are based upon delays,
not specific times, you have to convert the
time of day into a delay. This can be done by
subtracting the current time from the desired
trigger time. This calculation requires some
help from the JavaScript Date object,
which you’ll learn more about in Chapter 9.

Q: I have a page with data that
changes, so I’d like to refresh it every 15
minutes. How do I do it?

A: Use the setInterval()
function to set an interval timer for 15
minutes, which is 900,000 milliseconds (15
x 60 x 1000). You need the timer code to
refresh the page, which is accomplished
by calling the reload() method of the
location object, like this:
location.reload();
The timer now triggers the page refresh
every 15 minutes. Of course, you could also
use Ajax (Chapter 12) to dynamically load
the data instead of refreshing the page.

Q: I understand that an interval timer
continues over and over. How do I make
an interval timer stop?

A: A function called
clearInterval() is used to
clear an interval timer that has been
set with setInterval(). The
clearInterval() function requires
you to pass it the ID of the interval timer
to be cleared, which is returned by the
setInterval() function when you
create the timer. Yes, functions are capable
of returning information. After storing away
the return value of setInterval(),
in timerID for example, just
pass it to clearInterval()
to kill the timer, like this:
clearInterval(timerID).

I guess sometimes the
customer really is right -
the more emotional iRock
is way more engaging.

When the timer
expires, happiness
switches to loneliness.

Download at WoweBook.Com

98 Chapter 3

Head First: Thanks for taking some time out of your
busy day to sit down for a chat.

Browser: Busy is right. As if I didn’t have my hands
full with HTML and CSS, and all the page rendering
headaches involved with those two characters, now I
have to contend with JavaScript. That’s a whole different
animal.

Head First: What do you mean? Is JavaScript wild and
untamed?

Browser: Uh, no. I didn’t mean “animal” literally. I
just meant that JavaScript brings its own unique set of
problems that I have to worry about. Now I have this
whole new job of reading JavaScript code, hoping for the
life of me that it isn’t coded poorly, and then running the
code while simultaneously keeping a close eye on HTML
and CSS.

Head First: I see. How do those three get along?

Browser: Fortunately, that’s the least of my problems.
Those three guys usually work well together, although
occasionally JavaScript will get frisky and mangle some
HTML code. Problem is, there usually isn’t anything I can
do about it because my job is pretty much to do as I’m
told.

Head First: So you fashion yourself as somewhat of a
“yes man?”

Browser: I suppose that’s one way to put it, but it’s more
accurate to say that I value consistency above all else. I
do things by the book. My job is take the code the server
gives me and do exactly as it says.

Head First: Even if you know it’s wrong?

Browser: I try my best to sort out problems when I
see them but that’s a tough gig. Besides, that’s a topic for
another day (Chapter 11). I thought we were going to talk
about my role as a web client.

Head First: Oh yeah, I lost track. So what does it mean
to be a client?

Browser: Well, it primarily means that I stand on the
receiving end of the web page delivery channel, receiving
pages after requesting them from the server.

Head First: What does that have to do with JavaScript?

Browser: An awful lot, actually. As I handle all the dirty
work of displaying web pages and processing user input,
JavaScript is there next to me sticking his nose in and
changing things. But that’s not all bad. There are lots of
neat things JavaScript can do that I wouldn’t dare do by
myself.

Head First: Such as?

Browser: Well, I would never take it upon myself to do
anything special when a user hovers the mouse over an
image or resizes my window, for example. JavaScript, on
the other hand, is all about doing special things. It’s no
big deal for a script to change the appearance of the page
or otherwise shuffle content in response to client changes.
And it’s OK by me because JavaScript code runs on a
page by page basis, so it only impacts a specific page or
web site.

Head First: You talk about JavaScript as if its some
other entity. Isn’t JavaScript really just you?

Browser: It’s both. JavaScript is certainly part of me
but you can think of it as its own entity because it can
only access the client (me) through a limited interface. In
other words, I don’t give JavaScript unbridled access to
everything about me. That would be a little irresponsible
since I can’t control who writes scripts and asks me to run
them.

Head First: Got it. Well thanks for clearing up some of
this client stuff.

Browser: Glad to help.

The Browser Exposed
This week’s interview:
Confessions of a web client

The Browser Exposed
This week’s interview:
Confessions of a web client

browser exposed

Download at WoweBook.Com

you are here 4 99

exploring the client

Multiple size screens, multiple complaints
Alan had barely finished paying you for the iRock’s emotional makeover
when a new wave of complaints started rolling in from frustrated iRock
owners. It seems the size of the iRock isn’t very consistent, with some
users reporting “shrinking rock syndrome,” while others are experiencing
an acute fear of “giant partial rock formations.” You’re the guy Alan trusts,
so time to earn some more cash fix the iRock again.

That’s odd, I
wonder why?

Some users are reporting an
iRock that is shockingly small.

Other users are
seeing only part
of a giant iRock.

What’s going on with the different rock
sizes on different browsers?

Download at WoweBook.Com

100 Chapter 3

Use the document object to get the
client window’s width
The iRock problem has to do with the fact that the size of the iRock
doesn’t change when the size of the browser window changes. This
might seem like a good thing until you consider the dramatic
variation in browser sizes across all computers capable of browsing
the Web, including tiny handheld devices and desktop computers
with gigantic monitors. You need a way to check the size of the
browser window, which can then be used as a measure to resize the
rock image.

It’s important to distinguish between client window width and height,
as compared to the overall browser window width and height. The
client window is only the part of the browser window that displays
the page, which means it doesn’t include title bars and tool bars. The
iRock’s size should be calculated based upon the client window size,
not the overall browser window size.

Client
window
height.

Not part of
the client
window
height.

The client window is
only the part of the
browser window that
displays a web page.

Client
window
width.

The client window is what holds
the rock image, and is therefore
what you can use to figure out
how to resize the iRock.

document.body.clie
ntWidth

document.body.clientHeight

size matters

Download at WoweBook.Com

you are here 4 101

exploring the client

<html>
 <head>
 <title>iRock ‑ The Virtual Pet Rock</title>
 <script type="text/javascript">
 var userName;
 function greetUser() {
 alert('Hello, I am your pet rock.');
 }
 function touchRock() {
 if (userName) {
 alert("I like the attention, " + userName + ". Thank you.");
 }
 else {
 userName = prompt("What is your name?", "Enter your name here.");
 if (userName)
 alert("It is good to meet you, " + userName + ".");
 }
 document.getElementById("rockImg").src = "rock_happy.png";
 setTimeout("document.getElementById('rockImg').src = 'rock.png';",
 5 * 60 * 1000);
 }
 </script>
 </head>

 <body onload="greetUser();">
 <div style="margin‑top:100px; text‑align:center">
 <img id="rockImg" src="rock.png" alt="iRock" style="cursor:pointer"
 onclick="touchRock();" />
 </div>
 </body>
</html>

Q: So just to be clear, what’s the difference between a web
client, a browser, a client window, and a browser window?

A: Yeah, it can be a little confusing. In terms of the Web in general,
a browser is referred to as the web client because it’s on the client
side of the serving of web pages. Within a browser, however, “client”
takes on a different meaning, because it refers to the specific area of
the browser window where the page appears. So the client window is
an area within the browser window that doesn’t include the other stuff
like title bars, tool bars, scroll bars, etc.

Q: Why is the client window the preferred measurement to
use when resizing the iRock?

A: The client window provides a better measurement for resizing
the rock image because it reflects the actual amount of space
in which the image is displayed. This eliminates variations that
are difficult to account for, such as add‑on toolbars and natural
differences in browser windows across different platforms and
browser vendors. For example, Safari on the Mac has a different
browser window size than Firefox on Windows, even if the
displayable part of each—the client window—is the same.

document.body

document

The document
object represents
the web page itself.

The body of the document represents
the visible part of the page, including
client height and client width.

The client window size
is closely associated
with the web page,
which you access in
JavaScript using the
document object. This
is the same object you
used to access elements
on the page with the
getElementById()
method. The
body.clientWidth and
body.clientHeight
properties of the
document hold the width
and height of the client
window.

Use document object properties to
set the client window width

Download at WoweBook.Com

102 Chapter 3

Set the height and width of the iRock image
Knowing the client window size isn’t all that useful in the iRock script without
being able to resize the rock image as well. Fortunately, you can tweak
the size of an image using JavaScript with a little help from CSS (even if CSS
isn’t your style). The width and height properties of an image element not
only allow you to initially determine how big an image is, but also allow you to
dynamically resize the image when needed.

style.height

The height of the rock image.

style.width

The width of the rock image.

There’s a style object for every element on a web page, so you can
access the width and height of any piece or part of a page. But to
access styles, you first need to access the web page element itself, in
this case the rock image (if you haven’t downloaded this yet, get it
at http://www.headfirstlabs.com/books/hfjs/). This requires the handy
getElementById() method of the document object:

document.getElementById("rockImg").style.height

The HTML code for the rock image is the key to accessing the image’s style properties.

To change the size of the iRock image, just set the width or height
property to a value. Setting either property alone will work,
because the other property will automatically scale itself to
keep the image’s same proportions:

document.getElementById("rockImg").style.height = "100px";

Set the height of the rock image to 100 pixels.

This code accesses the
height of the rock image.

how big is big?

You don’t have to set the
width... it

will get scaled and stay prop
ortional to

the new height.

Download at WoweBook.Com

you are here 4 103

exploring the client

The iRock should be sized to the page
You still don’t have a calculation to use to alter the rock image size based upon the client
window size. Since the rock size must change in proportion to the client window size,
we want to set the rock size as a percentage of the client window size.

But should you base the rock size on the width or height of the client window? Since
browsers tend to be more tightly constrained vertically, it’s safer to base the rock image
size on the height of the client window.

Write the code for the resizeRock() function, which should
resize the rock image based upon the client window size. Also
add code to the onload event handler to call resizeRock() in
addition to greetUser(), which was already being called.

 function resizeRock() {

 }
 ...
 <body onload= > ...
 </body>

(clientWindowHeight - 100) * 0.9 = rockImageHeight

This calculation accounts for the vertical spacing of the rock on the page
(100 pixels), and then sizes the rock image to 90% (0.9) of what’s left.
Sometimes calculations like this require a little trial and error to test them
and find out what works best. You’ll have to try out your iRock to see how
it works... but first, there’s code to write.

100 pixels. 90% of what’s
left vertically.

The client
window height.

Download at WoweBook.Com

104 Chapter 3

Your job was to write the code for the resizeRock()
function, and also to add code to the onload event
handler to call resizeRock(). Don’t forget to make
sure greetUser() still gets called!

 function resizeRock() {

 }
 ...
 <body onload= > ...
 </body>

The setTimeout() function allows you to create
a one‑shot timer that triggers JavaScript code after a
period of time has elapsed.

To set a timer that repeats at a certain interval, use
setInterval(), which will create an interval timer.

Always specify timer durations in milliseconds, which are
thousandths of a second.

Web page elements have a style object you use to
set style properties, such as width and height.

The client window is the part of the browser window that
displays the web page and nothing else.

You can access the width and height of the client
window using the body.clientWidth and
body.clientHeight properties of the
document object.

 document.getElementById(“rockImg”).style.height =
 (document.body.clientHeight - 100) * 0.9;

“resizeRock(); greetUser();”

The rock image size is
calculated based upon
the client window height.

The ID of the rock
image is used to get
the image element.

Two different functions are
called when the page first
loads. It’s perfectly fine to
tie more than one piece of
code to an event.

Subtract 100 pixels
to account for the
vertical position of
the rock.

90% of the remaining
window size.

sharpen solution

Download at WoweBook.Com

you are here 4 105

exploring the client

Your iRock...evolves!
With your code changes, the iRock has evolved to
adapt to each unique browser environment. Make
sure you update your iRock.html (available at
http://www.headfirstlabs.com/books/hfjs/) to match
page 104, and then load it in several browsers
and different window sizes. Try it out on your shiny
iPhone if you want, too!

Q: I still don’t get the point of the
100 in the iRock image size calculation.
What’s the deal?

A: The HTML/CSS code for the iRock
page places the rock image 100 pixels down
the page so that it isn’t jammed against the
top of the client window. The calculation
accounts for this aesthetic positioning by
subtracting the 100‑pixel offset before
figuring the rock height as a percentage
(90%) of the client window height. There’s
nothing magical about 100 pixels, it just
happens to position the rock in a good spot
on most browsers.

Q: Can I change the size of anything
I want using the width and height
CSS style properties?

A: Pretty much. This hopefully is starting
to give you a clue as to how powerful
JavaScript can be when it comes to
manipulating web page content. In the case
of the iRock script, it’s the power of being
able to query the client window for its size
and then using it as the basis for changing
the size of an image.

Q: Why not just change the iRock
image size in JavaScript code in the head
of the page, as opposed to using the
onload event?

A: This problem has to do with web
page content not getting loaded until the
onload event fires. So if your JavaScript
code accesses elements on the page, as
the iRock code does, you can’t run any code
earlier than the onload event.

The size of the rock
image now varies
according to the size
of the browser window.

Users are no longer reporting problems with their pets, and Alan’s just
about ready to give you a ton of stock options. Everyone is happy... for now.

Download at WoweBook.Com

106 Chapter 3

So what happens to the iRock when the browser is
resized? Doesn’t the rock image stay the same size?

No, the rock size isn’t dynamic.
Some users are bound to resize their browser windows, and the
iRock won’t change size when this happens. These users won’t be
happy campers. That’s because the rock image size is only altered
when the page first loads, in the onload event. From then on,
nothing that takes place results in an image resize. Unfortunately,
we’re back to where we started:

The rock image stays
the same size when the
browser window is resized.

dynamic sizing

Download at WoweBook.Com

you are here 4 107

exploring the client

onresize is triggered when the browser’s resized
In order for the rock image size to maintain its size in proportion to the client window of the
browser, your script needs to know when the user resizes their browser window. Browser resizes
are communicated using an event called onresize . The onresize event is fired whenever the
browser window is resized, and it’s just what you need to catch in order to resize the rock image
when the browser window size changes.

onresize!

Resizing the browser

window fires the
onresize event...

...which causes the
event handling code
to be executed.

To respond to an onresize event, just assign JavaScript
code to the onresize attribute of the <body> tag.

<body onresize="doSomething();">

onload onresize onclick

One of these things is not like the other. Which one is it... and why?

Download at WoweBook.Com

108 Chapter 3

One of these things is not like the other. Which one is it... and why?

onload onresize onclick

The onresize event resizes the rock
Now it’s time to reap the rewards of creating a function that resizes the
rock image. To resize the rock image in response to a browser window
resize, you have to call the resizeRock() function in response to the
onresize event:

The onresize and onclick events are triggered by the user, onload is not.

<body onload="resizeRock(); greetUser();" onresize="resizeRock();">

Now the resizeRock() function is also called any time the browser window is resized.

The iRock’s image size now automatically adjusts
whenever the user changes the browser window size.

The onresize event makes
it possible to detect and
respond to changes in the
browser window size.

The resizeRock() function
is still called when the page
first loads to initially set
the rock image size.

You can call more than
one piece of code in
response to an event.

Triggered when the page first loads.
Triggered when the browser
window is resized.

you gotta know when to grow ‘em

Download at WoweBook.Com

you are here 4 109

exploring the client

Alan is feeling the love from users who now realize that the iRock is
immune to variations in browser size. Not only does the iRock size
initially adjust to fit the browser’s client window, but it dynamically
adjusts if the user resizes the browser.

onresize!

onresize!

JavaScript detects a change in
the client and then dynamically
alters web page content in
response to the change.

Sweet, customers are
gonna love this. Got any more
cool ideas?

 Be careful
when resizing
images in
JavaScript.

This is especially
important when making small
images larger. The quality of the
image can sometimes suffer.

Download at WoweBook.Com

110 Chapter 3

Have we met? Recognizing the user
The iRock size problems are now a thing of the past... but what
about when users click the iRock more than once to keep it
from feeling lonely? And when they come back to the rock after
restarting their computer?

Why don’t you
remember me? Didn’t
I make an impression?

Even though the iRock has definitely met its owner at some
point in the past, it is somehow forgetting the user’s name...

Who’s Paul? Do
I know you?

The user first
meets the iRock and
enters his name.

The iRock responds
with a personal
greeting - a
friendship is born!

Time passes an
d

something cha
nges...

...the iRock no longer
remembers the user.

Tic

k
Tock

temporary browser amnesia

Download at WoweBook.Com

you are here 4 111

exploring the client

Poof!

Every script has a life cycle
The iRock’s memory loss is related to the life cycle of a script,
which affects the data stored in the script’s variables.

So how would you tweak the code to fix the problem
of the iRock forgetting the user’s name?

irock.html

<html>
 <head>
 ...
 </head>

 <body>
 ...
 </body> </html>

The browser is
launched - the page
has yet to load, and
the user needs to
enter the URL.

The page is loaded from
the web server—HTML,
CSS, JavaScript and all.

The onload event
fires, JavaScript
variables are created
and initialized.

The user closes
the browser or
reloads the page.

The script stops,
JavaScript cleans
up all variables, and
the page is closed.

JavaScript destroys ALL
variables when the browser
closes or the page reloads.

onload!

Download at WoweBook.Com

112 Chapter 3

Cookies outlive your script’s life cycle
The problem that we’re having with the iRock has a name, and it’s called
persistence. Or actually it’s the lack of persistence. Sometimes you need
data that never really goes away. Unfortunately, JavaScript variables are
fleeting, and are destroyed the moment the browser closes or the page
refreshes. Browser cookies offer a way to store data persistently so that it
lasts beyond the life cycle of a script.

A cookie is a piece of data stored by the browser on the user’s computer.
Cookies are a lot like JavaScript variables except that cookies hang
around after you close the browser, reload a page, turn off your computer,
remodel your house, etc. This makes cookies a handy option for storing
the user’s name in the iRock script.

When the browser is closed,
the script writes the user
name to a cookie.

The browser stores the user name cookie on their hard disk for safe keeping.

When the page is opened again later, the user name cookie is read from their hard disk.

The browser maintains
a collection of cookies
that have been created
by different web pages.

Hard disk

Poof!

"Paul"

onload!

"Paul"

"Paul"

c is for cookie

Download at WoweBook.Com

you are here 4 113

exploring the client

Write down some other kinds of web page data that you might
store persistently using cookies.

userName

"Paul"

userName

"Paul"

"Paul"

Start here!

Finish!

The first time the user
meets the iRock, the
user’s name is stored in a
JavaScript variable.

The user’s name is then stored
in a variable so that it can be
displayed by the rock.

"Paul"

A temporary JavaScript variable is fine to use
while a script is running, but you need to store it
away in a browser cookie if you want its value to
last beyond a single web page viewing. Initialize
the variable with the cookie value when the
script first starts, and then write the variable
value back to the cookie when the script finishes.

Download at WoweBook.Com

114 Chapter 3

Write down some other kinds of web page data that you might store
persistently using cookies.

User ID, shopping cart contents, geographical location, language

Tonight’s talk: Variable and cookie weigh
the importance of persistent data storage

Variable:
I don’t understand why we’re talking—you don’t
really have anything to do with JavaScript.

I see where you’re headed. You think that I’m
somehow a lesser data storage option because I get
clobbered every time the browser is closed or a page
is reloaded. Still, I am very accessible... unlike some
people.

That may be, but don’t you live in tight quarters
among a bunch of other cookies?

Well, if the rumors are true, it takes a lot of effort
to look up a single cookie... you’re all just stored in
one big list. What a pain! That’s what I mean by
inaccessible.

Cookie:

Well, you’re half right. I definitely do my thing
without the help of JavaScript, but I still have an
important connection to JavaScript, too. I provide a
way to store data persistently. And as you’ve probably
figured out, JavaScript isn’t big on persistence.

Inaccessible? I’m always right there in the browser,
ready to be called upon at any time.

Yes... and?

Well, yeah, us cookies are stored in a big list, but we
have unique names, so it’s not all that hard to get to
us. You just have to know how to break apart the list
to find a particular name.

variable and cookie faceoff

Download at WoweBook.Com

you are here 4 115

exploring the client

Variable:
Right, but that’s the problem. There are no lists
or anything involved in accessing me. Just call my
name... and I’ll be there!

Permanence is great but it doesn’t solve everyday
problems. When you really think about it, not all
that much data really needs to last forever. In fact,
it’s usually more efficient to store data temporarily
and let it go away when you’re finished with it.
That’s where I come into play. I’m the ultimate
temporary storage medium for script data.

Interesting, but how do you think those items got
added to the shopping cart to begin with? Most
shopping carts rely on me to store temporary data
throughout the shopping experience. I’m just as
important... maybe even more important. Even if I
do tend to forget things a little more quickly.

I think you’re right. We solve different problems and
really shouldn’t ever be competing. Although, I have
to admit, I still prefer my ease of accessibility over
your ability to store things persistently.

What conversation?

Cookie:

You don’t need to sing. I get the point. But here’s
the real issue. When you store something in me, I
always remember it. It doesn’t matter if the browser
is closed or the page is reloaded. I’m permanent...
unless the user chooses to clear out all cookies. But
that’s another issue.

Whatever... I think you’re underestimating how
important permanent data storage can be. Haven’t
you ever been amazed by the magic of returning
to a shopping cart days after browsing, only to find
everything still there? That’s the kind of magic I
make possible!

It’s starting to sound as if maybe we complement
each other. I always saw you as a nemesis.

You couldn’t resist a parting jab, eh? I’ll take the
high road and rest easy knowing that as soon as this
page turns you’ll forget the entire conversation.

Exactly.

Download at WoweBook.Com

116 Chapter 3

Why don’t you just store
persistent web data on
the server?

You don’t need the server for small pieces of
information, like a user’s name.
Ah, the server. Yes, the server is a viable option for storing data
persistently, but it can be overkill for small pieces of information.
Storing data on the server requires programming work on the
server, along with a storage medium, like a database. Server
programming and database storage are a bit much for storing a
piece of data that you want to persist for a simple client script, like
the user name in the iRock script.

Cookies allow you to store data persistently on the client without
even involving the server. Not only that, but users have the ability
to clear out cookie data on the browser if they want to get rid of
information web pages have stored persistently. This isn’t possible
with data stored on the server.

Handy persistent
data storage on
the client!

+ =
JavaScript Cookie

client cookie storage

Download at WoweBook.Com

you are here 4 117

exploring the client

Cookies have a name and
store a value...and can
expire

Since all cookies are stored in the same place, extracting a
specific cookie requires a little work, but there’s a recipe you
can follow that makes reading, writing, and erasing cookies
less daunting...

;

;

; ;

readCookie()

writeCookie()

eraseCookie()

item1 = Flat panel television
Expires 9/3/2008cartID = 1103

Expires 11/4/2008

userID
 = 2112

Expire
s 5/7/2010

zipCode = 85251

Expires 1/1/3000

lang = fr_ca
Expires 6/25/2010

Setting a cookie’s expiration

date far into the future
makes it more permanent.

userName = Paul
Expires 3/9/2009

Name
The unique name of the cookie.

Value
The value stored in the cookie.

Expiration date

The date when the cookie expires...
and meets its demise.

A cookie stores a single piece of data under
a unique name, much like a variable. Unlike
a variable, though, a cookie can have an
expiration date. When this expiration date
arrives, the cookie is destroyed. So in reality
cookies aren’t truly permanent, they just
live longer than variables. You can create
a cookie without an expiration date, but this
makes it act just like a JavaScript variable—
it gets erased when the browser closes.

Cookies are stored on a user’s computer as
one big long string of text that is associated
with a web site (or domain). Each cookie
is separated from the next by a semicolon
(;). The semicolons are the key to reading
through the cookie list and pulling out a
single cookie.

Download at WoweBook.Com

118 Chapter 3

function writeCookie(name, value
, days) {

 // By default, there is no exp
iration so the cookie is tempora

ry

 var expires = "";

 // Specifying a number of days

 makes the cookie persistent

 if (days) {

 var date = new Date();

 date.setTime(date.getTime()
+ (days * 24 * 60 * 60 * 1000));

 expires = "; expires=" + dat
e.toGMTString();

 }

 // Set the cookie to the name,

 value, and expiration date

 document.cookie = name + "=" +
 value + expires + "; path=/";

}

function readCookie(name) {

 // Find the specified cookie a
nd return its value

 var searchName = name + "=";

 var cookies = document.cookie.
split(';');

 for(var i=0; i < cookies.lengt
h; i++) {

 var c = cookies[i];

 while (c.charAt(0) == ' ')

 c = c.substring(1, c.lengt
h);

 if (c.indexOf(searchName) ==
 0)

 return c.substring(searchN
ame.length, c.length);

 }
 return null;

}

function eraseCookie(name) {

 // Erase the specified cookie

 writeCookie(name, "", ‑1);

}

Ready Bake
JavaScript

Here’s the code for three cookie helper functions, which allow
you to write, read, and erase cookies with ease. Sometimes the
wisest approach is to coast on the work of others. Take this recipe
(available for download at http://www.headfirstlabs.com/books/hfjs/)
and make the most of your homemade cookie functions.

cookie.js

var x;
var y;

function doX() {
 ...
}

function doY() {
 ...
}

The expiration date is expressed as the number of days the cookie should exist.

This expiration
date is calculated by converting the number of days to milliseconds, and then adding that number to the current time.

The cookie list
is broken into
individual cookies
by splitting it
along semicolons.

You erase a cookie by writing it with no value and an expired expiration date (-1 days).

Files containing only
JavaScript code are
usually named with
a .js file extension.

baking cookies with JavaScript

It’s okay if you don’t get all
of this now...you’ll understand
it by the time you’re through
the book.

Create a blank file, name
it cookie.js, and add this
code to the file.

Download at WoweBook.Com

you are here 4 119

exploring the client

Your JavaScript can live OUTSIDE
your web page
When JavaScript code is stored in its own file, you have to import
it into any web page that plans on using the code. So in the case of
the cookie functions in cookie.js, you’ll need to import them
into your iRock.html page. This is done with a variation of the
<script> tag:

<script type="text/javascript" src="cookie.js"></script>

The name of the file containing the script code, usually ending with .js.

The type of the script code
is always text/javascript for
JavaScript code.

Don’t forget to close
with the </script> tag.

When you import external script code into a page, all of the JavaScript
code in the script file is inserted inside of the <script> tag in the
HTML code, just as if you had placed the code directly in the web page.
Any time you have code that could be used in more than one page, it’s a
good idea to place it in an external file and import the file in the pages.

The imported
script code gets
placed into the
page when the
page is loaded.

DO THIS! Make this
addition to your iRock.html,
and make sure cookie.js is in
the same directory.

<html>
 <head>
 <title>iRock ‑ The Virtual Pet Rock</title>

 <script type="text/javascript" src="cookie.js"></script>

 <script type="text/javascript"> var userName;
 function resizeRock() { document.getElementById("rockImg").style.height =
 (document.body.clientHeight ‑ 100) * 0.9;
 }

 function greetUser() { userName = readCookie("irock_username");
 if (userName) alert("Hello " + userName + ", I missed you.");
 else

Write down why it’s a good idea to organize reusable code into an external file.

Download at WoweBook.Com

120 Chapter 3

Greet the user with a cookie
We need a cookie-powered version of the iRock script that can greet the
user with a personal greeting, assuming their name has already been
stored in a cookie. If not, the greeting can just fall back on a generic,
impersonal greeting. It’s the best of both worlds!

Write down why it’s a good idea to organize reusable code into an external file.

Code reuse, easier to maintain since it’s in one place, better organization

userName
userName

userName =

userName = Paul
Expires 3/9/2009

Is there a user name?

JavaScript
variable.

Read the user name
from a cookie and
store it in a variable.

This is either the user name...or nothing!

"Paul"

Yes! No

polly want a cookie?

Personal Generic

Download at WoweBook.Com

you are here 4 121

exploring the client

Code Up Close

function greetUser() {
 userName = readCookie("irock_username");
 if (userName)
 alert("Hello " + userName + ", I missed you.");
 else
 alert('Hello, I am your pet rock.');
}

The greetUser() function is
responsible for greeting the
user when the page first loads.

The iRock user name cookie needs a descriptive title that won’t get mistaken should you ever need to add more cookies to the script.

The user name is read from the cookie and stored in the userName variable.

If a user name really did exist in the cookie, show a personal greeting.The user name is empty,
which means the cookie didn’t
exist, which means we have to
go with a generic greeting.

It’s not addition... it’s
string concatenation!

What’s really going on in the greetUser() function is a data duet
sung by a variable and a cookie. The user’s name is read from the
cookie and stored in the variable. But you can’t count on the cookie
holding a name... what if this is the first time the script has run and
the user has never entered a name? That’s why the code checks to see
if the variable really got a name from the cookie—this is the test that
determines whether the greeting is personal or generic.

greetUser() is cookie-powered now

Download at WoweBook.Com

122 Chapter 3

Don’t forget to set the cookie, too
Reading the iRock cookie is fine and dandy, but you’ve still got to set
the cookie in the first place. The cookie writing should take place in the
touchRock() function, which is called when the user clicks the rock
image. The touchRock() function already prompts the user to enter a
name—now it needs to write that name to a cookie after it’s entered.

Code Way
Up Close

function touchRock() {
 if (userName) {
 alert("I like the attention, " + userName + ". Thank you.");
 }
 else {
 userName = prompt("What is your name?", "Enter your name here.");
 if (userName) {
 alert("It is good to meet you, " + userName + ".");
 writeCookie("irock_username", userName, 5 * 365);
 }
 }
 document.getElementById("rockImg").src = "rock_happy.png";
 setTimeout("document.getElementById('rockImg').src = 'rock.png';",
 5 * 60 * 1000);
}

First things first - see
if there’s a user name. If there is a user name, thank them personally for the attention.

If there isn’t a
user name, we
need to get it
from the user.

Check to
make sure
the user
actually
entered a
name.

There is a name,
so greet the user
and then write the
name to a cookie.

Keep the user
name cookie around for 5 years.

This is the same cookie
name used to read the
cookie. Cookies don’t
use camelCase, they’re
more like HTML IDs.

The user name
value is written
from a variable.

This function is called
when the rock image
is clicked.

touch-y touch-y

Download at WoweBook.Com

you are here 4 123

exploring the client

userName

userName

"Paul"

Cool! My pet rock
remembers me now.

userName =

In many ways the touchRock() function plays a reverse role as the
greetUser() function, at least in terms of cookies. The user name
is entered by the user, stored in a variable, and then written to a cookie.

onclick!

Is there a user name?

The user clicks the iRock.

"Paul"

Store the user
input in a variable.

Write the variable
to a cookie.

Change the
iRock to the
happy image.

Yes! No

"Paul"

Download at WoweBook.Com

124 Chapter 3

Cookies affect browser security
Although most iRock users are thrilled with cookies as a cure for
memory loss, a few users have questioned the security risks of cookies.
This is a fair question since personal data often gets stored in cookies,
but the reality is that cookies do not pose a security risk...at least not
in terms of accessing sensitive data that is stored on your computer.
However cookies themselves aren’t considered safe for storage, so it’s
not a good idea to store sensitive data in a cookie

A cookie is just a piece
of text data stored in a
file on your computer

Although cookies are
typically stored on a
hard disk, they can’t
touch anything else
on the hard disk.

Since cookies aren’t
executable programs,
they can’t spread
viruses or worms.

Cookies can store personal
data, but only when users
have knowingly entered data
into a web page.

Worms... ick!

We interrupt this
broadcast to bring you a

message about JavaScript
security...

 Just because
you can,
doesn’t mean
you should.

Although you
can store anything in a cookie,
they aren’t terribly secure in
terms of how they store data.
So it’s not a good idea to store
sensitive data in a cookie.

hands off the cookie jar

Download at WoweBook.Com

you are here 4 125

exploring the client

Q: Are cookies always stored on the
user’s hard disk?

A: No. But the hard disk is where the vast
majority of browsers store cookies, not all
browsers have access to a hard disk. For
example, some mobile devices use special
memory instead of hard disks for persistent
data storage. In this case, the browser uses
persistent memory to store cookies. Even
so, from the perspective of the browser (and
your scripts), cookies remember their values
regardless of how they are stored behind the
scenes.

Q: How do I know if my cookie name
is unique?

A: Cookie names only have to be unique
within a given web page. This is because
cookies are stored with respect to the page
that created them, including the web site of
the page. This means the page is effectively
part of the cookie name, at least in terms of
uniqueness. Bottom line: just make sure your
cookies are unique
within a given
page or site.

Q: Is cookie data shared across
different browsers?

A: No. Every browser maintains its own
unique database of cookies, so cookies
set in Internet Explorer will not be visible to
Firefox or Opera.

Q: If cookies are so handy, why would
you ever store data on the server?

A: First of all, cookies are only good
for storing relatively small (less than 4
Kb) chunks of text. That is one important
limitation of cookies. Even more significant
is the fact that cookies aren’t particularly
efficient, meaning that you wouldn’t want
to be constantly reading and writing lots of
data to them. This is where a real database
comes into play, and databases typically live
on the server. So while cookies are great
for storing small pieces of data that don’t
necessarily warrant storage on the server in
a database, they aren’t a solution for all of
your web data needs. And they also aren’t
exactly ideal for storing sensitive data since
they aren’t designed with security in mind.

Q: Is there any way to create a truly
permanent cookie?

A: No. Like it or not, every cookie has an
expiration date. The idea behind a cookie is
not so much true long‑term data storage as it
is a means to preserve data in the mid‑term.
In other words, cookies are good for storing
data for days, weeks, and months. If you’re
dealing with data that must linger for longer
periods of time, you may want to store it on
the server instead. It’s not that a cookie can’t
store data for years, it’s just unlikely that the
user won’t upgrade computers, reinstall their
browser, or otherwise clear out cookie data.

Q: Enough about cookies...is there
any downside to storing JavaScript code
in an external file?

A: Not really. However, keep in mind that
the goal with external code is to make it
easier to share and maintain the code when
it needs to be used in more than one web
page. If you’re dealing with code that only
appears in a single page, you really don’t
benefit much from moving it to an external
file. That is, unless the page is particularly
messy and you just want to break up the
code for your own sanity.

A cookie is a piece of text data stored by the browser
on the user’s computer.

Cookies allow scripts to store data that survives
beyond a single web session.

Every cookie has an expiration date, after which the
cookie is destroyed by the browser.

Moving script code to an external file is a handy way to
make the code more reusable and maintainable.

Cookies can’t access a user’s hard disk or spread
viruses, but they are capable of storing personal data
that has been entered in web pages.

Download at WoweBook.Com

126 Chapter 3

A world without cookies
Whether it’s security concerns or limited browsers, a few iRock users aren’t
able to benefit from the cookie-powered iRock because cookies aren’t
available in their browsers. This presents a big problem because the iRock
script assumes everyone has cookie support. It’s one thing for the iRock to
be dependent on cookies for memory, but it’s unacceptable to not at least
let cookie-less users know they’re missing out on the full iRock experience.

Every user left out
is one less customer...
that’s unacceptable.

The good news is that the browser has a boolean property you can check
to see if cookies are available. The cookieEnabled property is part
of the navigator object, which provides JavaScript with information
about the browser itself.

navigator.cookieEnabled

When cookies aren’t
available, you can’t
read or write them.

When cookies
are available,
life is good.

Big problem!+ =
JavaScript Broken cookie

true false

no cookies for you

Download at WoweBook.Com

you are here 4 127

exploring the client

Write the missing code to check for cookie support in the
greetUser() and touchRock() functions. Also add the
missing code in touchRock() to let the user know that
cookies aren’t available.

function greetUser() {

 userName = readCookie("irock_username");
 if (userName)
 alert("Hello " + userName + ", I missed you."); else
 alert('Hello, I am your pet rock.');
}

function touchRock() {
 if (userName) {
 alert("I like the attention, " + userName + ". Thank you."); }
 else {
 userName = prompt("What is your name?", "Enter your name here."); if (userName) {
 alert("It is good to meet you, " + userName + ".");

 writeCookie("irock_username", userName, 5 * 365); else

 }
 }
 document.getElementById("rockImg").src = "rock_happy.png"; setTimeout("document.getElementById('rockImg').src = 'rock.png';", 5 * 60 * 1000);
}

Download at WoweBook.Com

128 Chapter 3

Write the missing code to check for cookie support in the
greetUser() and touchRock() functions. Also add the
missing code in touchRock() to let the user know that
cookies aren’t available.

function greetUser() {

 userName = readCookie("irock_username");
 if (userName)
 alert("Hello " + userName + ", I missed you.");
 else
 alert('Hello, I am your pet rock.');
}

function touchRock() {
 if (userName) {
 alert("I like the attention, " + userName + ". Thank you.");
 }
 else {
 userName = prompt("What is your name?", "Enter your name here.");
 if (userName) {
 alert("It is good to meet you, " + userName + ".");

 writeCookie("irock_username", userName, 5 * 365);
 else

 }
 }
 document.getElementById("rockImg").src = "rock_happy.png";
 setTimeout("document.getElementById('rockImg').src = 'rock.png';",
 5 * 60 * 1000);
}

alert(“Sorry. Cookies aren’t supported/enabled in your browser. I won’t remember you later.”);

if (navigator.cookieEnabled)

if (navigator.cookieEnabled)

sharpen solution

Make the functions in your
iRock.html page look like
this... then test things out.

If cookie support is available, read the
user name from the iRock cookie.

If cookies are
supported, write the
user name cookie.

Let the user know that their lack of
cookie support will limit the iRock.

Download at WoweBook.Com

you are here 4 129

exploring the client

Talk to the users... it’s better
than nothing
Although there’s no good way to simulate cookies when they
aren’t available, gracefully breaking the bad news to the user
is worth an awful lot in terms of user satisfaction.

Sweet! That’s a graceful
way to deal with
cookie-less browsers.

There are worse things than being up-front about what the user is missing out on.

Alan’s happy
again... and you
collected another
nice paycheck.

Q: Can you check for client cookie support based upon the type of browser or
the version of the browser?

A:Browser detection is a slippery scripting slope that ultimately leads to unreliable
results. You can’t really trust what browsers say about themselves when it comes to
version information, which makes the navigator.cookieEnabled property
the only truly reliable way to check for cookie support.

Download at WoweBook.Com

130 Chapter 3

An iRock fit for a JavaScript king
You’ve really put some wear and tear on your JavaScript shoes stepping
through all the code necessary for making the iRock a success. With
a little help from the client, though, the iRock is now more real
emotionally, has lost its sizing inconsistencies, and has even improved
its memory!

Thanks to all your
hard work, the iRock is
now a rock solid pet.

userName = "Paul"

It is good to
meet you, Paul.

Timers expand the

iRock’s limited
emotional range.

Browser metrics
and CSS style
properties
give the iRock
the ability to
conform to its
environment.

Cookies allow
the iRock to
remember data
beyond the life
cycle of the script.

rockin with iRock 2.0

Download at WoweBook.Com

you are here 4 131

exploring the client

JavaScriptcross
Take some time to sit back and give your right brain
something to do. It’s your standard crossword; all of
the solution words are from this chapter.

Untitled Puzzle
Header Info 1

Header Info 2

etc...

1

2

3 4

5 6

7

8

9

10

11 12

Across
5. One-thousandth of a second.
7. I'm responsible for managing the list of cookies.
8. A JavaScript mechanism that allows you to run code after a
certain period of time has elapsed.
10. A cookie has a name, a value, and an
11. Use one of these to store a piece of information on the client
that you might need later.
12. What you do when you reference external JavaScript code
from a Web page.

Down
1. This kind of timer runs a piece of code repeatedly.
2. This function allows you to create a one-shot timer.
3. When data hangs around after a script finishes running, it is
considered
4. When the browser window is resized, the event is fired.
6. Another name for a Web browser.
9. Cookies are incapable of spreading these.

Untitled Puzzle
Header Info 1

Header Info 2

etc...

1

2

3 4

5 6

7

8

9

10

11 12

Across
5. One-thousandth of a second.
7. I'm responsible for managing the list of cookies.
8. A JavaScript mechanism that allows you to run code after a
certain period of time has elapsed.
10. A cookie has a name, a value, and an
11. Use one of these to store a piece of information on the client
that you might need later.
12. What you do when you reference external JavaScript code
from a Web page.

Down
1. This kind of timer runs a piece of code repeatedly.
2. This function allows you to create a one-shot timer.
3. When data hangs around after a script finishes running, it is
considered
4. When the browser window is resized, the event is fired.
6. Another name for a Web browser.
9. Cookies are incapable of spreading these.

Download at WoweBook.Com

132 Chapter 3

JavaScriptcross Solution
Untitled Puzzle

Header Info 1

Header Info 2

etc...

I
1

N

S
2

T

E E

T R

T V

I A P
3

O
4

M
5

I L L I S E C
6

O N D E N

E L B
7

R O W S E R

O T
8

I M E R S E

U V
9

E I S

T I N S I

E
10

X P I R A T I O N D A T E Z

U E E

S N

C
11

O O K I E I
12

M P O R T

S

Across
5. One-thousandth of a second. [MILLISECOND]
7. I'm responsible for managing the list of cookies. [BROWSER]
8. A JavaScript mechanism that allows you to run code after a
certain period of time has elapsed. [TIMER]
10. A cookie has a name, a value, and an
[EXPIRATIONDATE]
11. Use one of these to store a piece of information on the client
that you might need later. [COOKIE]
12. What you do when you reference external JavaScript code
from a Web page. [IMPORT]

Down
1. This kind of timer runs a piece of code repeatedly.
[INTERVAL]
2. This function allows you to create a one-shot timer.
[SETTIMEOUT]
3. When data hangs around after a script finishes running, it is
considered [PERSISTENT]
4. When the browser window is resized, the event is fired.
[ONRESIZE]
6. Another name for a Web browser. [CLIENT]
9. Cookies are incapable of spreading these. [VIRUSES]

JavaScriptcross solution

Download at WoweBook.Com

you are here 4 133

exploring the client

 The client is where JavaScript code is run,
 which means that JavaScript lives
 on the browser. This is a positive
 thing because it means the server has
 less to worry about, such as storing cookies!

Why should JavaScript care about the client?

Page Bender

It’s a meeting of the minds!

Fold the page vertically
to line up the two brains
and solve the riddle.

Download at WoweBook.Com

Download at WoweBook.Com

this is a new chapter 135

decision making4

If There’s a Fork in
the Road, Take It

Life is all about making decisions. Stop or go, shake or bake, plea bargain

or go to trial... without the ability to make decisions, nothing would ever get done. It works

the same in JavaScript—decisions allow scripts to decide between different possible

outcomes. Decision-making drives the “story” of your scripts, and even the most

mundane scripts involve a story of some sort. Do I trust what the user entered and book

her a trip on a Sasquatch expedition? Or else do I double-check that maybe she really just

wanted to ride a bus to Saskatchewan? The choice is yours to make!

Who can resist a man
in uniform…but whom
should I choose?

Download at WoweBook.Com

136 Chapter 4

Lucky contestant, come on down!
On today’s episode of the thrilling new game show, Wanna Make a Deal,
a lucky contestant is about to be chosen...

Eric

Ladies and gentlemen,
our lucky contestant
is... Eric!

Although you’re no doubt on the edge of your seat
in anticipation of Eric’s deal-making prowess, the
real question is this: how did the game show host
know to announce Eric as the lucky contestant?

Game show host.

Wanna Make a Deal?

Eric, the lucky
contestant.

Who, me?

pick me pick me

Download at WoweBook.Com

you are here 4 137

decision making

Jason
Owen

Oscar
Frankie

Eric

Ruby

Ellie
Alan

Seth
Duncan

Paul

Choices are all about making a decision
Duh, it’s written right there on his card! True, but you’re taking for granted the
fact that the host can make a decision based on what name appears on the
card. That’s because he’s human, and people excel at processing information
and making decisions. If the host was a script, things wouldn’t be so easy.

The question is really this: how does a script use a piece of information
as the basis for taking an action? Knowing which name appears on a
particular card is only half of the answer. The other half involves being
able to evaluate the name on the card, and then choose the contestant
with the matching name, in this case Eric.

The name on the card
results in a decision
to choose Eric.

Download at WoweBook.Com

138 Chapter 4

"if" this is true... then do something
JavaScript is actually quite adept at processing information and making
decisions, and one of the ways this happens is with the if statement. The
if statement allows you to make simple decisions, conditionally running a
piece of JavaScript code based upon a true/false test.

If (true/false test)

 Do something;

if (chosenContestant == "Eric")

 alert("Eric, come on down!");

If you look at the game show example through the lens of a JavaScript if
statement, you end up with code like this:

If the test ends up being true, do something.

EricThere’s a match!

Checks to see if two things
are equal to each other.

The true/false test is
always placed between
parentheses.

No semicolon since this
isn’t actually the end
of the if statement.

This is the end of
the if statement.

The if statement
is an excellent way
to conditionally
run a piece of code.

if a decision is needed

Download at WoweBook.Com

you are here 4 139

decision making

()if Test condition+ + +

;Statement +

Every if statement sticks to the same format. You used
this format already when you added cookies to iRock, but
here’s the breakdown:

if (hungry)

if (countDown == 0)

if (donutString.indexOf("dozen") != ‑1)

if (testScore > 90)

if (!guilty)

if (winner)

if (navigator.cookieEnabled)

numDonuts *= 12;

userName = readCookie("irock_username");

awardPrize();

goEat();

alert("Houston, we have lift‑off.");

alert("She's innocent!");

grade = "A";

Match up these if statements with the actions that should go with them.

Indent to make the code easier to read. The indented statement is part of the “if.”

There are a few things to keep in mind about the format of the if
statement. First off, you can only run one piece of code, and it should
appear indented just below if and the test condition. Although not
strictly required, it’s a good idea to indent this code so that you can quickly
see that it is part of your if statement. Here are the steps required to
carry out a decision with an if statement:

 Enclose the true/false test condition in parentheses.11

 Indent the next line of code a couple of spaces.22

 Write the code that gets run if the test condition is true.33

This code MUST somehow evaluate to true or false.

An if statement evaluates a
condition... and then takes action

Download at WoweBook.Com

140 Chapter 4

What the heck am I
supposed to do IF there’s
more than one choice?

if (hungry)

if (countDown == 0)

if (donutString.indexOf("dozen") != ‑1)

if (testScore > 90)

if (!guilty)

if (winner)

if (navigator.cookieEnabled)

numDonuts *= 12;

userName = readCookie("irock_username");

awardPrize();

goEat();

alert("Houston, we have lift‑off.");

alert("She's innocent!");

grade = "A";

Match up these if statements with the decisive actions that go with them.

Do this...or else.
Just when you thought JavaScript had everything covered,
something out of the ordinary appears. Actually, choosing
between more than one outcome isn’t out of the ordinary
at all... chocolate or vanilla, decaf or regular, it seems many
choices actually involve one thing or another. That’s why the if
statement can be tweaked to allow for making a decision and then
taking one of two possible actions...or sometimes even more that.

!guilty means NOT guilty,
so guilty must be false.

true if browser cookies are
enabled

true if the string contains
the word “dozen”

exercise solution

Download at WoweBook.Com

you are here 4 141

decision making

Use if to choose between two things
A twist on the if statement allows you to choose between two
possible outcomes. Back at Wanna Make a Deal, Eric’s struggling to
make a decision just like that. Presented with two alternatives, he
must choose one or the other.

A B

if (true/false test)

 Do something;

else

 Do something else;

Life is rarely as simple as choosing just one thing. The
if statement gives us (and Eric) the ability to pick Case A
or Case B. But how exactly does that look in JavaScript?

Case A is Eric’s
first option...

...and Case B is his second option.

if (chosenCase == "A")

 openCase("A");

? What now? How do we say

what to do if chosenCase

isn’t equal to “A”?

Wanna Make a Deal?

Download at WoweBook.Com

142 Chapter 4

You can make

if (chosenCase == "A")

 openCase("A");

else

 openCase("B");

Uh, can I change
my decision?

Eric chooses Case B, which means the chosenCase variable will be
“B.” So since the first test condition is false, that will trigger the if/else
statement to run the else code. Unfortunately for Eric, Case B contains
donuts, not the stack of money he was hoping for.

The if/else statement consists of two possible outcomes, one for each possible value of the test condition.

Case B.

Tasty donuts.

True

False

multiple
decisions with if

Using an if statement to take more than one action means turning it into
an if/else statement, which gives you the option of running a different
piece of code if the true/false test fails. It’s like saying if the test is true,
run the first piece of code, and if not (else), run the other piece of code.

if more than one option

Download at WoweBook.Com

you are here 4 143

decision making

Q: Why isn’t there a semicolon after the parentheses in an
if statement?

A: The rule in JavaScript is that every statement must end with
a semicolon, and the if statement is no exception. However, the
if statement isn’t just if (Test Condition), it’s also the
code that gets executed if the condition is true. That code does end
with a semicolon. So the if statement does end in a semicolon, if
you understand what exactly constitutes an if statement.

Q: What happens when the test condition is false in an if
statement that has no else clause?

A: Nothing at all. In this case the value of the test condition literally
results in no action being taken.

Q: Is it possible to use more than one else to choose
between more than two possible outcomes?

A: Yes. It’s certainly possible to structure an if/else statement
to support more than two outcomes, but it isn’t as easy as just
adding extra else clauses. You end up nesting entire if/else
statements within each other, which can quickly get messy if you’re
making a complex decision with lots of different outcomes. The if/
else approach isn’t wrong, but JavaScript offers a better decision‑
making structure for this situation, the switch/case statement,
which you learn about a bit later in this chapter.

(if + +

;Statement1 +

;Statement2 +

else

To add a second course of action to an if statement, follow these steps:

 Place the keyword else after the first action statement.11

 Indent the next line of code a couple of spaces for readability.22

 Write the code that gets run if the test condition is false.33

The formatting of an if/else statement is very similar to the
if statement. Just tack on the keyword else along with the
other piece of code to run if the test condition is false:

)Test condition +

If this is false,
this code is run.

The keyword else adds another course of action to the if statement.

Adding an else to your if statement

Download at WoweBook.Com

144 Chapter 4

An adventure of epic proportions
Ellie’s writing an interactive adventure story called Stick Figure Adventure.
Her project involves decision-making at every turn in the story, and she
hopes JavaScript decision making may offer the solution to her problem of
putting the adventure online for others to enjoy.

Ellie wants the online Stick Figure Adventure to let the user
navigate through a story by making one of two choices
at each step along the way. You can follow along with the
accompanying files available for download at http://www.
headfirstlabs.com/books/hfjs/.

Ellie dreams about the twists and turns in the plot, but worries a little about how to make them a reality.

I’m hoping JavaScript
will give Stick Figure
Adventure the
interactivity it needs.

Stick Figure Adventure presents the user with a web-based interactive story, experienced by a heroic stick figure.

Stick Figure Adventure

Download at WoweBook.Com

you are here 4 145

decision making

Bridge
overlooking

stream

Scene 3

Little house in
the woods

Scene 2

Write the code for an if/else statement that makes a decision for the first
three scenes in Stick Figure Adventure. Hint: A variable named decision
already stores the user’s choice, while the curScene variable will hold the
resulting scene .

The Stick Figure Adventure story is a series of scene screens, where
each scene is an image and a description. More importantly, each
scene involves making a decision between one of two paths that
move the story along to another scene.

Fork in the
road

Scene 1

Each scene always presents exactly two decisions to advance the story.

1

2

There is always a “current scene” that represents the user’s current position in the story.

Scenes 2 and 3 have decisions that lead to even more scenes.

1

2

1

2

The adventure setup

Every scene has a
unique scene number.

Download at WoweBook.Com

146 Chapter 4

Variables drive the story
Let’s take a closer look at the two variables used in Stick Figure Adventure,
which are critical in responding to user decisions and then moving the
story along accordingly.

Write the code for an if/else statement that makes a decision
for the first three scenes in Stick Figure Adventure. Hint: A
variable named decision already stores the user’s choice
while the curScene variable will hold the resulting scene.

if (decision == 1)
 curScene = 2;
else
 curScene = 3;

The decision variable
stores the user’s decision
at any given point in
the story, which can be
either 1 or 2.

The curScene variable holds the current scene, and in this case advances the scene based upon the user’s decision.

Move to Scene 2.
Move to Scene 3.

decision

The decision chosen by
the user, which is always
either 1 or 2. This decision

determines the next scene in

the story. Take the bridge

Scene

Take the path

Scene 2
There’s a fork

in the road

Scene 1

curScene
The current scene in the story,
which is always a number
matching a scene, as in Scene
1, Scene 2, etc.

1 2

The decision and curScene variables work together to store the
user’s decision, and then use that decision as the basis for moving the story
along. This process repeats itself from scene to scene as the story continues
to unfold, all thanks to the if/else statement.

sharpen solution

Download at WoweBook.Com

you are here 4 147

decision making

But part of the story is missing
The if/else statement works great as the engine for the
decision making part of Stick Figure Adventure, but the
entire story isn’t getting told. Each scene involves both an
image and a text description; both the image and text are
displayed for a given scene as the story progresses. Changing
the current scene number is sufficient to change the scene
image but it doesn’t help with the scene description text.

Little house in
the woods

Scene 2

Fork in the
road

Scene 1

1

With the ability to only run a single piece of code in
each part of the if/else statement, you’re limited to
only one action. In other words, you can’t display an
image and show a text description.

"You have arrived at
a cute little house
in the woods."

Scene Description
Scene Image

sfa_scene2.png

The user chooses
Decision 1, which
leads to Scene 2.

The scene number is sufficient
to set the scene image since
the scene image filename
contains the scene number.

document.getElementById("sceneimg").src = "scene" + curScene + ".png";

The scene description is left out because only one action is taken in response to the scene decision.

The “new”
current scene.

How would you do more than one
thing in response to a decision?

A PNG image is
very similar to a
GIF image but PNG
is a newer, widely
accepted standard.

Download at WoweBook.Com

148 Chapter 4

Compounding your JavaScript efforts
Ellie needs to be able to do more than one thing in each branch of if/else
code. She needs to change both the scene number and the scene description
text so that the following two lines of code can move the story along:

Ah ha! A compound
statement lets me treat
a big chunk of code like
it’s one piece of code.

document.getElementById("sceneimg").src = "scene" + curScene + ".png";
alert(message);

Change the scene image to the newly chosen scene.

Display the scene description message
for the new scene to the user.

The challenge is to do more than one thing even though JavaScript only
allows you to run a single piece of code. The solution is a compound
statement, which lets you frame a chunk of code so that it appears in the
script as a single piece of code. Creating a compound statement, is done
by surrounding the series of statements with curly braces ({}).

doThis();

doThat();

doSomethingElse();

if (chosenDoor == "A") {
 prize = "donuts";
 alert("You won a box of donuts!");
}
else {
 prize = "pet rock";
 alert("You won a pet rock!");
}

With one compound statement, it’s possible to build if/else statements
that do more than one thing in each action branch:

Do more than one thing in each action branch of an if/else statement.

{

 doThis();

 doThat();

 doSomethingElse();

}

3 statements=

1 statement=
Match
opening and
closing braces
to enclose
the code.

more than one thing

Download at WoweBook.Com

you are here 4 149

decision making

Q: How exactly does Stick Figure
Adventure use variables to drive the
story?

A: At any given moment, the
curScene variable contains the current
scene number. Each scene shows a
scene image and a scene description, and
also presents the user with a decision
allowing them to choose between one of
two scenes. The decision variable
contains the user’s scene decision, 1 or 2.
When a choice is made, the value of the
decision variable is used in conjunction
with curScene to determine the new
scene. More specifically, the scene image
is changed using the value in curScene,
and the scene description message is
displayed using an alert box.

Q: Why does it matter that a
compound statement crunches multiple
statements into one?

A: It matters because many parts of the
JavaScript language are structured around
the idea of a single statement. It’s kind of
like how an airline allows you exactly two
carry‑on items. Nothing prevents you from
stuffing a bunch of stuff into those two
carry‑ons as long as you stick with just the
two. So compound statements are like a
piece of carry‑on luggage in that they allow
you to stuff multiple statements into a single

“container” that is perceived as a single
statement to the rest of the script.

Q: Why don’t compound statements
end in a semicolon?

A: Semicolons are reserved for individual
statements, not compound statements. So
single statements that appear within a
compound statement must have the trailing
semicolon but the compound statement itself
does not.

Q: Is a function a compound
statement?

A: Good question! And the answer is
yes. You might have noticed that code in a
function is surrounded by curly braces. For
now you can think of a function as a big
compound statement that you can pass data
into and out of.

Rewrite the code for the first if/else decision in Stick Figure
Adventure. This time, use compound statements to set both the
scene number and the scene description message.

Download at WoweBook.Com

150 Chapter 4

if (decision == 1) {
 curScene = 2;
 message = “You have arrived at a cute little house in the woods.”;
}
else {
 curScene = 3;
 message = “You are standing on the bridge overlooking a peaceful stream.”;
}

Rewrite the code for the first if/else decision in Stick Figure
Adventure. This time, use compound statements to set both the
scene number and the scene description message.

The current scene number is adjusted based upon the
decision made by the user.

The scene description
message is set to
match the new scene.

A different scene description message is set for Scene 3.
End the compound
statement with a
closing curly brace.

Start the compound
statement with an
opening curly brace.

It’s a good idea to
indent the code
within a compound
statement.

Use the if statement to conditionally run a single piece
of JavaScript code.

The test condition in an if statement must always
result in true or false.

Use the if/else statement to conditionally run one of
two different pieces of JavaScript code.

Use a compound statement to run multiple pieces of
JavaScript code in place of a single piece of code.

Create a compound statement by surrounding multiple
individual statements with curly braces ({}).

Compound statements allow the action parts of if and
if/else statements to do more than one thing.

sharpen solution

Download at WoweBook.Com

you are here 4 151

decision making

The adventure begins
A few compound statements combined with an if/else
decision have turned Stick Figure Adventure into the
beginnings of an interactive online story. It’s well on its way
to becoming a fully-functioning online adventure!

Sweet! The first
few scenes of the
story look great!

Button 1 chooses
Decision 1, which
leads the user to
Scene 2.

Button 2 chooses
Decision 2, which
leads the user to
Scene 3.

2

Scene 2.

Scene 3.

Scene 1.

Scene description text is
displayed in an alert box.

1

1

2

1

2

Download at WoweBook.Com

152 Chapter 4

And now, the rest of the adventure
A single decision hardly makes for an interesting interactive story. But Ellie
has plans, including several more scenes that make Stick Figure Adventure
considerably more intriguing. Together, these scenes make up a decision
tree that you can use to chart the different paths through the story.

Bridge
overlooking

stream

Scene 3

Little house in
the woods

Scene 2

Fork in the
road

Scene 1

1

2
Title intro

Scene 0
Take the path.

Take the bridge.

2 Start the
story.

1

In addition to adding more scenes to the story with new twists and turns,
Ellie has also created a new introductory title scene that appears before
the first scene in the story (Scene 1). The title scene (Scene 0) is unique
in that it leads to Scene 1 regardless of whether you choose Decision 1
or Decision 2. In other words, Scene 0 is not a branch in the story, but
instead just the opening credits. The new scenes and openers are ready for
you to download at http://www.headfirstlabs.com/books/hfjs/.

The title scene leads to
Scene 1 regardless of which
decision the user chooses.

The new title scene serves
as an introduction to
Stick Figure Adventure.

roots of the decision tree

Download at WoweBook.Com

you are here 4 153

decision making

What would the Stick Figure Adventure decision tree look like just using if/else statements?

Eaten by witch
THE END

Scene 5

Witch in
window

Scene 4 1

2

Troll on bridge

Scene 7

Eaten by troll
THE END

Scene 6

To be
continued...

Scene 8

To be
continued...

Scene 9

1

2

Walk around side.

Wave at witch.

1

2

Walk across bridge.

Gaze into stream.

1

2

Sneak by
window.

Wave at witch.

1

2

Say hello to troll.

Jump into
stream.

1

2

These decisions lead back
to story-ending scenes.These scenes are

dead ends...literally!

Download at WoweBook.Com

154 Chapter 4

Tiered decision making with if/else
Even though each decision within the Stick Figure Adventure decision tree
only has two options, Ellie realizes that later decisions are dependent upon
earlier ones. For example, to get to Scene 5 from the beginning of the
story, the user must follow a specific path:

Is it OK to put one
if/else statement
inside of another?

Little house
in the woods

Scene 2

Fork in the
road

Scene 1

Eaten by
witch

THE END

Scene 5

Witch in
window

Scene 4

Little house
in the woods

Scene 2

Fork in the
road

Scene 1

Just knowing the option chosen by the user isn’t enough information to
decide what scene is next. She needs to factor in the current scene. One
solution is to use multiple if/else statements in such a way that you
first check the current scene, and then take action based upon the user’s
decision. But this tiered decision-making approach involves an if within
an if... a seemingly strange proposition.

That is, until you consider that we make tiered decisions all the time. Have
you ever answered the question, “would you like fries with that?” This
question rarely follows an order for a salad, the question is based upon an
answer you’ve already provided, such as, “I’ll have a cheeseburger.” This
is a tiered decision because later questions (fries?) are dependent upon the
answers to earlier questions (cheeseburger or salad?).

If (curScene is 2)

 If (decision is 1)

 Jump to Scene 4

 Else

 Jump to Scene 5

If (curScene is 4)

 If (decision is 1)

 Jump to Scene 8

 Else

 Jump to Scene 5

1
2

1 2

1

I don’t know ...it depends

Download at WoweBook.Com

you are here 4 155

decision making

It’s perfectly legal to place an if within
an if in JavaScript. Remember, an if
statement is still just a statement, just
being used as the action part of another
if. In other words, it’s OK to follow-up
one question with another question. An
if within another if is known as a
nested if statement.

Write the decision-making code for Scene 0 and Scene 1 of Stick
Figure Adventure, making sure to use nested if and if/else
statements when necessary.

if (order == "cheeseburger") {
 if (wantFries)
 order += " fries";
}
else if (order == "salad") {
 if (wantFruit)
 order += " fruit";
}

The nested if
statements only
come into play
if the outer if
statements are true.

A quicker way to say order = order + … so that the output is salad and fruit or cheeseburger and fries.

An if can go inside another if

Download at WoweBook.Com

156 Chapter 4

if (curScene == 0) {
 curScene = 1;
 message = “Your journey begins at a fork in the road.”;
}
else if (curScene == 1) {
 if (decision == 1) {
 curScene = 2;
 message = “You have arrived at a cute little house in the woods.”;
 }
 else {
 curScene = 3;
 message = “You are standing on the bridge overlooking a peaceful stream.”;
 }
}

Write the decision-making code for Scene 0 and Scene 1 of Stick
Figure Adventure, making sure to use nested if and if/else
statements when necessary.

Scene 0 always leads to
Scene 1, so no nested if
statement is needed.

Set the Scene 1
description message.

A nested if/else
statement handles
the user’s decision
for Scene 1.

If the current scene isn’t Scene 0, we
next check to see if it’s Scene 1.

It is extremely important
to carefully match opening
and closing braces.

Indentation helps you to
see which statements are
nested within others.

sharpen solution

Download at WoweBook.Com

you are here 4 157

decision making

Your functions control your pages
A pair of buttons (“1” and “2”) on the Stick Figure Adventure web page
is how users move through the story. When they decide to click one of
the buttons, the changeScene() function is called to change the scene
based upon the decision button that was clicked.

 …

 function changeScene(option) { …
 }
 </script>
 </head>
 <body>
 <div style=”margin‑top:100px; text‑align:center”>
 Please choose:
 <input type=”button” id=”decision1” value=”1” onclick=”changeScene(1)” /> <input type=”button” id=”decision2” value=”2” onclick=”changeScene(2)” /> </div>
 </body>
</html>

The changeScene() function receives the user decision
(“1” or “2”) as its only argument. This piece of information
is all the function needs to change the scene. Specifically the
changeScene() function handles three things:

 Set the curScene variable to the new scene number.11

 Set the message variable to the new scene description text.22

 Change the scene image based upon the value of
curScene, and display the scene description text message.

33

The web page has two
buttons that are used to
determine the next scene in
the story.

Download at WoweBook.Com

158 Chapter 4

Pseudocode lets you map out your adventure
Ellie has a pretty good general idea of how to build the changeScene() function to
implement the Stick Figure Adventure decision tree with JavaScript code. But, the sheer
number of decisions can make it a confusing proposition once the coding begins. Sometimes,
it’s helpful to first write the decision tree in pseudocode, which is a casual, more readable, and
also very unofficial way of expressing scripting code. Once the pseudocode is knocked out,
the real JavaScript code will be much clearer and less error-prone to write.

Q: Pseudocode looks a lot like JavaScript code. Why bother?

A: You don’t have to bother, but the idea is to simplify the process
of converting a complex tree of logic into JavaScript code, and at
the same time minimize the risk of making errors. Since pseudocode
doesn’t have the same level of detail of JavaScript code, you can
focus your efforts more on the logic of how one scene leads to
another, as opposed to making sure every curly brace and semicolon
is in the right spot. Once you’re comfortable with the pseudocode,
translating it into JavaScript code is fairly automatic.

Q: Do you have to use curly braces when nesting if
statements?

A: No. In fact, if you’re only nesting a single if statement within
another if statement with no other code, it can be simpler to leave
the curly braces off since you technically don’t need a compound
statement. However, in a complex nesting of if statements, it can
be advantageous to use curly braces even when not strictly needed
just to make the nesting clearer.

If (curScene is 0)

 Jump to Scene 1

 Set Scene 1 message

Else If (curScene is 1)

 If (decision is 1)

 Jump to Scene 2

 Set Scene 2 message

 Else

 Jump to Scene 3

 Set Scene 3 message

Else If (curScene is 2)

 ...

Little house
in the woods

Scene 2

Fork in the
road

Scene 1

Title intro

Scene 0

Each top-level
if/else statement
represents a
different scene.

The inner if/else
statements take
action based upon
the user’s decision.

pseudo what?

Download at WoweBook.Com

you are here 4 159

decision making

function changeScene(option) {

 var message = "";

 (curScene == 0) {

 curScene = ;

 message = "Your journey begi
ns at a fork in the road.";

 }

 ...

 (curScene == 3) {

 (option == 1) {

 curScene = ;

 message = "Sorry, a troll
lives on the other side of the b

ridge and you " +

 "just became his lunch."
;

 }

 {

 curScene = ;

 message = "Your stare is i
nterrupted by the arrival of a h

uge troll.";

 }

 }

 (curScene == 4) {

 if (option == 1) {

 curScene = ;

 }

 {

 curScene = ;

 message = "Sorry, you beca
me part of the witch's stew.";

 }

 }

 ...

 document.getElementById("scene
img").src = "scene" + curScene +

 ".png";

 alert(message);

}

elseelse

else
8

5

7
1

6

JavaScript Magnets
The changeScene() function for Stick Figure Adventure is missing a few pieces of code. Use
the magnets to finish the missing code from the scene diagram on page 152. Note that not all
of the scene decision code is shown—a few scenes have been left out intentionally.

else
if

if

if

if

Download at WoweBook.Com

160 Chapter 4

JavaScript Magnets Solution
The changeScene() function for Stick Figure Adventure is missing a few pieces of code. Use
the magnets to finish the missing code the scene diagram on page 152. Note that not all of the
scene decision code is shown—a few scenes have been left out intentionally.

function changeScene(option) {

 var message = "";

 (curScene == 0) {

 curScene = ;

 message = "Your journey begi
ns at a fork in the road.";

 }

 ...

 (curScene == 3) {

 (option == 1) {

 curScene = ;

 message = "Sorry, a troll
lives on the other side of the b

ridge and you " +

 "just became his lunch."
;

 }

 {

 curScene = ;

 message = "Your stare is i
nterrupted by the arrival of a h

uge troll.";

 }

 }

 (curScene == 4) {

 if (option == 1) {

 curScene = ;

 }

 {

 curScene = ;

 message = "Sorry, you beca
me part of the witch's stew.";

 }

 }

 ...

 document.getElementById("scene
img").src = "scene" + curScene +

 ".png";

 alert(message);

}

if

1

else if

6
if

else
7

else if

8

else
5

JavaScript magnets solution

Download at WoweBook.Com

you are here 4 161

decision making

Going on a stick figure adventure
The Stick Figure Adventure script now reflects the entire
decision tree, allowing you to navigate through the story
along several different paths. Here’s one of them:

It’s awesome seeing my story
come to life on an interactive
web page. I can’t wait to get
back to the story writing.

1

2
2

Scene 0.

Scene 1.

Scene 3.

Scene 6.

1

Download at WoweBook.Com

162 Chapter 4

Stick figure inequality
Unfortunately, Ellie is already encountering a problem with Stick Figure
Adventure. After releasing the page to a few friends for testing, a few of
them have reported a strange window that displays an empty message.
The “ghost window” is isolated to when a new adventure is started
after ending a previous one. So the problem is somehow associated with
moving to Scene 0 from some other scene.

The empty alert box is
confusing. I’d rather it
just do nothing.

else if (curScene == 5) {
 curScene = 0;
}
else if (curScene == 6) {
 curScene = 0;
}

Ghost window containing
no message at all?

As it turns out, there’s only two scenes that have a path back to Scene 0:
Scene 5 and Scene 6. These two scenes lead back to Scene 0 because they
represent endings to the story, so it makes sense to start over at the beginning
once the story ends. So Ellie isolates the code in the changeScene()
function that handles changing from these two scenes back to Scene 0:

Although nothing obvious jumps out in such simple code, take another
look at the code at the bottom of the changeScene() function
that takes care of changing the scene image and displaying the scene
description text.

document.getElementById("sceneimg").src = "scene" + curScene + ".png";
alert(message);

Display the scene description text,
which is stored in the message variable.

Scenes 5 and 6 both set the
curScene variable but do nothing
to the message variable.

drawing a blank

Download at WoweBook.Com

you are here 4 163

decision making

!= Psst, I’ve got nothing to tell you…
The problem with the Stick Figure Adventure code is that it always
displays an alert box with the scene description message, even when
there’s no message to display, like with Scene 0 when restarting an
adventure. But how can you check to see if the message variable
actually contains scene description text?

message
We need a way to make
sure the alert box is
not displayed when the
message variable is empty.

The solution involves checking the message variable for empty text ("")
before displaying the alert box. Or to put it another way, only display the
alert box if the message variable is not equal to an empty string. Granted,
that seems like a backwards way of solving the problem, but remember
that you’re trying to come up with a true/false test for when it’s OK to
display the alert box.

Just as the equality operator (==) allows you to check if two items are the
same, the inequality (!=) operator checks to see if two items are different.

Rewrite the code that displays the Stick Figure Adventure scene
description message in an alert box, but this time make sure it
only displays the alert box if the message actually has text data.

if (curScene != 6)
 alert("Thankfully, you haven't been eaten by the troll.");

This is true for any scene
other than Scene 6.

Download at WoweBook.Com

164 Chapter 4

Crafting decisions with comparison operators
Equality and inequality aren’t the only comparison operators you’re likely to
find useful as you continue building test conditions and making decisions in your
JavaScript code.

Rewrite the code that displays the Stick Figure Adventure scene
description message in an alert box, but this time make sure it
only displays the alert box if the message actually has text data.

if (message != ““)
 alert(message);

This is true only if
message contains a
non-empty string
of text.

Equality

x == y
Inequality

x != y
Less than

x < y

Greater than

x > y

Negation

!x

Less than or equal to

x <= y

Greater than or equal to

x >= y

JavaScript operators, such as these
comparison operators, are used
to build expressions, which are
chunks of JavaScript code that are
somehow combined into a single value.
Expressions made out of comparison
operators have a boolean (true/false)
result, which makes them handy for
constructing decision making logic using
if/else statements.

True if x EQUALS
y, otherwise false True if x is UNEQUAL TO

y, otherwise false
True if x is LESS THAN
y, otherwise false

True if x is GREATER THAN
y, otherwise false

False if x is true,
true if x is false. True if x is LESS THAN OR

EQUAL TO y, otherwise false. True if x is GREATER THAN OR
EQUAL TO y, otherwise false

 = and == are very different animals.

Make sure that when you intend to
compare two values for equality you use ==,
not =. Otherwise, you’ll end up assigning
one of the values and potentially creating

all kinds of new and unusual bugs.

making true/false comparisons

Download at WoweBook.Com

you are here 4 165

decision making

Q: Why does the negation operator only use a single value?

A: While most comparison operators require two operands, the
negation operator requires only one. And its job is very simple:
reverse the value of the operand. So, true becomes false and
false become true.

Q: I’ve seen the negation operator used on a value that isn’t
a comparison. How does that work?

A: Code that uses the negation operator on a non‑comparison
value is taking advantage of a detail regarding how JavaScript
determines the “truthiness” of a value. If you use a non‑comparison

value in a situation where a comparison is expected, any value other
than null, 0, or "" will be automatically interpreted as true. In
other words, the presence of data is considered a true value from
a comparison perspective. So, when you see the negation operator
used on a non‑comparison value, null, 0, and "" are negated to
true, while all other values are negated to false.

Q: Hang on, what’s null?

A: null is a special JavaScript value that represents the
absence of data. It makes more sense in the context of objects,
which are covered in Chapters 9 and 10.

This code is capable of displaying a positive message about Stick Figure Adventure. What
values should the four values a, b, c, and d have to successfully complete the message?

var quote = "";

if (a != 10)
 quote += "Some guy";

else
 quote += "I";

if (b == (a * 3)) {

 if (c < (b / 6))

 quote += " don't care for";

 else if (c >= (b / 5))

 quote += " can't remember";

 else
 quote += " love";

}
else {
 quote += " really hates";

}
if (!d) {
 quote += " Stick Figure";

}
else {
 quote += " Rock, Paper, Scisso

rs";

}

alert(quote + " Adventure!");

a =

b =

c =

d =

Download at WoweBook.Com

166 Chapter 4

Comments, placeholders, and documentation
Stick Figure adventure is a good example of a script that has unfinished chunks
of code because the story is still being developed. For example, Scenes 8 and 9
are both “to be continued” scenes still awaiting some creative work from Ellie.
It can be helpful to flag unfinished areas of code with placeholder notes so that
you don’t forget to fill in the details later. JavaScript comments make it possible
to add notes to code without affecting how the code runs in any way.

This code is capable of displaying a positive message about Stick Figure Adventure. What
values should the four values a, b, c, and d have to successfully complete the message?

var quote = "";

if (a != 10)
 quote += "Some guy";

else
 quote += "I";

if (b == (a * 3)) {

 if (c < (b / 6))

 quote += " don't care for";

 else if (c >= (b / 5))

 quote += " can't remember";

 else
 quote += " love";

}
else {
 quote += " really hates";

}
if (!d) {
 quote += " Stick Figure";

}
else {
 quote += " Rock, Paper, Scisso

rs";

}

alert(quote + " Adventure!");

a =

b =

c =

d =

10
30
5
false

// Comment+
A comment starts with a
pair of forward slashes.

The comment text can be anything you want - it all gets ignored by the JavaScript interpreter.

The positive message
we were looking for.

a must equal 10.

b must equal
10 x 3.

c must equal 5.

d must be false so that !d is true. d
could also be null, 0, “”, or even left
empty (undefined), in which case !d will
still be true.

exercise solution

Download at WoweBook.Com

you are here 4 167

decision making

else if (curScene == 8) {
 // TO BE CONTINUED
}
else if (curScene == 9) {
 // TO BE CONTINUED
}

/* Start of comment+

More comment

End of comment */+

// Clear the scene message
var message = "";

// Initialize the current scene to Scene 0 (Intro)
var curScene = 0;

A comment created with // extends from the slashes to the end of the line.
To create a comment as a placeholder, just follow the slashes with a note
indicating that more code is coming.

Comments aren’t just for placeholders. They’re more commonly used to
document code so that it’s better organized and easier to understand. Just
because you know how a piece of code works now doesn’t mean you’ll
have such a great memory about it later. And there’s always the chance
someone else will inherit your code, and they’ll certainly benefit from
notes about how it works.

The initialization of the curScene variable in Stick Figure Adventure
is clearer thanks to a detailed comment. A similar comment could be
used to clarify the initialization of the message variable.

To be
continued...

Scene 8

To be
continued...

Scene 9These lines
of code are
ignored by the
interpreter.

This comment
explains the variable initialization.

Again, a comment
clarifies what is going on
in the code following it.

If you need a comment that spans more than one line, you can
create a multiline comment.

/* All three of these lines of code are one
 big comment. Seriously, I'm not kidding.
 No joke, this is still part of the comment. */

A multiline comment can be as long as you want,
you just have to start it with /* and end it with */.

Multiline comments always start with /*.

Single‑line comments
start with //, while
multiline comments
are enclosed between
/* and */.

Multiline comments
always end with */.

Comments in JavaScript start with //

Download at WoweBook.Com

168 Chapter 4

Hang on a second. The
comments make sense but I don’t
get why the curScene and message

variables are created in different places.
What’s the deal with that?

Location, location, location of variables
As with real estate, location means everything in JavaScript. In this case, the
place where the Stick Figure Adventure variables are created matters a lot.
In other words, it’s no accident that curScene is created outside of the
changeScene() function, while message is created inside the function. The
reason is because of scope, which controls the life cycle of a variable, as well as
what code can access it.

<script type="text/javascript">

 // Initialize the current scen
e to Scene 0 (Intro)

 var curScene = 0;

 function changeScene(decision)

 {

 // Clear the scene message

 var message = "";

 ...
 }
</script>

curScene is created
outside of the
changeScene() function.

message is created
on the inside of the
changeScene() function.

now where did I put that variable?

Download at WoweBook.Com

you are here 4 169

decision making

Scope and context: where data lives
In JavaScript, scope refers to the context of data, as in where data lives
and how it can be accessed. Depending upon its scope, some data can be
seen everywhere in a script, while other data is limited to a specific block of
code, such as a function. This an example of two variables who live in very
different places:

var x;

function doSomething(z) {
 var y;
 ...
}

In this code, x is considered a global variable since it’s created outside
of any function or other block of code, and therefore can be seen by the
entire script. More importantly, x is “alive” for as long as the script is
running. Unlike x, y is a local variable whose visibility is confined to the
code within the doSomething() function. Also, y only exists while the
doSomething() function is running – it gets created when the function
starts, and then destroyed when the function finishes.

So far so good, but where does that leave z, the argument to the
doSomething() function? As it turns out, function arguments act just
like local variables that have already been initialized. So z has the same
scope as y, meaning it can only be accessed from within the function.

x

y

z

How could global and local variables fit into the Stick Figure Adventure code?

Global variable, visible
to the entire script.

Local variables, visible
only within the function.

Global variables are
kept around for the
entire life of a script.

Local variables are
created and destroyed as dictated by their scope.

Data visibility is on a “need to know” basis, meaning you should limit
accessibility whenever possible. This helps prevent data from getting
inadvertently changed by code that has no business accessing it. In practical
terms, this means you should use local variables whenever possible.

Download at WoweBook.Com

170 Chapter 4

Check your adventure variable score
Looking back at the Stick Figure Adventure variables with the knowledge
of local and global variables, it’s now possible to get a better feel for why the
variables are created in different places.

<script type="text/javascript"> // Initialize the current scene to Scene 0 (Intro) var curScene = 0;

 function changeScene(decision) { // Clear the scene message var message = "";

 if (curScene == 0) {
 curScene = 1;
 message = "Your journey begins at a fork in the road."; }
 else if (curScene == 1) { if (decision == 1) { curScene = 2
 message = "You have arrived at a cute little..."; }
 else {
 curScene = 3;
 message = "You are standing on the bridge..."; }
 }
 else if (curScene == 2) { ...
 }
</script>

The issue here is the need to preserve the value of a variable outside the
scope of the changeScene() function. The message variable is
cleared at the beginning of the function, so its value doesn’t have to be
preserved outside of the function. The curScene variable, on the other
hand, is checked in several if/else test conditions, so this value has to
persist in between calls to the function. Bottom line, message can be
created locally but curScene has to be global in this example.

The value of the
message variable is reset
each time through the
changeScene() function,
so it works fine as a
local variable.

The value of the
curScene variable must
be maintained in between
calls to the changeScene()
function, so it has to be
a global variable.

adventures of variable locations

Download at WoweBook.Com

you are here 4 171

decision making

<script type="text/javascript">

 function changeScene() {

 if (curScene == 0) {

 }

 else if (curScene == 1) {

 }

 else if (curScene == 2) {

 }

. . .
}

</script>

curSc
ene

message

Global
variable.

Local
variable.

If scope still has you a little puzzled, it may help to think of different
parts of a script as self-contained areas where data can live. For
example, the Stick Figure Adventure script has several different
scopes that you could use to store away data.

There is only one global scope for creating global
variables, and everything else is local. Anything
created at the global level can be seen by the
entire script, while local data can only be seen and
used within its limited scope.

Where does my data live?

Q: I have some data. Which type of variable should I use to store it: local or global?

A: The way you’re using the data will determine whether it needs to be local or global. But
since you asked, the general rule is to try to make all variables local, and only resort to global
if local won’t work.

Global, or script level, scope.
Local scope
to the
changeScene()
function.

Local scope to each
different compound
statement.

Download at WoweBook.Com

172 Chapter 4

Tonight’s talk: Local variable and Global variable discuss the
importance of location when finding a home for data

Local variable:
I find it helpful to focus only on what’s going on
around me. In fact, I couldn’t even tell you what’s
happening outside of the neighborhood where I live,
and I quite like it that way.

While that sounds tempting, I like the security of
comfortable surroundings. I rest easy knowing that
no one from outside of my little area can get to me.

Ouch! I’m not sure I believe in all this reincarnation
business, but I can tell you that I’m every bit as
handy for storing data as you are. I just don’t put
myself out there for everyone to see.

And when a script needs to keep some information
private to a certain section of code, it comes to me
because of my knack for discretion.

And that’s why people still find us both useful.

Global variable:

Dude, you really need to expand your world view.
Get out and travel a little, check out other parts of
the script universe.

Maybe so, but are you aware of the fact that you’re
little life is meaningless in the grand script scheme
of things. You get created and destroyed over and
over every time your little world comes and goes,
while I’m here for the long haul. If the script is here,
I’m here.

That’s fair. And I’ll admit that I’ve been abused and
misused a time or two, but the upside of me always
holding my value through thick and thin has been
enough to offset the problems. When a script needs
a piece of data that remembers its value and is
available everywhere, they come to me.

Sounds great, but I’ll take accessibility and
persistence over privacy any day.

local and global variable face off

Download at WoweBook.Com

you are here 4 173

decision making

Comments are a great way to remind yourself of code
to add later.

Don’t be afraid to use lots of comments to document
your code so that it’s easier to understand.

Use a pair of forward slashes (//) to start a single‑line
comment.

Multiline comments start with /* and end with */.

Global variables are created at the script level, outside
of any function or other body of code, and are kept
around for the life of the script.

Local variables are created (and destroyed) inside a
body of code, and can only be accessed within that
code.

Local variables are preferred over global variables
because their access is more tightly controlled.

Q: What happens if actual JavaScript
code is placed within a comment?

A: Nothing! Comments are completely
ignored by the JavaScript interpreter, so
anything you place within a comment is
overlooked when the interpreter starts
running script code. Knowing this, comments
can be used as a means of temporarily
disabling pieces of code when trying to track
down a problem or trying different coding
approaches.

Q: Can a line of JavaScript code have
a single‑line comment at the end?

A: Yes. And in this case, the code is still
run because it isn’t part of the comment. A
single‑line comment doesn’t necessarily take
up an entire line—the comment is just from
the // to the end of the line. So if the //
follows a piece of code, the code will still run
just fine.

Q: Why don’t comments end with a
semicolon?

A: Because they are not JavaScript
statements. Comments are labels that do
nothing more than describe or provide
additional information about code, sort of
like footnotes in a book. The main thing to
remember is that the JavaScript interpreter
ignores all comments—comments are there
for the human brain, not JavaScript.

Q: What does “script level” mean in
regard to creating global variables?

A: “Script level” is the top level of script
code, which is just inside the <script>
tag. The significance of “script level” is that
it is outside of any function or other block
of code, and therefore anything created at

“script level” is considered global. This means
anything created at “script level” lives for the
life of the script and can be accessed by any
code within the page.

Q: If I create a variable inside of
a compound statement, is it a local
variable?

A: Maybe. The current version of
JavaScript (1.7) doesn’t support true local
scope for variables. Instead, it supports
function scope, which means variables
within a given function are considered local
variables to that function. But just sticking
a variable inside of a compound statement
doesn’t automatically make it a local variable,
although a future version of JavaScript will
likely remedy this situation. The easy way to
remember it is that variables created inside of
a function are local, while all others are global.

Q: Scope, flow, execution... this local
and global variable stuff sounds really
complex. Is it as hard as it sounds?

A: Not really. The main thing to remember
is that local variables are perfect for storing
temporary information that you don’t need
to remember outside of a function or other
chunk of code. If you need the data to
stay around for the entire life of the script,
then you should make it a global variable.
Surprisingly enough, most script data tends
to be more temporary than you might initially
think, meaning that you will likely use local
variables a lot more than global variables.

Local variables store temporary
information, global variables are stored
for the life of the script.

Download at WoweBook.Com

174 Chapter 4

Choice of five
Remember Eric, our game show contestant from earlier
in the chapter? It seems Eric has polished off his donuts
and progressed to a later round of Wanna Make a Deal?
Problem is, he now faces a very challenging decision...
he must choose between one of five options.

How would you code a JavaScript decision
involving five different options?

A
B

C
D

EGeez, I could really
use some help making
this decision.

Wanna Make a Deal?

choices abound

Download at WoweBook.Com

you are here 4 175

decision making

Couldn’t you just use a bunch of
nested if/else statements to
choose between five things?

Choice of five
Good idea! Although the if/else statement is geared toward
making a decision between one of two things, several of them can
be nested together to choose between as many things as you want.

if (chosenCase == "A")

 openCase("A");

else if (chosenCase == "B")

 openCase("B");

else if (chosenCase == "C")

 openCase("C");

else if (chosenCase == "D")

 openCase("D");

else if (chosenCase == "E")

 openCase("E");

The nested if/else statements work just fine... but they aren’t
all that efficient, primarily because they aren’t really designed
for decision-making that involves more than two possibilities. To
see why, work through how many boolean tests take place in the
process of choosing the last case, Case E. All five test conditions
are evaluated, which is a bit inefficient.

This code works but the last case
requires every test condition to
be evaluated, which is inefficient.

Nesting if/else can get complicated

Download at WoweBook.Com

176 Chapter 4

Wouldn't it be dreamy if you
could choose between more than two
things without having to use all those
inefficient if/else statements?

wishing, and hoping, and choosing

Download at WoweBook.Com

you are here 4 177

decision making

Switch statements have multiple cases
JavaScript has a decision-making statement just for making multiple choice
decisions. Unlike the if/else statement, which is really better suited to
choosing between two things, the switch/case statement allows you to
more efficiently choose between any number of things. Let’s look at Eric’s
dilemma through the eyes of a switch/case statement:

Fact or fiction? The switch/case statement can do anything the if/else statement can do.

switch (chosenCase) {

case "A":

 openCase("A");

 break;

case "B":

 openCase("B");

 break;

case "C":

 openCase("C");

 break;

case "D":

 openCase("D");

 break;

case "E":

 openCase("E");

 break;

}

Fact Fiction

The value of Eric’s chosen case is
the controlling piece of information
in the switch/case statement.

Each possible
choice is coded
using a case
statement.

The action code is placed
immediately below its
matching case statement.

The break statement is necessary to finish each decision branch by immediately exiting from the entire switch/case statement.

The switch/case statement
is structured as a big
compound statement.

The “case” in
switch/case has
nothing to do with
Eric’s metal cases.

The switch/case
statement efficiently
chooses between more
than two things.

Download at WoweBook.Com

178 Chapter 4

:default +

Match 1case + :+

Inside the switch statement
Now that you’ve seen a switch/case statement in action, let’s break it down
and look at the general format for the statement.

()switch Test data+ + + {+

;Statement +

;break +

...

;Statement +

;break +

...

}

...

Fact or fiction? The switch/case statement can do anything the if/else statement can do.

Fact Fiction

Unlike if/else, the test data that controls
a switch/case statement cannot be an
expression—it must simply be a piece of data.

The test data must be
a piece of data, not an
expression—and it does NOT
evaluate to true or false.

The break statement prevents
code for other decision
branches from getting run.

Each decision
branch starts
with the case
keyword, followed
by the match.

An optional “default”
branch contains code
to be run if nothing
else matches.

Each match ends with
a regular colon, NOT
a semicolon.

The entire body of the
statement is wrapped up
within curly braces.

switching things up

Download at WoweBook.Com

you are here 4 179

decision making

Q: So a switch/case statement doesn’t
make a decision using a true/false expression?

A: That’s correct. Unlike an if or if/else
statement, switch/case uses a piece of test
data to make its decisions. That’s how it supports
more than two outcomes.

Q: So each case match is just a match on
the test data?

A: Yes. The idea is that you use a variable as
the test data, and then use literal values to carry
out each different match.

Q: What happens if you leave out all the
break statements in a switch/case?

A: Unexpected results can occur. The break
statements serve as dividers between each section
of action code in a switch/case statement.
Without them, all of the action code would run
as one big chunk, which would defeat the whole
purpose of making different decisions. When a
match is made in a switch/case statement,
the code below the matching case is run until it
encounters a break statement. Only then does
the switch/case statement exit.

 Break for
safety.

Prevent
accidental code
from getting run

by always finishing off each
switch-case match with a
break statement.

I wonder if a switch-case
statement could be used
to make Stick Figure
Adventure more efficient...

Creating a switch/case statement is admittedly more involved than
creating an if/else statement, but it is much more efficient for dealing
with more than two possible outcomes. This is the process:

 Enclose the test data in parentheses and open the
compound statement ({).

11

 Write the case match followed by a colon (:).22

 Write the code that gets run if there is a match. This
can be multiple lines of code—there is no need for a
compound statement.

33

 Add a break statement—don’t forget the semicolon (;).44

 Optionally include a default branch for when there
is no match.

55

 Close the compound statement (}).66

Switch case statements: write your own

Download at WoweBook.Com

180 Chapter 4

HeadFirst: Glad you’re willing to chat with us. So,
in one word tell us how you would describe yourself.

Switch: Choosy.

Head First: Care to elaborate?

Switch: I make it possible to choose between lots
of different things. Although some situations involve
simple black and white decisions, there are plenty of
situations that require, let’s say, more nuance. That’s
where I come in.

Head First: But people say that If can do the same
kind of thing, sometimes with less code?

Switch: That may be true. And you can cut a piece
of wood with a hammer if you whack at it long
enough. Personally, I’d rather just use a saw. The
reality is that everyone has their specialty, and mine is
efficiently choosing between several different things.
I don’t have any beef with If, but he’s a tool better
suited for a different job.

Head First: You mention efficiency. Tell us how
efficiency figures into what you do.

Switch: Well, I’m structured to make a decision
based upon the value of a piece of data, and all I
do is compare that piece of data to possible matches
to determine which code to run. That’s it. I don’t
bother trying to evaluate expressions, and I don’t
require nesting or anything cute like that to choose
between multiple outcomes. If you want to make a
quick decision based upon a piece of data, I’m your
guy!

Head First: Tell us about your buddy Break. We’ve
heard you can’t get through the day without him?

Switch: That is a fact. Without Break, I’d be in big
trouble because I wouldn’t have a way to separate the
different pieces of action code. Break lets me know
when a section of code has finished running so I can

exit without running some other code by accident.

Head First: I see. What about Case, aren’t you guys
pretty close as well?

Switch: Absolutely. Case and I have a very close
relationship, primarily because Case tells me what
all the possible matches are for a given piece of
test data. Without Case, I would have no basis for
making a decision.

Head First: So I get that Case lays out the different
possible matches, and you use those matches to
determine what to do. But what happens when the
test data has no match?

Switch: It depends. If no special code has been
added to deal with a “no match” scenario, then
nothing happens. However, my good friend Default
makes it possible to run a special chunk of code only
in the event that no match was found.

Head First: Wow, I didn’t realize that. How does
Default get along with Case?

Switch: Just fine, actually. They don’t step on
each other’s toes because they never compete for
attention. Case handles all the stuff that matches,
while Default takes care of the situations when
nothing at all matches. Just between us, I think
Case is actually a little relieved that Default is there
because he gets nervous when nothing matches.

Head First: I see. Well, we’re about out of time.
Any parting thoughts before you go?

Switch: Sure. Remember that there’s nothing worse
than indecision. Nobody likes a waffler. Just because
there are lots of possibilities doesn’t mean you have
to throw your hands up and quit. Give me a call
and I’ll do my best to help you make a decision that
works out best for your script.

Switch Exposed
This week’s interview:
Mover, shaker, decision maker

Switch Exposed
This week’s interview:
Mover, shaker, decision maker

switch exposed

Download at WoweBook.Com

you are here 4 181

decision making

...
if (curScene == 0) {

 curScene = 1;
 message = "Your journey

begins at a fork in the ro
ad.";

}
else if (curScene == 1) {

 if (decision == 1) {

 curScene = 2
 message = "You have ar

rived at a cute little hou
se in the woods.";

 }
 else {
 curScene = 3;
 message = "You are sta

nding on the bridge overlo
oking a peaceful

stream.";
 }
}
...

Convert the first two scenes of the Stick Figure Adventure code so
that it uses the switch/case statement instead of if/else.

Here’s the original
version of the code
that uses if/else.

Download at WoweBook.Com

182 Chapter 4

Convert the first two scenes of the Stick Figure Adventure code so
that it uses the switch/case statement instead of if/else.

sharpen solution

...
if (curScene == 0) {

 curScene = 1;
 message = "Your journey

begins at a fork in the ro
ad.";

}
else if (curScene == 1) {

 if (decision == 1) {

 curScene = 2
 message = "You have ar

rived at a cute little hou
se in the woods.";

 }
 else {
 curScene = 3;
 message = "You are sta

nding on the bridge overlo
oking a peaceful

stream.";
 }
}
...

Here’s the original
version of the code
that uses if/else.

switch (curScene) {
case 0:
 curScene = 1;
 message = “Your journey begins at a fork in the road.”;
 break;
case 1:
 if (decision == 1) {
 curScene = 2
 message = “You have arrived at a cute little house in the woods.”;
 }
 else {
 curScene = 3;
 message = “You are standing on the bridge overlooking a peaceful stream.”;
 }
 break;
...
}

Each case match
corresponds to a
scene number.

Set the new scene number
and the scene description
message text, just like in
the if/else version.

Within each case, it still
makes sense to stick with
if/else for handling the
user’s story decision.

The remaining
scenes follow a
similar structure.

Close the switch/case
statement with a }.

Download at WoweBook.Com

you are here 4 183

decision making

A switchy stick figure adventure: test-drive
After completely reworking the decision-making logic for Stick Figure Adventure,
Ellie is itching to see the result. The changes are immediately noticeable as you
navigate through the story...

21

Hang on, nothing looks any different! And that’s because the switch/
case changes to Stick Figure Adventure only affect the structure of the
code, not its appearance. This is an example of how some coding changes
take place purely behind the scenes... literally!

Everything looks
exactly the same.

Stop right there!

So not all script
improvements can be
seen on the surface...
I can live with that.

Download at WoweBook.Com

184 Chapter 4

The story goes on...
Stick Figure Adventure is really just the start of
the story. It needs some creative storytelling, a little
stick figure artwork, and plenty more JavaScript
code to be a truly interesting online application.
Where will you take it from here?

The script looks great
but I could use some help
adding more scenes to
Stick Figure Adventure.

1

2

?

Scene 8

?

Scene 9
1

?

Scene ?

?

Scene ?

?

Scene ?

?
THE END

Scene ?

2

1

2

1

2

1

2

so how does it end?

Download at WoweBook.Com

you are here 4 185

decision making

JavaScriptcross
Here’s an easy decision. Is it time to take a break
and knock out a little crossword puzzle? Of course!

Untitled Puzzle
Header Info 1

Header Info 2

etc...

1 2

3

4 5

6 7

8 9

10 11

12

13

Across
1. Writing this first can make it easier to write complex
JavaScript code.
4. Use these to document your code.
5. This kind of statement is actually made up of multiple
statements.
6. When one if statement is placed within another, it is said to
be
8. The != operator tests for this.
10. You can use one of these to help visualize a group of
complex decisions.
13. The entire script has access to this kind of variable.

Down
2. Do this, do that.
3. These kinds of operators have a true/false result.
4. How code is run when it is part of an if-else statement.
7. A statement that allows you to make a decision based upon
the value of a piece of data.
9. A variable that has limited scope.
11. This statement allows you to conditionally run a piece of
code.
12. Each decision branch inside of a switch statement has one
of these.

Download at WoweBook.Com

186 Chapter 4

JavaScriptcross Solution
Untitled Puzzle

Header Info 1

Header Info 2

etc...

P
1

S E U D O C O D E
2

L B
3

C
4

O M M E N T S C
5

O M P O U N D

O E O

N L

D N
6

E S
7

T E D

I W A

T I N

I
8

N E Q U A L
9

I T Y

O O C

D
10

E C I
11

S I O N T R E E C H

F A A C
12

L G
13

L O B A L

L S

Y E

Across
1. Writing this first can make it easier to write complex
JavaScript code. [PSEUDOCODE]
4. Use these to document your code. [COMMENTS]
5. This kind of statement is actually made up of multiple
statements. [COMPOUND]
6. When one if statement is placed within another, it is said to
be [NESTED]
8. The != operator tests for this. [INEQUALITY]
10. You can use one of these to help visualize a group of
complex decisions. [DECISIONTREE]
13. The entire script has access to this kind of variable.
[GLOBAL]

Down
2. Do this, do that. [ELSE]
3. These kinds of operators have a true/false result. [BOOLEAN]
4. How code is run when it is part of an if-else statement.
[CONDITIONALLY]
7. A statement that allows you to make a decision based upon
the value of a piece of data. [SWITCH]
9. A variable that has limited scope. [LOCAL]
11. This statement allows you to conditionally run a piece of
code. [IF]
12. Each decision branch inside of a switch statement has one
of these. [CASE]

JavaScriptcross solution

Download at WoweBook.Com

you are here 4 187

decision making

Page Bender

It’s a meeting of the minds!

Fold the page vertically
to line up the two brains
and solve the riddle.

 Although the if/else statement is
 incredibly handy, it does have its
 limitations. For example, you can’t switch
 between more than two things. In
 case you don’t believe it, try it yourself.

When if/else isn’t enough...

Troll on
bridge

Scene 7

Bridge
overlooking

stream

Scene 3

Fork in the
road

Scene 1

Title intro

Scene 0

Swamp

Scene ?

Ditch

Scene ?

1

2

2

2

1

1

local

global

Download at WoweBook.Com

Download at WoweBook.Com

this is a new chapter 189

At the Risk of
Repeating Myself

looping5

Some say repetition is the spice of life. Sure, doing something new and

interesting is certainly exciting, but it's the little repetitive things that really make it possible

to get through the day. Compulsive hand sanitizing, a nervous tick, clicking Reply To All

to every freaking message you receive! Okay, maybe repetition isn't always such a great

thing in the real world. However, it can be extremely handy in the world of JavaScript.

You'd be surprised how often you need a script to run a piece of code several times, and

that's where the power of looping really shines. Without loops, you'd be wasting a lot of

time cutting and pasting a bunch of wasteful code.

Go team, go! Go team,
go! Go team, go!

Download at WoweBook.Com

190 Chapter 5

x

X marks the spot
It’s hard to argue the allure of buried treasure.
Here’s a treasure map that could use some
JavaScript assistance.

The first part of the map can be traversed by repeating an action (taking
a step) a certain number of times (37). So, taking 37 steps is a matter of
repeating a single step 37 times.

37 cycles

37 steps is really
just 1 step repeated 37 times.

Taking a step is a
repeatable action.

 First, walk east for
exactly 37 steps.

11

 Then, walk until you see a rock
shaped like a piece of popcorn.

22

 X really does mark the spot!xx

 First, w
alk east for

exactly 37 steps.
11

=

Oh yeah, it’s
treasure!

37 steps.

So the question is... how does JavaScript make repetition possible?

how many "steps" to find the buried treasure

Download at WoweBook.Com

you are here 4 191

looping

Déjà vu all over again...for loops
Repetition in JavaScript is carried out with loops, which allow
you to repeat code. The for loop in particular is great for
repeating something a certain amount of known times. For
example, for loops are great for counting tasks, such as counting
down to zero or counting up to some value.

A for loop consists of four different parts:

1
Initialization

Test condition
2

Action
3

Update
4

How do the four steps in a for loop relate to
the treasure map example?

Steps 2, 3, and 4 take
place once for every
cycle through the loop.

Initialization takes place one time,
at the start of a for loop.

Initialization

The test condition checks to see
if the loop should continue with
another cycle.

Test condition

The update part of the loop
updates any loop variables at
the end of a cycle.

Update

The action part of the loop is the
code that is actually repeated in
each cycle.

Action

1 2 3 4... 2 3 4...

One loop cycle

For loops let you
repeat code a
certain number
of times.

1

2

3

4

Another loop cycle

Download at WoweBook.Com

192 Chapter 5

Treasure hunting with a for loop
for loops work for following the treasure map because they involve
a known number of steps. Applying a for loop to the first part of
the treasure map will look something like this:

for (var x = 0; x < 37; x++)

 takeStep();

1 2

3

4

Breaking down the code for the for loop:

 Initializate the counter variable x to 0.11

 Check to see if x is less than 37. If so, move on to Step 3 and continue
the cycle through the loop. If not, quit the loop.

22

 Run the loop action code, which in this case means running the
takeStep() function.

33

 Increment x and go back to Step 2 to possibly start another loop cycle.44
37 cycles

After 37 cycles through the loop, the loop finishes with x equal to 37.
All this thanks to the four pieces of the for loop puzzle that work
together to establish JavaScript repetition.

Starts the loop with the
counter, x, at 0.

Initialization
Only perform another
loop cycle if the test
evaluates to true, that is,
if x is less than 37.

Test condition

Update the loop counter
by adding 1 to x.

Update

Call the takeStep()
function to take a step.

Action
var x = 0

x < 37

x++

takeStep()37 cycles

1 2

3

4

Increment x, same
as x = x + 1.

Increment x, same
as x = x + 1.

It’s common to start counting at 0 in JavaScript loops, although the loop could easily be changed to start at 1.

the for loop: make it count

Download at WoweBook.Com

you are here 4 193

looping

var count = prompt("Enter a number greater than 0:", "10");

;Action +

Finish the code that first prompts the user to enter a number greater than 0, and then uses
that number as the starting count for a for loop that performs an old movie reel countdown
(4, 3, 2, 1, Roll film!). Also, make sure to validate that the number is really greater than 0 before
performing the countdown.

Dissect the for loop
All for loops stick to a consistent format that requires each of the four
components to be in specific places. The good news is that there’s plenty
of flexibility to craft your own custom loops using this format.

(for + + ;Init + + ;Test + +)Update +

All for loops start
with the keyword for.

The initialization code,
which usually sets up
the loop counter.

The test condition, which ultimately results in a true/false value.
The action to be
repeated, which is a single (or compound) statement.

The loop control update, which
usually increments or decrements
a counter variable.

Parentheses enclose the
Init, Test, and Update
parts of the loop.

Semicolons are required
after the initialization
and test condition code.

Prompt the user
to input a number.

Store the number in
the count variable.

Download at WoweBook.Com

194 Chapter 5

Mandango: a macho movie seat finder
Movie reel countdowns aren’t the only way JavaScript loops
can be applied to movies. As you may know, most macho men
want an empty seat between the occupied ones when watching a
movie together. This knowledge has led Seth and Jason to create
Mandango, the macho movie seat finder.

The idea is to allow manly buddies to buy movie seats in groups of
three so there is always a seat between them. Problem is, Seth and
Jason haven’t figured out how to make it work... yet.

Finish the code that first prompts the user to enter a number greater than 0, and then uses
that number as the starting count for a for loop that performs an old movie reel countdown
(4, 3, 2, 1, Roll film!). Also, make sure to validate that the number is really greater than 0 before
performing the countdown.

var count = prompt("Enter a number greater than 0:", "10");

if (count > 0) {
 for (var x = count; x > 0; x--)
 alert("Starting in..." + x);
 alert("Roll film!");
}
else
 alert("The number wasn’t greater than 0. No movie for you!");

Prompt the user
to input a number.

Store the number in
the count variable.

Make sure
the count
is greater
than 0.

Initialize the
loop counter
(x) with the
count.

Count down
to 1.

Decrement
the counter
each time
through
the loop.
Show the
current
count.

The count
is finished!

Invalid data.

I love you man, but
I need my space. I hear ya!

Seth Jason

exercise solution

Download at WoweBook.Com

you are here 4 195

looping

Using the row of movie seats below, write down how you would
search for three available seats in a row using a for loop. Make
sure to draw exactly how the loop works with respect to the seats.

The challenge facing the guys is to be able to search through each
seat in a row, checking for a sequence of three available seats.

Cool!Not cool.
Three available seats in a
row means plenty of manly
movie viewing room.

Anything other than three
available seats together result
in a major lack of “manlitude.”

All three
seats taken.

Only one seat
available.

All three seats
available!

First check seat availability

Download at WoweBook.Com

196 Chapter 5

Using the row of movie seats below, write down how you would
search for three available seats in a row using a for loop. Make
sure to draw exactly how the loop works with respect to the seats.

Start looping
through seats.

Seat
taken.

Only one
seat open. Three in a

row, cool!

End loop and
stop looking.

Seat
taken.

If the availability of each seat is represented by a boolean variable, then you can
loop through the seats looking for three in a row that are available (true).

false true true true true truefalse false false

Looping, HTML, and seat availability
The general Mandango design makes some sense but it isn’t exactly
clear how the availability of each seat translates into HTML code.

<img id="seat1" src="seat_unavai
l.png" alt="Unavailable" />

<img id="seat2" src="seat_avail.
png" alt="Available" />

<img id="seat3" src="seat_unavai
l.png" alt="Unavailable" />

<img id="seat4" src="seat_avail.
png" alt="Available" />

<img id="seat5" src="seat_avail.
png" alt="Available" />

<img id="seat6" src="seat_avail.
png" alt="Available" />

<img id="seat7" src="seat_unavai
l.png" alt="Unavailable" />

<img id="seat8" src="seat_avail.
png" alt="Available" />

<img id="seat9" src="seat_unavai
l.png" alt="Unavailable" />

Not only do you need to be able to loop through the HTML image
elements, you also need a way to store their availability together as
boolean variables in JavaScript code.

Each movie seat is shown visually on the Mandango page as an image.

sharpen solution

Full HTML and images for this example are available at http://www.headfirstlabs.com/books/hfjs/.

Download at WoweBook.Com

you are here 4 197

looping

var seat1 = false;

var seat2 = true;

var seat3 = false;

var seat4 = true;

var seat5 = true;

var seat6 = true;

var seat7 = false;

var seat8 = false;

var seat9 = false;

Movie seats as variables
Before you can even think about looping through seats looking for availability,
you have to represent the availability of each seat in JavaScript code. The
availability of a row of nine seats can be represented by nine boolean variables.

The availability of each
seat is stored as a boolean.

Now you’re ready to create a for loop that loops through these nine seats,
checking for three in a row that are available.

for (var i = 0; i < 10; i++) {

 if (seat1)

 ...

}

True means a
seat is available.

False means a seat
is unavailable.

Hang on, there appears to be a problem. The for loop needs to be able
to check the value of a different seat variable each time through the loop.
But there isn’t a way to do that since each variable has a different name.

You can’t change the
variable name each
time through the loop!

So I need a way to use
the same variable name
to loop through multiple
pieces of data? Sounds
like fun... not!

If individual variables don’t work so well in loops, how could
you store information so that it can be looped through?

Download at WoweBook.Com

198 Chapter 5

Arrays collect multiple pieces of data
JavaScript lets you store multiple pieces of data in a single variable with
a special type of data called an array. An array variable is like a normal
variable since it only has one name, but an array has multiple storage
locations. Think of an array as being like a storage cubby in your house—
it’s one piece of furniture with multiple storage locations.

Each item in an array consists of two pieces of information: a value and
a unique key that is used to access the value. Keys are often just numbers
that start at zero and count up with each item. Numeric keys are known as
indexes, making this an indexed array:

0 1 2 3 4
"12:

30"
"2:4

5"
"5:0

0"
"7:1

5"
"9:3

0"

Numeric key, or index,
used to access a value.

This array contains five distinct pieces of information.

The array indexes
start at 0 and count
up with each item.

Array value.

0

1

2

3

4

Creating an array is similar to creating a normal variable except you have
to let JavaScript know you want an array, as opposed to a single unit of
storage. In fact, you’re really telling JavaScript to create an object.

var showTime = new Array();

 Don’t worry about the fact that an
array is actually an object.

For your immediate purposes, it really
doesn’t much matter that an array is really

an object. You learn plenty about objects in Chapters 9 and
10, in which case the object stuff will naturally work itself out.

This is a new object of type Array.

Create a new
array object.

The name of the array variable.

an array of data

Download at WoweBook.Com

you are here 4 199

looping

This code sets the first value of the showTime array to a time of day. If
you don’t want to manually set each value of an array one at a time, you
can initialize the entire array when you first create it.

Array values are stored with keys
Object or not, once you’ve created an array you can start adding and
accessing data in it. The key to getting to the data stored in an array is,
well, the key! The unique key associated with a piece of data is what you
use to access that data. In the case of an indexed array, you just use the
index of the array element you want to access.

showTime[0] = "12:30";

The name of the
array variable.

The index of the array
value, enclosed within
square brackets.

The value to be
stored in the array.

var showTime = ["12:30", "2:45", "5:00", "7:15", "9:30"];

Wait a minute, this code doesn't involve all that object stuff. What
happened? This code sidesteps the formal creation of an empty object by
going ahead and building an array (object) from the values it contains. Just
list out all of the elements that go into the array, enclosed within square
brackets. With the array populated with data, you’re ready to use it!

The first part of
the array creation
starts off the same.

List out all of the
array values, separated
by commas.

Make sure to enclose the list of
array values with square brackets.

And don't
forget the
semicolon.

alert("The late movie starts at " + showTime[4] + ".");

Grab the last value in the array.

Arrays store multiple pieces
of data in a single place.

Download at WoweBook.Com

200 Chapter 5

Head First: Good to meet you, Array. So I hear you're
good at storing multiple pieces of data.

Array: That’s true. I’m all about volume. You need a
place to store 50 strings of text or 300 numbers, I’m your
guy.

Head First: Sounds intriguing. But can’t people already
store quantities of data in normal variables?

Array: Sure, and people can also walk to work barefoot if
they want. Look, there’s always more than one way to do
things. In this case, I provide a better way to store multiple
pieces of information than regular variables.

Head First: Well, I do prefer wearing shoes to work. But
how exactly are you better?

Array: Think about it this way. If you’re keeping a diary
and you write down something every day, how do you
keep up with all of those pages after a few years?

Head First: The pages are all right there in the diary.
What’s the big deal?

Array: You’re making a big assumption about the
pages being organized together with some sense of
connectedness. What if they were just a bunch of random
sticky notes thrown in a shoebox? That diary would
suddenly get a lot tougher to manage.

Head First: Right, but how is storing data in an array
like keeping diary pages in a book?

Array: Because I organize the data in such a way that it
is very easy to access. For example, if I ask what you wrote
in the diary on last June 6th, you would probably tell me
to turn to page 124. Same thing with array data, except
the page numbers for an array are called keys.

Head First: I’ve heard of array indexes, but not keys.
What’s a key?

Array: Oh, sorry. A key is a general term used to describe
a piece of information used to look up a piece of data.
An index is just a certain kind of key, a numeric key. So
the diary page numbers are not only keys, they are also
indexes. If you’re talking about looking up data with
unique numbers, keys and indexes are really the same
thing.

Head First: Got it. I guess the thing I still don’t
understand is what any of this has to do with looping.

Array: Well, not necessarily anything. I’m plenty handy
for storing data without loops ever entering the picture.
However, I do make it incredibly handy for loops to cycle
through a bunch of data.

Head First: How so?

Array: Remember that loops often use numeric counters
to control the looping, right? Just use the counter as the
index into an array, and voila, you now have a way to
cycle through all of the data I have stored away.

Head First: Hang on, you’re saying people can use a
loop counter as an array index to look up data?

Array: That’s exactly what I’m saying.

Head First: That’s pretty powerful!

Array: I know. That’s why scripts that need to loop
through data find me indispensable. In just a few lines of
code, you can loop through an entire array of data. It’s
really quite cool.

Head First: I can imagine. I want to thank you for
shining a light on yourself and your connection to loops.

Array: Glad to do it. Look me up any time!

Arrays Exposed
This week’s interview:
Inside the mind of a serial data storer

Arrays Exposed
This week’s interview:
Inside the mind of a serial data storer

array exposed

Download at WoweBook.Com

you are here 4 201

looping

Q: Is it possible for a for loop to
never stop looping?

A: Ah, yes, the dreaded infinite loop. Sure,
it's very possible to create a loop that never
exits, destined to cycle on and on to the
limits of space and time... or at least until
you reload the web page. Infinite loops are
considered bad things because they prevent
your script from doing anything else—it's
the JavaScript equivalent of a locked‑up
application. Think Windows blue screen, only
not quite as ominous.
Infinite loops occur when a loop counter
either doesn't get updated properly, or when
it otherwise never changes to cause the
loop's test condition to result in a false
value. Knowing this, you should always
double and triple check the test condition
and update logic in your for loops very
carefully. Oh, and you'll know you have an
infinite loop on your hands when your script
just sits there apparently doing nothing.

Q: Is it possible to use a compound
statement as the action part of a for
loop?

A: Absolutely! In fact, in all but the most
simple of looping scenarios, you will need to
use a compound statement. This is because
most practical loops end up needing to loop
through more than one statement.

Q: When the loop condition tests
false, does the action part of the
loop run one last time?

A: No. The action part of a for loop only
gets executed if the test condition evaluates
to true. Once the test condition evaluates
to false, the loop immediately exits with
no other code getting run.

Q: Do indexed arrays always start
their indexing with 0?

A: Yes and no. By default, all indexed
arrays start at 0. However, you can override
this behavior and set numeric keys to

any number values you want, although
inconventional. Unless there is a very good
design decision for not using zero‑based
indexes, don't do it...it's unconventional
behavior and could cause confusion.

Q: Does the data stored in an array
always have to be the same type?

A: No, not at all. For the purposes of
looping, it is important for array data to be
of the same type because the whole idea
is to loop through a set of similar data. For
example, if you want to loop through an
array of scores to calculate an average, it
wouldn't make much sense for some of the
array entries to be booleans—they should
all be numbers in this case. So although
arrays can contain values of different types,
it's generally a good idea to store data of the
same type in arrays, especially when you're
storing a collection of like data.

Write code to create a seats array for Mandango, and then loop
through the seats in the array, alerting the user to the availability
of each seat.

Download at WoweBook.Com

202 Chapter 5

Write code to create a seats array for Mandango, and then loop
through the seats in the array, alerting the user to the availability
of each seat.

var seats = [false, true, false, true, true, true, false, true, false];
for (var i = 0; i < seats.length; i++) {
 if (seats[i])
 alert("Seat " + i + " is available.");
 else
 alert("Seat " + i + " is not available.");
}

for loops repeat a piece of JavaScript code a specific
number of times.

The increment (++) and decrement (‑‑) operators
provide a handy way to update loop counters.

An array allows you to store multiple pieces of data in a
single place.

Although an array holds multiple pieces of information, it
has a single variable name.

Indexed arrays are accessed using numeric keys called
indexes.

Indexed arrays work great with loops because they allow
you to use a loop counter to loop through array data.

Create and initialize the seats array with boolean values.

Since the array indexes
start at 0, start the loop
counter at 0 as well.

Separate the array
values with commas.

Although you could've used the number 9 here, the length property of the array object is even better. It’s better because it still works even if the number of seats in the array changes at some point.

Increment the
loop counter since
we're counting up.

The loop counter is
used as an array index
to step through all of
the array values.

Display a different alert
based upon whether the
seat is available (true) or
not (false).

sharpen solution

Download at WoweBook.Com

you are here 4 203

looping

From JavaScript to HTML
Mandango seat availability is represented by an array of booleans. So the
next step is translating this array into HTML images (which are available
at http://www.headfirstlabs.com/books/hfjs/) that reflect the seat availability
on the Mandango web page.

0 1 2 3 4
fals

e
true fals

e
true true

5 6 7 8
true fals

e
true fals

e

var seats = [false, true, false, true, true, true, false, true, false];

How could you make the connection between the JavaScript seat
availability array and the seat images on the Mandango page?

Although this looks nice, there isn’t actually any code to map the array of
booleans to visual seat images on the web page. Now this is a problem.

Download at WoweBook.Com

204 Chapter 5

Visualizing Mandango seats
To tie the JavaScript array to the HTML images, first make sure
the images are laid out in an accessible way, then determine what
images are going to be used to represent the different seat states.
Let’s tackle the last task first.

The challenge then becomes looping through the boolean array, setting
the seat image for each HTML tag on the page. The steps
required for this task are surprisingly similar to how we looped through
the seat array earlier. In fact, the only real difference lies in the loop action.

seat_unavail.png

seat_select.png

Unavailable

Select

These seat images are assigned to the src attribute of each HTML seat
image to set the images that appear on the page.

This seat image applies to the Mandango seat search, when seat
selections are highlighted.

The seat is
already taken.

 Initializate the counter variable i to 0.11

 Check to see if i is less than the array length (9). If so, move on to Step
3 and continue the cycle through the loop. If not, quit the loop.

22

 Run the loop action code, which in this case sets the seat image.33

 Increment i and go back to Step 2 to possibly start another loop cycle.44

9 cycles

This ID is critical in
mapping the array to seat
images - it must start at
0 and end at 8, just like
the array indexes.

seat_avail.png

Available

The seat is
available!

i see.... a seat

Download at WoweBook.Com

you are here 4 205

looping

 <body onload="initSeats();"> <div style="margin‑top:75px; text‑align:center">
 </div>
 </body>
</html>

initSeats () function
Up Close

function initSeats() {
 // Initialize the appearance of all seats
 for (var i = 0; i < seats.length; i++) {
 if (seats[i]) {
 // Set the seat to available
 document.getElementById("seat" + i).src = "seat_avail.png";
 document.getElementById("seat" + i).alt = "Available seat";
 }
 else {
 // Set the seat to unavailable
 document.getElementById("seat" + i).src = "seat_unavail.png";
 document.getElementById("seat" + i).alt = "Unavailable seat";
 }
 }
}

The Mandango seat initialization takes place in the initSeats()
function, which carries out the mapping of JavaScript array to HTML
image seat images using a seat initialization loop.

If the seat value is false, set the HTML seat image to unavailable.

If the seat value
is true, set the
seat to available.

The loop counter
starts at 0 since
the indexed array
starts at 0. 1

The test condition
checks to see if all
the seats have been
looped through. 2

Increment the
loop counter. 4

3

3

The seat image ID is
created from the
loop counter each
time through the loop.

3

The initialization carried out by initSeats() involves setting the appearance of the different movie seat images on the page, which is different than the initialization step in a for loop.

The id of
this seat
image is

“seat6”.The src and alt
attributes are
dynamically modified
for each seat image.

Download at WoweBook.Com

206 Chapter 5

selSeat

Not so macho seat searching
With the seats initialized, it’s now possible to move on to the seat searching,
which is really the point of Mandango. Seth and Jason have determined
that it might be better to first get the script finding individual seats
before embarking on the eventual three-seat search. This simplifies the
immediate task, allowing them to build the application incrementally.

Since they want to search for a single available seat, the first thing the
script is going to need is a variable to keep track of the seat selection.

This variable stores the seat selection, and needs to hang around for
the life of the script, which means it must be a global variable. So, the
findSeat() function, which handles the job of finding a seat for the
user, will rely on the selSeat variable for storing the index of the
selected seat.

Global variable, which means it is
accessible throughout the script.

The selSeat variable makes
sense, but what value
indicates an unselected seat?

Seth brings up a good question. The selSeat variable stores the seat
selection, which is in the range 0 to 8 when a seat has been selected. But
you also need to know when a user hasn't chosen any seats yet. A special
value can indicate this state of unselection, which can be noted as -1 (no
seats selected yet). So selSeat really needs to start out initialized to -1.

var selSeat = -1;The selSeat variable is now
initialized to -1 so that
the script starts off with
no seat selection.

With the seat selection variable in place, we’re ready to assemble the
findSeat() function. findSeat() will search through each seat in
the seats array, find available seats, and then prompt the user to accept or
reject each available seat. While it’s true that macho guys won’t be happy
with this initial version of Mandango, it’s a step in the right direction!

selSeat

the variables of seat searching

Download at WoweBook.Com

you are here 4 207

looping

JavaScript Magnets
The Mandango findSeat() function is where the user searches for
an available seat, and then confirms or denies any seats that are found.
Help out Seth and Jason by finishing the missing code with the magnets.

function findSeat() {

 // If seat is already selected
, reinitialize all seats to clea

r them

 if (>= 0) {

 = ‑1;

 ();

 }

 // Search through all the seat

s for availability

 for (var i = 0; i < seats.leng
th; i++) {

 // See if the current seat i
s available

 if () {

 // Set the seat selection
and update the appearance of the

 seat

 = i;

 document.getElementById("s

eat" + i). = "seat_select
.png";

 document.getElementById("s

eat" + i). = "Your seat";

 // Prompt the user to acce

pt the seat

 var = confirm("S

eat " + (i + 1) + " is available
. Accept?");

 if () {

 // The user rejected the
 seat, so clear the seat selecti

on and keep looking

 = ‑1;

 document.getElementById(

"seat" + i). = "seat_avail
.png";

 document.getElementById(

"seat" + i). = "Available
seat";

 }
 }
 }
}

selSeat !acceptsrc
seats[i]

initSeats alt accept

Download at WoweBook.Com

208 Chapter 5

JavaScript Magnets Solution
The Mandango findSeat() function is where the user searches for
an available seat, and then confirms or denies any seats that are found.
Help out Seth and Jason by finishing the missing code with the magnets.

function findSeat() {

 // If seat is already selected
, reinitialize all seats to clea

r them

 if (>= 0) {

 = ‑1;

 ();

 }

 // Search through all the seat

s for availability

 for (var i = 0; i < seats.leng
th; i++) {

 // See if the current seat i
s available

 if () {

 // Set the seat selection
and update the appearance of the

 seat

 = i;

 document.getElementById("s

eat" + i). = "seat_select
.png";

 document.getElementById("s

eat" + i). = "Your seat";

 // Prompt the user to acce

pt the seat

 var = confirm("S

eat " + (i + 1) + " is available
. Accept?");

 if () {

 // The user rejected the
 seat, so clear the seat selecti

on and keep looking

 = ‑1;

 document.getElementById(

"seat" + i). = "seat_avail
.png";

 document.getElementById(

"seat" + i). = "Available
seat";

 }
 }
 }
}

selSeat

selSeat

initSeats

seats[i]

selSeat

src

alt

accept

!accept

selSeat

src

alt

The seat number is
shown one higher to the
user since most users
start numbering at 1
instead of 0.

If selSeat is anythi
ng other

than -1, start a new search

and reset the seats
.

If the seat is available,
seats[i] will be true.

Check to see
if the user
accepted the
available seat.

JavaScript magnets solution

Download at WoweBook.Com

you are here 4 209

looping

Test drive: the solo seat finder
The solo seat searching version of Mandango uses a for loop and
an array to allow the user to search for individual available seats.
Not very macho, but functional nonetheless...

The user clicks
OK to accept the
Seat 4 selection.

The user clicks Cancel to
reject the Seat 2 selection.

Download at WoweBook.Com

210 Chapter 5

Too much of a good thing: endless loops
Although the Mandango single-seat search technically works at finding an
individual seat that is available, there’s a problem in that the loop doesn’t
know when to stop. Even after the user accepts a seat by clicking OK, the
script keeps on looping through the remaining available seats.

Ohhh, that's not good. Kinda
defeats the whole point if you have
to search through every seat anyway.

Seat 4 has already been
accepted but Mandango
keeps on looking for more
seats anyway.

... a few clicks later...

loop de loop de loop...

Download at WoweBook.Com

you are here 4 211

looping

Since the overzealous seat searching seems to be caused by the
loop never ending, Jason thinks a closer look at the for loop
in the findSeat() function is in order.

for (var i = 0; i < seats.length; i++) {
 // See if the current seat is available
 if (seats[i]) {
 // Set the seat selection and update the appearance of the seat
 selSeat = i;
 document.getElementById("seat" + i).src = "seat_select.png";
 document.getElementById("seat" + i).alt = "Your seat";

 // Prompt the user to accept the seat
 var accept = confirm("Seat " + (i + 1) + " is available. Accept?");
 if (!accept) {
 // The user rejected the seat, so clear the seat selection and keep looking
 selSeat = ‑1;
 document.getElementById("seat" + i).src = "seat_avail.png";
 document.getElementById("seat" + i).alt = "Available seat";
 }
 }
}

This is the code that runs
when the user does NOT
accept an available seat.

The confirm() function prompts the user to answer a yes/no question,
returning true (yes) or false (no).

If the user accepts an available seat, nothing happens and the loop just keeps on trucking.

So when the user clicks Cancel to reject a seat, the selSeat variable
is set to -1 (no selection), and the loop continues. However, there’s no
code at all for when the user accepts a seat. This is good since it allows
the selSeat variable to remember the current seat, but there’s nothing
stopping the loop from continuing looking for seats.

What needs to happen when the user clicks
the OK button to accept the current seat?

?

Loops always need an exit condition (or two!)

Download at WoweBook.Com

212 Chapter 5

A "break" in the action
The problem with the Mandango code is that you need to bail out of the
loop once the user accepts a seat. One possible fix is to trick the for loop
by setting the counter to a value larger than the length of the array.

i = seats.length + 1;

Although this code is a clever little hack that gets this done, there’s a better
way that doesn’t involve monkeying around with the loop counter to trick
the loop condition. The break statement is designed specifically for
breaking out of a section of code, including loop code.

This ends the loop by forcing the
test condition to fail... but there's
a better way to force loops to end.

break;

When a loop encounters the break statement, the loop immediately ends,
ignoring the test condition completely. So the break statement provides
you with a handy way to immediately exit a loop, no questions asked.

Closely related to break is the continue statement, which bails out of
the current loop cycle but doesn't exit the loop itself. In other words, you
can use continue to force the loop to jump to the next cycle.

continue;

Both break and continue are extremely
useful in fine-tuning the control of loops, but
break offers a solution to Seth and Jason’s
immediate Mandango looping problem.

Immediately exit a
loop, do not pass Go,
do not collect $200.

Jump out of the current
loop cycle, continuing
with the next one.

I'm digging the break
statement. It'll get rid of
all that unnecessary looping.

break time

Download at WoweBook.Com

you are here 4 213

looping

The for loop in the findSeat() function of Mandango needs
some help breaking out when the user accepts a seat. Write the
missing lines of code that handle breaking out of the loop, making
sure to include a comment to explain how the code works.

// Search through all the seats
for availability

for (var i = 0; i < seats.length
; i++) {

 // See if the current seat is
available

 if (seats[i]) {

 // Set the seat selection an
d update the appearance of the s

eat

 selSeat = i;

 document.getElementById("sea
t" + i).src = "seat_select.png";

 document.getElementById("sea
t" + i).alt = "Your seat";

 // Prompt the user to accept

 the seat

 var accept = confirm("Seat "
 + (i + 1) + " is available. Acc

ept?");

 else {
 // The user rejected the s

eat, so clear the seat selection
 and keep looking

 selSeat = ‑1;

 document.getElementById("s
eat" + i).src = "seat_avail.png"

;

 document.getElementById("s
eat" + i).alt = "Available seat"

;

 }
 }
}

Q: Does the remaining action code in
a for loop finish the current cycle when
the break statement is used?

A: No. The break statement forces
an immediate end to the loop, completely
short‑circuiting the normal flow of the loop.

Q: Why is tinkering with the loop
counter to force a loop exit a bad thing?

A: Because you're not really using the
loop counter for what it was intended, and
therefore run the risk of introducing unusual
bugs. Instead of counting through the array
elements as expected, you're forcing the
counter to an artificial value beyond the

range of the array just to end the loop. In
general, you want to be able to trust that
the update part of the loop is the only place
where the loop counter gets changed. There
are always special cases that arise where
tricks are allowed, but this isn't one of them—
the break statement handles breaking
out of the loop admirably and without any
confusion as to what's going on.

Download at WoweBook.Com

214 Chapter 5

Putting the 'man' in Mandango
The original intent of Mandango is to allow users to search for
available movie seats in groups of three. With the single-seat search
now working, Seth and Jason are ready to turn their attention to
a truly macho movie seat search. They need a way to check for a
series of three available seats.

The for loop in the findSeat() function of Mandango needs
some help breaking out when the user accepts a seat. Write the
missing lines of code that handle breaking out of the loop, making
sure to include a comment to explain how the code works.

// Search through all the seats
for availability

for (var i = 0; i < seats.length
; i++) {

 // See if the current seat is
available

 if (seats[i]) {

 // Set the seat selection an
d update the appearance of the s

eat

 selSeat = i;

 document.getElementById("sea
t" + i).src = "seat_select.png";

 document.getElementById("sea
t" + i).alt = "Your seat";

 // Prompt the user to accept

 the seat

 var accept = confirm("Seat "
 + (i + 1) + " is available. Acc

ept?");

 else {
 // The user rejected the s

eat, so clear the seat selection
 and keep looking

 selSeat = ‑1;

 document.getElementById("s
eat" + i).src = "seat_avail.png"

;

 document.getElementById("s
eat" + i).alt = "Available seat"

;

 }
 }
}

if (accept) {
 // The user accepted the seat, so we’re done
 break;
}

Three available seats in a
row... plenty of space!

sharpen solution

Download at WoweBook.Com

you are here 4 215

looping

All this movie talk just gets me thinking
about popcorn... Oh, sorry. I think a few nested
if statements could knock out the three-seat
search with no problem. That's how I'd do it!

for (var i = 0; i < seats.length; i++) {
 // See if the current seat plus the next two seats are available
 if (seats[i]) {
 if (seats[i + 1]) {
 if (seats[i + 2]) {
 // Set the seat selection and update the appearance of the seats
 selSeat = i;
 document.getElementById("seat" + i).src = "seat_select.png";
 document.getElementById("seat" + i).alt = "Your seat";
 document.getElementById("seat" + (i + 1)).src = "seat_select.png";
 document.getElementById("seat" + (i + 1)).alt = "Your seat";
 document.getElementById("seat" + (i + 2)).src = "seat_select.png";
 document.getElementById("seat" + (i + 2)).alt = "Your seat";

 // Prompt the user to accept the seats
 var accept = confirm("Seats " + (i + 1) + " through " + (i + 3) + " are available. Accept?");
 if (accept) {
 // The user accepted the seat, so we're done
 break;
 }
 else {
 // The user rejected the seats, so clear the seat selection and keep looking
 selSeat = ‑1;
 document.getElementById("seat" + i).src = "seat_avail.png";
 document.getElementById("seat" + i).alt = "Available seat";
 document.getElementById("seat" + (i + 1)).src = "seat_avail.png";
 document.getElementById("seat" + (i + 1)).alt = "Available seat";
 document.getElementById("seat" + (i + 2)).src = "seat_avail.png";
 document.getElementById("seat" + (i + 2)).alt = "Available seat";
 }
 }
 }
 }
}

Code Up Close
A sequence of three seats
is checked using nested if
statements.

If three seats in a
row are found, set the
selection to the first one.

Change all three seats
to the “selected" image
so that the user can see
which seats are available.

If the user rejects the seats, set their images back to “available."

* Reminder: This code and all code and images for
the Mandango example are available at http://www.
headfirstlabs.com/books/hfjs/.

Download at WoweBook.Com

216 Chapter 5

Wouldn't it be dreamy if there was
a way to combine those nested ifs
into something a little more elegant?

hoping and wishing for elegance

Download at WoweBook.Com

you are here 4 217

looping

A logical, elegant, well-designed solution
with &&
There is a better way to handle the three-seat check in Mandango. The nested
if version works but there’s room for improvement, and the change primarily
involves making the code more elegant.

Elegant!? Are you
kidding me? Oh man,
that's a good one!

Despite Seth’s objections, there are times when
it’s worth making changes to your code so that is
more “elegant,” which is another way of saying
the code is clean, efficient, and easy to understand
and maintain. In the case of the nested if
statements, it would be more elegant to combine
them all into a single if statement... but how?

if (seats[i] && seats[i + 1] && seats[i + 2]) {

 ...

}

The boolean AND operator (&&) compares two boolean values
to see if they are both true. In this Mandango code, two AND
operators are used together to see if the three seat values are all
true. If so, you know you have a series of three available seats.
Problem solved... and with a little touch of elegance!

true true true

The boolean AND operator compares two boolean values to see if they are both true.

Download at WoweBook.Com

218 Chapter 5

Boolean operator logic uncovered
You’ve already seen several comparison operators, such as == and
<. Most of the comparison operators you’ve seen compare two
values and yield a boolean result. Boolean logic operators also yield
a boolean result, but they operate only on boolean values—they
perform boolean logical comparisons.

AND

a && b
OR

a || b

NOT

!a

Boolean logic operators can be combined with one another to
create more interesting logical comparisons, typically for the sake
of making complex decisions.

Boolean logic operators
can be combined to carry
out complex decisions.

You've already
seen this one!

True if a AND b are both
true, false otherwise. True if a OR b are

true, false otherwise.
False if a is true,
true if a is false.

if ((largeDrink && largePopcorn) || coupon)

 freeCandy();

In this example, an AND operator is used to check for a large
drink and large popcorn...combo! You get free candy with a
combo. Or, there is another path to the free candy thanks to the
OR operator—a coupon. So, you can get free candy by ordering
a large drink AND large popcorn, OR by presenting a coupon.
This kind of decision would be extremely difficult to carry out
without the help of boolean logic operators.

Parentheses allow you to group
together boolean logic expressions.

You can get free candy by buying a
combo OR by having a coupon.

boolean logic explored

Download at WoweBook.Com

you are here 4 219

looping

It's the sixth pass through the Mandango for loop (i = 5), and
your help is needed to determine if three consecutive seats are
available by checking the seat availability and carrying out some
boolean logic.

for (var i = 0; i < seats.length; i++) {

 // See if the current seat plus the next two seats are available

 if (seats[i] && seats[i + 1] && seats[i + 2]) {

 ...

 }

 ...

}

&& && =

Q: I still don't understand the
difference between a normal boolean
operator and a boolean logic operator.
What is it?

A: Well, first off, they’re all boolean
operators, which means they always result in
a boolean value when they're finished doing
their thing. The only difference is the kind
of data they operate on. Normal boolean
operators work on all kinds of data since
they carry out general comparisons such as

“equal to,” “not equal to,” “greater than,”

etc. Boolean logic operators work only on
boolean data, and therefore carry out logical
comparisons such as AND, OR, and NOT.
So boolean logic operators work solely on
true/false information, while normal boolean
operators work on all kinds of data.

Q: So, is the NOT operator a boolean
logic operator?

A: Yes. It operates only on a boolean
value, so it qualifies as a boolean logic
operator. It’s also a unary operator since it
operates on only one piece of data.

Q: How do parentheses work with
respect to boolean operators?

A: Parentheses allow you to alter the
default order of evaluation of all operators,
not just boolean operators. Grouping an
operation inside parentheses forces that
operation to take place before others
around it. So, largeDrink &&
largePopcorn is forced to take place
before the || operation in the free candy
code because it appears within ().

Download at WoweBook.Com

220 Chapter 5

Finally, a manly seat finder
Now Mandango correctly searches for a sequence of three
available seats, resulting in a movie ticket service that even
the toughest of tough guys will appreciate.

It’s the sixth pass through the Mandango for loop (i = 5), and
your help is needed to determine if three consecutive seats are
available by checking the seat availability and carrying out some
boolean logic.

for (var i = 0; i < seats.length; i++) {

 // See if the current seat plus the next two seats are available

 if (seats[i] && seats[i + 1] && seats[i + 2]) {

 ...

 }

 ...

}

true false true false&& && =

true false true

i = 5 i + 1 = 6 i + 2 = 7

The user is now
prompted to accept a
range of three seats.

sharpen solution

Download at WoweBook.Com

you are here 4 221

looping

Back to the treasure map
With Mandango in good shape for the time being, we can return
to the search for hidden treasure. Remember the treasure map?

x

A for loop worked great for navigating the first part of the map.
The second part still remains, and it presents a challenge that
doesn’t appear to be suited to the unique skills of a for loop. It’s
difficult to set up a for loop counter when you have no idea how
many repetitions are required of the loop.

 First, walk east for
exactly 37 steps.

 Then, walk until you see a rock
shaped like a piece of popcorn.

22

 X really does mark the spot!33

37 steps.

What’s the difference between the two parts of the
search on the treasure map? How would you create a
loop to traverse the second part of the map?

for (var x = 0; x < 37; x++)

 takeStep();

The treasure
still waits...

A for loop navigated
the first part of
the map masterfully!

1

Download at WoweBook.Com

222 Chapter 5

Looping for just a "while"…until a
condition is met
Although it’s possible to create a for loop that walks the second part of
the treasure map, there is a better option. Unlike the for loop, which
is structured around the notion of a loop counter, the while loop
is geared toward looping while a certain condition is met. And that
condition doesn’t necessarily have anything to do with a loop counter.

A while loop consists of two different parts:
1

Test condition

Action
2

The test condition checks to
see if the loop should cycle.

Test condition

The action part of the loop
is the code that is actually
repeated in each cycle.

Action

1 2 1 2... 1 2... ...

One loop cycle.

while loops let
you repeat code
while a certain
condition is true.

while (!rockVisible)

 takeStep();

1

2

Here’s how the different parts of this while loop work:

 Check to see if the rock is not visible. If not, move on to
Step 2 and cycle through the loop. If so, quit the loop.

11

 Run the loop action code, which in this case means
running the takeStep() function.

22

Only perform another
loop cycle if the test
evaluates to true, that is, if
the rock is still not visible.

Test condition

Call the takeStep()
function to take a step.

Action

!rockVisible

takeStep()

1

2

Steps 1 and 2 take
place each time
through the loop.

Applying the while loop to the second part of the treasure map results in
some surprisingly simple code, at least as compared to a for loop:

how long? a "while"

Download at WoweBook.Com

you are here 4 223

looping

Breaking down the while loop
Much simpler in structure than for loops, while loops must still
adhere to a predictable formula:

;Action +

(while + + Test +)

Rewrite the loop code from the film reel exercise that prompts the user to enter a number greater
than 0, and then uses that number as the starting count for a loop that performs an old movie
reel countdown (4, 3, 2, 1, Roll film!). This time use a while loop instead of a for loop.

The action to be
repeated, which is a single
(or compound) statement.

 Be careful with while
loop test conditions.

Since while loops don't
have a built-in piece of
code that updates the

loop, you have to make sure there is
code inside the loop that somehow
affects the test condition. Otherwise,
you risk creating an infinite loop.

The test condition, which must
evaluate to true or false.

var count = prompt("Enter a number greater than 0:", "10");

if (count > 0) {

}

else

 alert("The number wasn't greater than 0. No movie for you!");

Download at WoweBook.Com

224 Chapter 5

var count = prompt("Enter a number greater than 0:", "10");

if (count > 0) {

}

else

 alert("The number wasn't greater than 0. No movie for you!");

Rewrite the loop code from an earlier exercise that prompts the user to enter a number greater
than 0, and then uses that number as the starting count for a loop that performs an old movie
reel countdown (4, 3, 2, 1, Roll film!). This time use a while loop instead of a for loop.

 var x = count;
 while (x > 0) {
 alert(“Starting in..." + x);
 x--;
 }
 alert(“Roll film!");

Prompt the user
to input a number.

Store the number in
the count variable.

Make sure
the count
is greater
than 0.

There is still a
counter, but
it is created
outside of
the while loop.

Count down
to 0.

Decrement
the counter
as part of
the loop
action, same
as x=x-1.

The count
is finished!

Invalid data.

The loop
action is a
compound
statement.

The break statement immediately breaks out of a
loop, skipping any remaining loop code.

Boolean logic operators allow you to create powerful
true/false logic for making decisions.

The while loop runs a piece of code as long as a
certain test condition remains true.

Avoid an infinite loop by making sure the test condition
is somehow affected by code within the while loop.

exercise solution

Download at WoweBook.Com

you are here 4 225

looping

;Init +

Use the right loop for the job
The movie reel countdown exercise revealed that for loops and while
loops are often capable of solving the same problems. In fact, any for
loop can be reconstructed as a while loop using the following form:

;Action +

(while + + Test +)

;Update +

}

+ {

So it’s technically possible to code the same loops using either for or
while. Even so, you’ll find in the vast majority of cases that one of the
loops clearly seems to work better in terms of the code making sense.
Maybe it has something to do with elegance?

for (var i = 0; i < 10;
i++)

 alert(i);

for (; !finished;)

 doIt();

var i = 0;

while (i < 10) {

 alert(i);

 i++;

}

=

=

Choosing a for loop versus a while loop has everything to do with
using the right tool for the job. In other words, the loop mechanics
should fit the problem at hand.

No update.

Update takes place
within the action.

Initialization happens
outside of the loop.

These loops are
well suited to the
problems they solve.

A while loop can
do everything a
for loop can do,
and vice versa.

while (!finished)

 doIt();

No initialization.

Download at WoweBook.Com

226 Chapter 5

Tonight’s talk: For loop and While loop try really hard to
repeat themselves

For loop:
Ah, here we are, just a couple of repetitive fellas
hanging out together.

I’m not complicated at all, I just add a little more
structure for creating certain kinds of loops. When
people want to loop using some kind of numeric
counter, they find comfort in how easy I make it to
initialize and update the counter that controls me.

Sounds kinda vague to me, although I suppose it
could work. I like to be more exacting, you know,
keep close tabs on what makes me tick. That’s why
I make a special effort to initialize myself before I
even start looping. I also keep myself updated at the
end of each loop, just to make sure I keep running
as expected. Guess I’m a little compulsive about
making sure I repeat like clockwork.

I am aware that there are lot of different ways to
structure loops. I just like to run a tight ship.

While loop:

Yep. Although I have to say, I’m not that crazy
about all the different steps involved in making you
work. Seems kinda complicated to me.

That’s true, but looping isn’t all about counting, you
know. There are all kinds of cool loops that don’t
even involve numbers. Sometimes you just need the
simplicity of saying, “Hey, just keep doing this for a
while.” That’s my kind of loop.

While I applaud your work ethic, you do realize
that it’s every bit as possible to loop reliably and
predictably without all that formal initializating
and updating stuff ? Besides, I often repeat code
in situations where there isn’t a need to initialize
anything, and the updating takes place right there
in the action code. So I’m content to do without the
formality and just focus on the looping.

for loop and while loop face off

Download at WoweBook.Com

you are here 4 227

looping

Q: The while loop looks pretty
simple. Am I missing something?

A: Not at all. Just keep in mind that
simple doesn’t necessarily mean weak or
limited. In other words, you may be surprised
by how powerful while loops can be.
Sure, the while loop consists solely of a
test condition and a piece of action code, but
that’s often all you need to do some really
slick looping. Especially when you consider
that the test condition can be made more
interesting thanks to boolean logic operators.
Not only that, but the action part of the
while loop can contain as much code as
you want if you use a compound statement.

Q: What happens if I created a while
loop that started off while (true)...,
will it work?

A: Yes, it will...perhaps too well.The
problem is that you’ve just created an
infinite loop because the test condition
is permanently true. A while loop
continues looping until the test condition
evaluates to false, and in this case that
time never comes. It’s scary to think about
how many infinite loops are running right this
moment as you read this, destined to repeat
themselves for ever and ever... and ever...
and ever... hey, break out of it!

Q: Is it possible for the loop action
code (the code in the parentheses) to
never get called?

A: Yes. Both for loops and while
loops require their test conditions to be
true before initially running the action
code. So, if for some reason the test
condition fails at the get‑go, the action code
won’t run and the loop exits before ever
starting.

Q: Can loops be nested inside each
other?

A: Oh yeah! Nested loops allow more
than one level of repetition. This sounds
strange right now, but it’s quite cool. We
explore nested loops later when Mandango
grows to search an entire theater!

For loop:

That’s true. The good news is that we both get the
job done in our own way. And I can even see where
my style is a bit much for a loop with simple logic
controls.

You can say that again!

No problem at all, I understand. Thanks for the
chat.

While loop:
I suppose it really just comes down to style, and
each loop has its own. You like to keep all the loop
controls in their place, while I’m a little more casual
about how I’m controlled.

Now you’re talking! I think there’s room in this town
for both of us after all.

I think there’s room in this town... oh, I suppose
instincts kicked in there for a moment. Sorry.

Download at WoweBook.Com

228 Chapter 5

Treasure at the end of the loop
By using a for loop followed up by a while loop,
the treasure map can be fully traversed, leading to the
treasure at the spot marked X.

x

 First, walk east for
exactly 37 steps.

 Then, walk until you see a rock
shaped like a piece of popcorn.

 X really does mark the spot!33

37 steps.

for (var x = 0; x < 37; x++)

 takeStep();

A for loop navigated
the first part of
the map masterfully!

while (!rockVisible)

 takeStep();

A while loop navigated
the second part of the
map without flaw!

Could this be a sign? Your newfound while looping knowledge and
movie tickets can only lead back to one thing... Mandango!

Movie tickets!

The treasure
chest opens
to reveal...

looping success

2

1

Download at WoweBook.Com

you are here 4 229

looping

Rewrite the loop in the Mandango findSeats() function so
that it uses a while loop instead of a for loop. Add a new loop
control variable, finished, that is used as a means of exiting
the loop through the test condition, as opposed to using break.

 // See if the current seat plu

s the next two seats are availab
le

 if (seats[i] && seats[i + 1] &
& seats[i + 2]) {

 // Set the seat selection an
d update the appearance of the s

eats

 ...

 // Prompt the user to accept

 the seats

 var accept = confirm("Seats
" + (i + 1) + " through " + (i +

 3) +

 " are available. Accept?")
;

 else {
 // The user rejected the s

eats, so clear the seat selectio
n and keep looking

 ...
 }
 }

 // Increment the loop counter

}

Download at WoweBook.Com

230 Chapter 5

Rewrite the loop in the Mandango findSeats() function so
that it uses a while loop instead of a for loop. Add a new loop
control variable, finished, that is used as a means of exiting
the loop through the test condition, as opposed to using break.

 // See if the current seat plu

s the next two seats are availab
le

 if (seats[i] && seats[i + 1] &
& seats[i + 2]) {

 // Set the seat selection an
d update the appearance of the s

eats

 ...

 // Prompt the user to accept

 the seats

 var accept = confirm("Seats
" + (i + 1) + " through " + (i +

 3) +

 " are available. Accept?")
;

 else {
 // The user rejected the s

eats, so clear the seat selectio
n and keep looking

 ...
 }
 }

 // Increment the loop counter

}

var i = 0, finished = false;
while ((i < seats.length) && !finished) {

if (accept) {
 // The user accepted the seats, so we’re done
 finished = true;
}

i++;

Initialize the loop
counter and the
“finished" variable.

Loop as long as the loop counter
is less than the number of seats
AND “finished" isn't true.

Set “finished" to true to bail
out of the loop. Since this
affects the test condition,
there's no need to break here.

Increment the
loop counter.

This loop is somewhat of a hybrid of what we’ve seen so far in that it is dependent on both a count and a boolean logic expression. It’s usually simpler to code hybrid loops using while.

sharpen solution

Download at WoweBook.Com

you are here 4 231

looping

Movie seat data modeling
Jason’s right. Mandango really needs to be able to handle more rows of
seats in order to truly be functional. Thus far the single row of seats has
made sense because it cleanly maps to an array of booleans representing
the seat availability. To expand the idea to multiple rows of seats requires
expanding the array, and that requires another dimension. That’s right,
we’re talking about a two-dimensional array!

Mandango is looking pretty sweet with the
looping and all but there aren't really many
theaters with only one row of seats. We need
to figure out how to handle more rows...

We need an array that is 9 x 4 in size to match up with the actual seats,
which are four rows with nine seats in each.

This movie theater has four rows of seats with nine seats in each row. Yeah, it's cozy!

Each item in
the 2-D array
is still a boolean.

Now there is
another dimension
of array indexes.

0 1 2 3 4 5 6 7 8

0 1 2 3 4 5 6 7 8

0 1 2 3 4 5 6 7 8

0 1 2 3 4
fals

e
true fals

e
true true

5 6 7 8
true fals

e
true fals

e
0
1
2
3

Download at WoweBook.Com

232 Chapter 5

An array of an array: two-dimensional arrays
You don’t need any special glasses or anything to create a two-dimensional array.
In fact, creating a two-dimensional array is similar to creating a normal (one-
dimensional) array except that you create multiple sub-arrays as elements of the
array. These sub-arrays are what add the second dimension, resulting in a table of
data that has rows and columns.

var seats = new Array(new Array(9), new Array(9), new Array(9), new Array(9));

var seats = [[false, true, false, true, true, true, false, true, false],

 [false, true, false, false, true, false, true, true, true],

 [true, true, true, true, true, true, false, true, false],

 [true, true, true, false, true, false, false, true, false]];

First create an array to house the
sub-arrays. That's one dimension!

Then create sub-arrays to serve
as elements in the outer array.
That's two dimensions!

Four sub-arrays result in
four rows of array data.

In the case of Mandango, we already know the initial values of the array
elements, so it makes sense to use a different approach to create the
2-D array, one that involves an array literal. This creates the array and
initializes it at the same time—a win-win situation!

0 1 2 3 4 5 6 7 8

0 1 2 3 4 5 6 7 8

0 1 2 3 4 5 6 7 8

0 1 2 3 4
fals

e
true fals

e
true true

5 6 7 8
true fals

e
true fals

e
0
1
2
3

Double brackets
indicate a 2-D array.

Each sub-array
has its own array index, in this case between 0 and 3.

The first list of boolean
values is the first row
of the 2-D array.

True - the seat
is available.

False - the seat
is already taken.

more than one dimension

Download at WoweBook.Com

you are here 4 233

looping

Two keys to access 2-D array data
Accessing data in a 2-D array is no different than accessing a 1-D array
except you have to provide an additional piece of information: the index
of the extra array. More specifically, you specify the indexes of the row
and the column where the data sits in the array. For example, to grab the
value of the fourth seat in the second row of seats, use this code:

alert(seats[1][3]);

The index of the second row in
the array is 1 (starts at 0).

The index of the
fourth element in a row
is 3 (starts at 0).

Write code to loop through the seats in the 2-D seats array,
alerting the user to the availability of each seat.

Looping through an array with more than one dimension involves nesting
a loop for each dimension. So, looping through a 2-D array involves a
total of two loops, one inside the other. The outer loop cycles through the
rows of array data, while the inner loop cycles through the columns within
a row.

Columns

Rows

Nested loops allow you to iterate through two dimensions of data.

Two‑dimensional
arrays allow you to
store tabular data.

Two dimensions. One dimension.

Download at WoweBook.Com

234 Chapter 5

Q: Can arrays be more than 2‑D?

A: Yes, although at some point it can
get tricky to visualize the data. Three
dimensions can be handy for modeling
real‑world data such as the x‑y‑z coordinate
of a point in space. Beyond that, additional
dimensions are probably relegated to very
isolated situations. When adding another
dimension, just think in terms of replacing
individual array elements with sub‑arrays.

Q: Can I add additional data to an
array later if I initialize it with data upon
creation?

A: Absolutely. You’re always free to add
more data to an array by assigning new data
to an unused array element. In the Mandango
example, you could add another row of seats
by adding a new sub‑array as a fifth row (at
index 4 in the array). Just assign the sub‑array
to seats[4]. You can also call the
push() method of the Array object to
add a new item to the end of an array.

Q: Do 2‑D arrays have to contain the
same number of rows?

A: No, not exactly. Just keep in mind that
if the rows don’t contain the same number
of elements, you’re setting up a recipe for
looping disaster because nested loops
are typically designed to cycle through a
consistent sub‑array length. So, yes, it’s
possible to vary the length of 2‑D array rows,
but it’s a risky proposition that’s safer to
avoid.

Write code to loop through the seats in the 2-D seats array,
alerting the user to the availability of each seat.

Display a different alert
based upon whether the
seat is available (true) or
not (false).

for (var i = 0; i < seats.length; i++) {
 for (var j = 0; j < seats[i].length; j++) {
 if (seats[i][j])
 alert("Seat " + i + " in row " + j + " is available.");
 else
 alert("Seat " + i + " in row " + j + " is not available.");
 }
}

The outer loop cycles
through the rows of seats
using the i loop counter.

The inner loop cycles
through the seats in a row
using the j loop counter.

It takes two nested
loops to loop through two dimensions of
array data.

To access an individual
seat, use both the
row (i) and column (j)
of the array data.

The seat availability
messages show the row
and column of each seat.

This is the length
of the sub-array
located at row i.

sharpen solution

Download at WoweBook.Com

you are here 4 235

looping

Two‑dimensional arrays allow you to store rows and
columns of data in tabular structures.

When accessing an individual piece of data in a 2‑D
array, you must specify both the row and column of the
index.

Nested loops can be used to iterate through the data in
a 2‑D array.

Just like normal arrays, 2‑D arrays can be created and
initialized from array object literals

Mandango in 2-D
Although you’ve already worked through pieces and parts of the code,
moving Mandango from a single row of seats to a full theater of seats
involves reworking a great deal of the script code to account for 2-D data.

In what different ways do two-dimensional arrays impact Mandango when it changes to work
on an entire theater of seat data? How would you visualize the script code?

More rows of seats...
awesome! Let's get
that code knocked out.

Moving
Mandango from
1-D to 2-D
involves fairly
significant
coding changes.

It takes two loop
counters to cycle
through a 2-D
array of seats.
j

i

Download at WoweBook.Com

236 Chapter 5

2-D Mandango Up Close

<html>
 <head>
 <title>Mandango ‑ The Macho Movie Ticket Finder</title>

 <script type="text/javascript">
 var seats = [[false, true, false, true, true, true, false, true, false],
 [false, true, false, false, true, false, true, true, true],
 [true, true, true, true, true, true, false, true, false],
 [true, true, true, false, true, false, false, true, false]];
 var selSeat = ‑1;

 function initSeats() {
 // Initialize the appearance of all seats
 for (var i = 0; i < seats.length; i++) {
 for (var j = 0; j < seats[i].length; j++) {
 if (seats[i][j]) {
 // Set the seat to available
 document.getElementById("seat" + (i * seats[i].length + j)).src = "seat_avail.png";
 document.getElementById("seat" + (i * seats[i].length + j)).alt = "Available seat";
 }
 else {
 // Set the seat to unavailable
 document.getElementById("seat" + (i * seats[i].length + j)).src = "seat_unavail.png";
 document.getElementById("seat" + (i * seats[i].length + j)).alt = "Unavailable seat";
 }
 }
 }
 }

 function findSeats() {
 // If seats are already selected, reinitialize all seats to clear them
 if (selSeat >= 0) {
 selSeat = ‑1;
 initSeats();
 }

 // Search through all the seats for availability
 var i = 0, finished = false;
 while (i < seats.length && !finished) {
 for (var j = 0; j < seats[i].length; j++) {
 // See if the current seat plus the next two seats are available
 if (seats[i][j] && seats[i][j + 1] && seats[i][j + 2]) {
 // Set the seat selection and update the appearance of the seats
 selSeat = i * seats[i].length + j;
 document.getElementById("seat" + (i * seats[i].length + j)).src = "seat_select.png";
 document.getElementById("seat" + (i * seats[i].length + j)).alt = "Your seat";
 document.getElementById("seat" + (i * seats[i].length + j + 1)).src = "seat_select.png";
 document.getElementById("seat" + (i * seats[i].length + j + 1)).alt = "Your seat";
 document.getElementById("seat" + (i * seats[i].length + j + 2)).src = "seat_select.png";
 document.getElementById("seat" + (i * seats[i].length + j + 2)).alt = "Your seat";

 // Prompt the user to accept the seats
 var accept = confirm("Seats " + (j + 1) + " through " + (j + 3) +
 " in Row " + (i + 1) + " are available. Accept?");
 if (accept) {
 // The user accepted the seats, so we're done (break out of the inner loop)
 finished = true;
 break;
 }
 else {

mandango.html

<html>
 <head>
 ...
 </head>

 <body>
 ...
 </body>
</html>

No need to visualize... here's the complete code for 2-D Mandango!

The 2-D array of
boolean seat availability
variables is created.

Reinitialize the seats if
the user is starting a new
search for seats by clicking the Find Seats button again.

Taking advantage of the best of both
worlds, a while loop is used to cycle
through the rows, while a for loop cycles
through individual seats in a row.

2-D glasses not needed for this code

Download at WoweBook.Com

you are here 4 237

looping

 // The user rejected the seats, so clear the seat selection and keep looking
 selSeat = ‑1;
 document.getElementById("seat" + (i * seats[i].length + j)).src = "seat_avail.png";
 document.getElementById("seat" + (i * seats[i].length + j)).alt = "Available seat";
 document.getElementById("seat" + (i * seats[i].length + j + 1)).src = "seat_avail.png";
 document.getElementById("seat" + (i * seats[i].length + j + 1)).alt = "Available seat";
 document.getElementById("seat" + (i * seats[i].length + j + 2)).src = "seat_avail.png";
 document.getElementById("seat" + (i * seats[i].length + j + 2)).alt = "Available seat";
 }
 }
 }

 // Increment the outer loop counter
 i++;
 }
 }
 </script>
 </head>

 <body onload="initSeats();">
 <<div style="margin‑top:25px; text‑align:center">

 <input type="button" id="findseats" value="Find Seats" onclick="findSeats();" />
 </div>
 </body>
</html>

Four rows with nine
seats each require 36
HTML images... yikes!

The findSeats()
function is called when
the user clicks the
Find Seats button.

The initSeats()
function is called when
the page first loads.

The row and column loop
counters are required to
change the seat images
and alternate text.

 Don’t be
intimidated by
the sheer size
of this code.

It’s using the same 2-D array
techniques but now it’s folded into
the context of Mandango, with all
of the HTML code and images
(which is all available for download
at http://www.headfirstlabs.com/
books/hfjs/).

Download at WoweBook.Com

238 Chapter 5

An entire theater of manly seats
With two dimensions to work with, Seth and Jason are able to take
Mandango to the next level and support theater-wide seat searching...
with a macho twist! The guys are stoked.

Wicked!

We never have to sit
together again!

Mandango now offers
manly moviegoers a
choice of three seats in
a row within a theater
of options.

doing the mandango tango

Download at WoweBook.Com

you are here 4 239

looping

JavaScriptcross
All this talk about seats probably has you itching to
go see a movie. Before you leave, do a little mental
stretch and take a stab at this crossword puzzle.

Untitled Puzzle
Header Info 1

Header Info 2

etc...

1

2

3

4

5 6 7

8 9

10

11 12

13

Across
2. This kind of loop keeps on running code as long as a test
condition is true.
4. Use this statement to jump out of the current loop cycle but
continue looping.
8. If a is true or b is true, then a .. b is true; otherwise a .. b is
false.
9. A type of data that lets you store multiple pieces of data in a
single variable.
10. The part of a loop that contains the code to run repetitively.
11. The part of a loop that gets the loop ready to start.
13. A type of loop that is ideally suited for counting.

Down
1. The part of a loop that must have a boolean result.
3. A ... is used to access a value in an array.
5. Boolean operators operate on boolean values and return
a boolean result.
6. The part of a loop that is responsible for changing the state of
any loop controls.
7. If you want to end a loop immediately, use this statement.
10. If a is true and b is true, then a ... b is true; otherwise a ... b
is false.
12. Accessing an array value using a number requires an

Untitled Puzzle
Header Info 1

Header Info 2

etc...

1

2

3

4

5 6 7

8 9

10

11 12

13

Across
2. This kind of loop keeps on running code as long as a test
condition is true.
4. Use this statement to jump out of the current loop cycle but
continue looping.
8. If a is true or b is true, then a .. b is true; otherwise a .. b is
false.
9. A type of data that lets you store multiple pieces of data in a
single variable.
10. The part of a loop that contains the code to run repetitively.
11. The part of a loop that gets the loop ready to start.
13. A type of loop that is ideally suited for counting.

Down
1. The part of a loop that must have a boolean result.
3. A ... is used to access a value in an array.
5. Boolean operators operate on boolean values and return
a boolean result.
6. The part of a loop that is responsible for changing the state of
any loop controls.
7. If you want to end a loop immediately, use this statement.
10. If a is true and b is true, then a ... b is true; otherwise a ... b
is false.
12. Accessing an array value using a number requires an

Download at WoweBook.Com

240 Chapter 5

JavaScriptcross SolutionUntitled Puzzle
Header Info 1

Header Info 2

etc...

T
1

W
2

H I L E

S K
3

C
4

O N T I N U E

C Y

O L
5

U
6

B
7

N O
8

R P A
9

R R A Y

D G D E A
10

C T I O N

I
11

N I T I A L I
12

Z A T I O N

T C T N K D

I E D

F
13

O R E

N X

Across
2. This kind of loop continues to run code as long as a test
condition is true. [WHILE]
4. Use this statement to jump out of the current loop cycle but
continue looping. [CONTINUE]
8. If a is true or b is true, then a .. b is true; otherwise a .. b is
false. [OR]
9. A type of data that lets you store multiple pieces of data in a
single variable. [ARRAY]
10. The part of a loop that contains the code to run repetitively.
[ACTION]
11. The part of a loop that gets the loop ready to start.
[INITIALIZATION]
13. A type of loop that is ideally suited for counting. [FOR]

Down
1. The part of a loop that must have a boolean result.
[TESTCONDITION]
3. A ... is used to access a value in an array. [KEY]
5. Boolean operators operate on boolean values and return
a boolean result. [LOGIC]
6. The part of a loop that is responsible for changing the state of
any loop controls. [UPDATE]
7. If you want to end a loop immediately, use this statement.
[BREAK]
10. If a is true and b is true, then a ... b is true; otherwise a ... b
is false. [AND]
12. Accessing an array value using a number requires an
[INDEX]

JavaScriptcross solution

Download at WoweBook.Com

you are here 4 241

looping

 Some movies are known for having circular
 plots that are difficult to follow.
 There are other movies that use motion
 and lots of action to attract people.
 In the end, a movie is just a movie.

What do loops and movies have in common?

x

Page Bender

It’s a meeting of the minds!

Fold the page vertically
to line up the two brains
and solve the riddle.

Download at WoweBook.Com

Download at WoweBook.Com

this is a new chapter 243

functions6

Reduce, Reuse, Recycle

If there was an environmental movement within JavaScript, it
would be led by functions. Functions allow you to make JavaScript code more

efficient, and yes, more reusable. Functions are task-oriented, good at code organization,

and excellent problem solvers. Sounds like the makings of a good resume! In reality, all

but the simplest of scripts stand to benefit from a functional reorganization. While it’s hard

to put a number on the carbon footprint of the average function, let’s just say they do their

part in making scripts as eco-friendly as possible.

If there was an environmental movement within JavaScript, it
would be led by functions. Functions allow you to make JavaScript code more

efficient, and yes, more reusable. Functions are task-oriented, good at code organization,

and excellent problem solvers. Sounds like the makings of a good resume! In reality, all

but the simplest of scripts stand to benefit from a functional reorganization. While it’s hard

to put a number on the carbon footprint of the average function, let’s just say they do their

part in making scripts as eco-friendly as possible.

That’s the thing about meatloaf,
you cook it once and then
eat it for weeks and weeks...
somebody help me!

Download at WoweBook.Com

244 Chapter 6

The mother of all problems
When it comes down to it, web scripting is about solving problems. No
matter how large the problem, with enough thought and planning,
there’s always a solution. But what about the really huge problems?

World peace

The trick to solving big problems is to break them down into
smaller, more manageable problems. And if those problems
are still too big, then break them down again.

Continue this process again…and again…and again…

Right to voteFree speechConstructionLand rightsDistributionFarming

Civil rightsShelterFood

Now that’s a
big problem!

Big problem. Smaller problem.

Even smaller
problem.

dissecting big problems

Download at WoweBook.Com

you are here 4 245

functions

Solve big problems by solving small problems
Continuing to break down the world peace problem into smaller problems, you
eventually arrive at a problem that is small enough for JavaScript to handle.

Construction

Shelter

Climate controlUtilitiesMaterials

Think of a JavaScript equivalent to the climate control problem,
which would involve the scripting equivalent of a thermostat,
which is used to control the temperature of an environment. The
most basic thermostat would simply have a “heat” button.

Note how the thermostat reveals nothing about how the heating is
carried out. You press the Heat button and you get heat. Climate
control problem solved!

The easiest thermostat
ever – push the button
and it goes. You don’t care how

the heating is done,
you only need to know
how to turn it on.

A good problem that
is within the realm of
a JavaScript solution.

Download at WoweBook.Com

246 Chapter 6

Functions as problem solvers
The Heat button on the thermostat is the equvalent of a function in
JavaScript. The idea is similar to a real-world thermostat—someone
requests heat, the function provides it. The details of the heating are
handled inside the function, and aren’t important to the code calling
the function. In this way, you can think of a function as a “black box”—
information can flow into it and out of it but what goes on inside is the
box’s responsibility, and therefore not important to code outside of the box.

Request heat It gets warmer

Translating the Heat button into JavaScript code involves calling a
function called heat()…

Request heat It gets warmerheat();

function heat() {

 // Do some heating somehow

 shovelCoal();

 lightFire();

 harnessSun();

}

It’s not terribly important how the heat() function does the heating.
What matters is that it serves as a self-contained solution to a problem. If
you need some heat, just call the heat() function. The details of solving
the problem are left to the inner workings of the function.

The person who writes the
heat() function is the only
person who has to worry
about how the function heats.

Anyone who wants heat just
needs to know how to call the heat() function.

Functions turn
big problems into
small problems.

The actual heating is
done by calling these
three other functions.

functions: small problem solvers

Download at WoweBook.Com

you are here 4 247

functions

The nuts and bolts of a function
When you elect to create a function, you become the problem solver.
Creating a function requires you to use a consistent syntax that ties the
name of the function with the code that it runs. Following is the syntax for
the most basic JavaScript function:

}

Body

Namefunction + + {() +

Start a function with
the function keyword.

An identifier that uses
lowerCamelCase.

Parentheses are a
tell-tale sign that
this is a function.

The code within a function
is really part of a compound
statement, which starts
with a curly brace.

Wrap up the function
with a closing curly brace.

The body of the
function is where all
the work takes place.

function heat() {

 // Do some heating somehow

 shovelCoal();

 lightFire();

 harnessSun();

}

Taking another look at the code for the heat() function helps put the
function syntax into some perspective:

The body of the
function does the
actual heating.

The function body is
surrounded by curly
braces - it’s really just a compound statement.

When have you seen functions used to solve problems so far?

Download at WoweBook.Com

248 Chapter 6

A function you’ve already met
You don’t have to look any further than the Mandango macho seat finder
(full files available at http://www.headfirstlabs.com/books/hfjs/.) script to
find a good example of a function solving a problem—in this case, the
problem of initializing movie seat data. Here’s how the Mandango
problem was broken down:

Find seatsInitialize seats

Macho seat search

function initSeats() {

 // Initialize the appearance o
f all seats

 for (var i = 0; i < seats.leng
th; i++) {

 for (var j = 0; j < seats[i]
.length; j++) {

 if (seats[i][j]) {

 // Set the seat to avail
able

 document.getElementById(
"seat" + (i * seats[i].length +

j)).src = "seat_avail.png";

 document.getElementById(
"seat" + (i * seats[i].length +

j)).alt = "Available seat";

 }
 else {
 // Set the seat to unava

ilable

 document.getElementById(
"seat" + (i * seats[i].length +

j)).src = "seat_unavail.png";

 document.getElementById(
"seat" + (i * seats[i].length +

j)).alt = "Unavailable seat";

 }
 }
 }
}

The seat initialization sub-problem was small enough to be solved with a
function, the initSeats() function:

Big problem.

Smaller problems.

The initSeats() function is part of the Mandango web page. The
function doesn’t get called until it is tied to the onload event handler.
This causes the function to run when the page loads.

<body
onload="initSeats();">

 <div style="height:25px"></d
iv>

 <div style="text‑align:cente
r">

 <img id="seat0" src="" alt
="" />

 ...
 <img id="seat35" src="" al

t="" />

 <input type="button" id="f
indseats" value="Find Seats" onc

lick="findSeats();" />

 </div>
 </body>
</html>

initSeats() isn’t the only
problem solver in Mandango.

mandango functions

Download at WoweBook.Com

you are here 4 249

functions

Q: How does the naming convention
for functions work again?

A: lowerCamelCase is a convention for
naming JavaScript identifiers where the
first word in an identifier is all lowercase
but additional words are mixed case. So, a
function that rates a movie might be called
rateMovie(), while a function that
kicks out a guy who insists on talking on his
mobile phone during a movie might be called
removeInappropriateGuy().

Q: Are functions always about turning
big problems into smaller problems?

A: Not necessarily. There are situations
where functions are helpful purely as a
division of coding labor. In other words, it
may be one problem being solved by

several functions working together. In this
case, the rationale for dividing up the code
into functions is to help divide the work and
give each function its own singular purpose.
Kind of like how people are given different
job titles so that they can each focus on
one specific type of task. Such functions
may or may not be solving unique problems,
but they definitely improve the structure of
scripts by dividing up the work.

Q: How do you know when a chunk of
code should be placed into a function?

A: Unfortunately, there is no magical way
to know when it makes the most sense to
place a piece of code into a function. But
there are some signs you can look for as
clues. One sign is if you find yourself
duplicating a piece of code. Duplicate code

is almost never a good thing because
you have to maintain it in more than one
place. So duplicate code is a great target
for placing in a function. Another sign is a
situation where a piece of code grows to
become unwieldy, and you’re able to make
out several logical parts to it. This is a good
time to apply the “division of labor” idea to
the code, and consider breaking it out into
multiple functions.

Q: I thought I remember seeing
functions that accepted arguments and
then passed data back. Am I missing
something?

A: No, not at all. There certainly are
functions that both accept and return data.
In fact, you’re about to see the heat()
function turn into one if you hang in there.

The name of a function is extremely important in immediately conveying what the function does.
Try your hand at naming these functions, making sure to use lower camel case.

Throw popcorn Popcorn is hurled at others

Ask for refund Receive refund

Request aisle seat Receive ticket for aisle seat

Download at WoweBook.Com

250 Chapter 6

I’m burning up! Please turn the
heater off. Or am I feeling
the effects of local warming?

Too hot to handle
Meanwhile, the effort to bring about world peace
through climate control has hit a bit of a snag. It
seems the Heat button works too well, or maybe
it’s just a problem of the heat() function needing
more data. Either way, something needs to be fixed.

Ahh, this is comfy.

The name of a function is extremely important in immediately conveying what the function does.
Try your hand at naming these functions, making sure to use lower camel case.

Throw popcorn Popcorn is hurled at others

Ask for refund Receive refund

Request aisle seat Receive ticket for aisle seat

requestAisleSeat()

getRefund()

throwPopcorn()
There are plenty of other function names that would work here. These are just some good examples of concise, lower camel case names.

exercise solution

Download at WoweBook.Com

you are here 4 251

functions

Build a better thermostat with more data
So back to the thermostat…It doesn’t know when to stop heating because
we never set a target temperature. There simply isn’t enough information
to solve the problem effectively, which means someone presses the Heat
button and they get heat... forever!

The improved thermostat now accepts the target temperature as
an input that it can use to better carry out the “heat” process.

Request heat It gets warmer

Write the code for an improved heat() function that accepts a target temperature and uses
it to only generate heat while the current temperature is less than the target temperature.
Hint: call the hypothetical getTemp() function to get the current temperature.

Target
temperature

heat(targetTemp);

The target
temperature now
serves as an input
into the function.

The Temperature knob allows the user to set a target temperature.

function heat(targetTemp){We added a line to
get you started.

Download at WoweBook.Com

252 Chapter 6

Passing information to functions
Data is passed into JavaScript functions using function arguments,
which are like inputs. Look again at the syntax for functions; see how
arguments are placed inside the parentheses when you create a function.

Write the code for an improved heat() function that accepts a target temperature and uses it
to only generate heat while the current temperature is less than the target temperature. Hint: call
the hypothetical getTemp() function to get the current temperature.

function heat(targetTemp){
 while (getTemp() < targetTemp) {
 // Do some heating somehow
 shovelCoal();
 lightFire();
 harnessSun();
 }
}

The target temperature is
passed into the function as
a function argument.

The target temperature is
used as part of the test
condition for a while loop.

The function now only
heats if the current
temperature is less than the target temperature.

}

Body

Namefunction + (+ +)Arguments + + {

One or more arguments can appear inside the parentheses.

There isn’t really a limit on the number of arguments you can pass
into a function, although it makes practical sense to try and keep
them to within no more than two or three. You can pass just about
any piece of data to a function as an argument: a constant (Math.
PI), a variable (temp), or a literal (72).

Within the body of a function,
arguments are accessed as if they
are initialized local variables.

exercise solution

Download at WoweBook.Com

you are here 4 253

functions

Function arguments as data
When data is passed into a function as an argument, it acts as an
initialized local variable inside the function. As an example, here the
heat() function is getting supplied with a target temperature that is
passed to the function as an argument:

function heat(targetTemp) {

 alert(targetTemp);

}

Inside the heat() function, the targetTemp argument is accessible as
if it was a local variable initialized to 72. Replacing the normal heat()
function code with an alert reveals the argument value.

heat(72);

Although function arguments act much like local variables from within a
function, changing an argument value inside a function does not affect
anything outside of the function. This rule does not apply to objects that
are passed as arguments—we’ll dig into objects in Chapters 9 and 10.

72

var temp = 80;

coolIt(temp);

alert(temp);

function coolIt(temperature) {
 temperature‑‑;

}

Even though
the temperature
argument is altered
inside the function,
the outside variable
remains unaffected.

The temp variable is
passed into the function
as an argument.

targetTemp

72

Inside the heat() function, the argument looks just like a local variable.

The target temperature is passed into
the function as a literal number.

Subtract 1 from
the temperature.

Once the function exits, targetTemp goes away.

Download at WoweBook.Com

254 Chapter 6

Functions eliminate duplicate code
In addition to breaking down problems so that they can be solved more
easily, functions serve as a great way to eliminate duplicate code by
generalizing tasks. A generalized task can be used to eliminate similar
code that appears in more than one place. Even though the code may
not be identical, in many cases you can generalize it into identical code
that can be placed in a function. Then you call the function instead of
duplicating similar code.

Following are three different pieces of code that all involve similar tasks
that could be generalized into a single, reusable task:

function discountPrice(price, pe
rcentage) {

 return (price * (1 ‑ (percenta
ge / 100)));

}

// Senior ticket is 15% less

seniorTicket = adultTicket * (1 ‑ 0.15);

// Child ticket is 20% less

childTicket = adultTicket *
 (1 ‑ 0.20);

// Matinee ticket is 10% less

matineeTicket = adultTicket * (1 ‑ 0.10);

The specific tasks involve calculating the prices of three different kinds of
discounted movie tickets. But these tasks can be generalized into a task that
involves calculating the price of a ticket based upon any discount percentage.

With a generalized ticket discount function in hand, the other three pieces
of code can be rewritten much more efficiently:

// Senior ticket is 15% less

seniorTicket = discountPrice(adultTicket, 15);

// Child ticket is 20% less

childTicket = discountPrice
(adultTicket, 20);

// Matinee ticket is 10% less

matineeTicket = discountPrice(adultTicket, 10);

The discount percentage
calculation is unnecessarily
duplicated.

Functions can
return data
as well.

removing duplications with functions

Download at WoweBook.Com

you are here 4 255

functions

BE the Efficiency Expert
Below is the findSeats() function from the
Mandango macho seat finder in all its

prior glory. Using your newfound
efficiency knowledge, circle
similar code that could be
rewritten as a generalized,
reusable function.

function findSeats() {
 // If seats are already selected, reinitialize all seats to clear them
 if (selSeat >= 0) {
 selSeat = ‑1;
 initSeats();
 }

 // Search through all the seats for availability
 var i = 0, finished = false;
 while (i < seats.length && !finished) {
 for (var j = 0; j < seats[i].length; j++) {
 // See if the current seat plus the next two seats are available
 if (seats[i][j] && seats[i][j + 1] && seats[i][j + 2]) {
 // Set the seat selection and update the appearance of the seats
 selSeat = i * seats[i].length + j;
 document.getElementById("seat" + (i * seats[i].length + j)).src = "seat_select.png";
 document.getElementById("seat" + (i * seats[i].length + j)).alt = "Your seat";
 document.getElementById("seat" + (i * seats[i].length + j + 1)).src = "seat_select.png";
 document.getElementById("seat" + (i * seats[i].length + j + 1)).alt = "Your seat";
 document.getElementById("seat" + (i * seats[i].length + j + 2)).src = "seat_select.png";
 document.getElementById("seat" + (i * seats[i].length + j + 2)).alt = "Your seat";

 // Prompt the user to accept the seats
 var accept = confirm("Seats " + (j + 1) + " through " + (j + 3) +
 " in Row " + (i + 1) + " are available. Accept?");
 if (accept) {
 // The user accepted the seats, so we're done (break out of the inner loop)
 finished = true;
 break;
 }
 else {
 // The user rejected the seats, so clear the seat selection and keep looking
 selSeat = ‑1;
 document.getElementById("seat" + (i * seats[i].length + j)).src = "seat_avail.png";
 document.getElementById("seat" + (i * seats[i].length + j)).alt = "Available seat";
 document.getElementById("seat" + (i * seats[i].length + j + 1)).src = "seat_avail.png";
 document.getElementById("seat" + (i * seats[i].length + j + 1)).alt = "Available seat";
 document.getElementById("seat" + (i * seats[i].length + j + 2)).src = "seat_avail.png";
 document.getElementById("seat" + (i * seats[i].length + j + 2)).alt = "Available seat";
 }
 }
 }

 // Increment the outer loop counter
 i++;
 }
}

Download at WoweBook.Com

256 Chapter 6

BE the Efficiency Expert Solution
Below is the findSeats() function from the
Mandango macho seat finder in all its

prior glory. Using your newfound
efficiency knowledge, circle
similar code that could be
rewritten as a generalized,
reusable function.

function findSeats() {
 // If seats are already selected, reinitialize all seats to clear them
 if (selSeat >= 0) {
 selSeat = ‑1;
 initSeats();
 }

 // Search through all the seats for availability
 var i = 0, finished = false;
 while (i < seats.length && !finished) {
 for (var j = 0; j < seats[i].length; j++) {
 // See if the current seat plus the next two seats are available
 if (seats[i][j] && seats[i][j + 1] && seats[i][j + 2]) {
 // Set the seat selection and update the appearance of the seats
 selSeat = i * seats[i].length + j;
 document.getElementById("seat" + (i * seats[i].length + j)).src = "seat_select.png";
 document.getElementById("seat" + (i * seats[i].length + j)).alt = "Your seat";
 document.getElementById("seat" + (i * seats[i].length + j + 1)).src = "seat_select.png";
 document.getElementById("seat" + (i * seats[i].length + j + 1)).alt = "Your seat";
 document.getElementById("seat" + (i * seats[i].length + j + 2)).src = "seat_select.png";
 document.getElementById("seat" + (i * seats[i].length + j + 2)).alt = "Your seat";

 // Prompt the user to accept the seats
 var accept = confirm("Seats " + (j + 1) + " through " + (j + 3) +
 " in Row " + (i + 1) + " are available. Accept?");
 if (accept) {
 // The user accepted the seats, so we're done (break out of the inner loop)
 finished = true;
 break;
 }
 else {
 // The user rejected the seats, so clear the seat selection and keep looking
 selSeat = ‑1;
 document.getElementById("seat" + (i * seats[i].length + j)).src = "seat_avail.png";
 document.getElementById("seat" + (i * seats[i].length + j)).alt = "Available seat";
 document.getElementById("seat" + (i * seats[i].length + j + 1)).src = "seat_avail.png";
 document.getElementById("seat" + (i * seats[i].length + j + 1)).alt = "Available seat";
 document.getElementById("seat" + (i * seats[i].length + j + 2)).src = "seat_avail.png";
 document.getElementById("seat" + (i * seats[i].length + j + 2)).alt = "Available seat";
 }
 }
 }

 // Increment the outer loop counter
 i++;
 }
}

Since these six
pieces of code
perform the same
general task, they
can be turned into
a single function.

The length property still works for getting
the number of items in a sub-array.

Duplicate code. We
can extract some
attributes from this...

be the solution

Download at WoweBook.Com

you are here 4 257

functions

Creating a seat setter function
Now that the Mandango guys have gotten wind of this efficiency stuff,
they’re fired up about adding a function to Mandango that makes the seat
setting code more efficient (code available at http://www.headfirstlabs.com/
books/hfjs/). In order to write the setSeat() function, however, they
really need to figure out what arguments are required. You can isolate
the necessary arguments by examining what pieces of information are
different in the duplicate code. A closer look at the duplicate parts of the
findSeats() function reveals these arguments:

Write the code for the Mandango setSeat() function.

I know, but let me
call you back... I have
someone on the other line.

Dude, functions
rule! We need more
of these things.

Seat Number
The number of the seat to be set.

This is not an array index; it’s just the

number of the seat if you were to start

counting from left to right and top to

bottom, starting at 0.

Status
The status of the seat, as in available,
unavailable, and selected. This is used
to determine what seat image to display.

Description
The description of the seat status, as in

“Available seat”, “Unavailable seat”, and

“Your seat”. This is used to set the alt

text for the seat images.

The findSeats() attributes are extracted from the duplicated code that will be placed in the function.

Download at WoweBook.Com

258 Chapter 6

A leaner, cleaner Mandango with functions
Breaking out similar, duplicate code into the setSeat() function simplifies
the code for the findSeats() function considerably. There are now six
calls to the setSeat() function, which is a significant improvement in terms
of code reuse.

Write the code for the Mandango setSeat() function.

function setSeat(seatNum, status, description) {
 document.getElementById(“seat” + seatNum).src = “seat_” + status + “.png”;
 document.getElementById(“seat” + seatNum).alt = description;
}

The three arguments are
separated by commas.The specific data used in the original code

is now replaced by
generalized arguments.

function findSeats() {

 ...
 // Search through all the seat

s for availability

 var i = 0, finished = false;

 while (i < seats.length && !fi
nished) {

 for (var j = 0; j < seats[i]
.length; j++) {

 // See if the current seat
 plus the next two seats are ava

ilable

 if (seats[i][j] && seats[i
][j + 1] && seats[i][j + 2]) {

 // Set the seat selectio
n and update the appearance of t

he seats

 selSeat = i * seats[i].l
ength + j;

 setSeat(i * seats[i].leng
th + j, "select", "Your seat");

 setSeat(i * seats[i].leng
th + j + 1, "select", "Your seat"

);

 setSeat(i * seats[i].leng
th + j + 2, "select", "Your seat"

);

 // Prompt the user to ac

cept the seats

 var accept = confirm("Se
ats " + (j + 1) + " through " +

(j + 3) +

 " in Row " + (i + 1) +
 " are available. Accept?");

 if (accept) {

 // The user accepted t
he seats, so we're done (break o

ut of the inner loop)

 finished = true;

 break;

 }
 else {
 // The user rejected t

he seats, so clear the seat sele
ction and keep looking

 selSeat = ‑1;

 setSeat(i * seats[i].le
ngth + j, "avail", "Available sea

t");

 setSeat(i * seats[i].le
ngth + j + 1, "avail", "Available

 seat");

 setSeat(i * seats[i].le
ngth + j + 2, "avail", "Available

 seat");

 }
 }
 }

 // Increment the outer loop

counter

 i++;
 }
}

The new setSeat()
function is called
six times.

The seat number, status,
and description are
passed to setSeat() in
each function call.

reusing mandango code

Download at WoweBook.Com

you are here 4 259

functions

Functions allow you to turn big problems into small
problems, which become much easier to solve.

Functions provide a mechanism to separate script tasks
and then complete them with reusable chunks of code.

Functions serve as a great way to eliminate duplicate
code since the code in a function can be reused as
many times as you want.

Arguments allow you to pass data into functions as
input for a given task.

function initSeats() {

 // Initialize the appearance o
f all seats

 for (var i = 0; i < seats.leng
th; i++) {

 for (var j = 0; j < seats[i]
.length; j++) {

 if (seats[i][j]) {

 // Set the seat to avail
able

 document.getElementById("
seat" + (i * seats[i].length + j)

).src = "seat_avail.png";

 document.getElementById("
seat" + (i * seats[i].length + j)

).alt = "Available seat";

 }
 else {
 // Set the seat to unava

ilable

 document.getElementById("
seat" + (i * seats[i].length + j)

).src = "seat_unavail.png";

 document.getElementById("
seat" + (i * seats[i].length + j)

).alt = "Unavailable seat";

 }
 }
 }
}

But the setSeat() function doesn’t just benefit findSeats(). It also
helps make the initSeats() function more efficient because that
function has similar seat setting code as well.

function initSeats() {
 // Initialize the appearance of all seats
 for (var i = 0; i < seats.length; i++) {
 for (var j = 0; j < seats[i].length; j++) {
 if (seats[i][j]) {
 // Set the seat to available
 setSeat(i * seats[i].length + j, "avail", "Available seat"); }
 else {
 // Set the seat to unavailable
 setSeat(i * seats[i].length + j, "unavail", "Unavailable seat");
 }
 }
 }
}

So, a fairly simple function consisting of two lines of code is now used eight times
throughout the Mandango script. Not only does this simplify the script code, but it
makes the script more maintainable because if you ever need to change how a seat is
set, you only have to change the one setSeat() piece of code, as opposed to eight
separate pieces. No JavaScript coder in their right mind wants to change multiple
pieces of code, when they don’t have to. Maintainabilty... it’s a good thing.

Two complex lines of code are turned into one relatively straightforward function call.

By generalizing the task of
setting a seat, the setSeat()
function works great in an
entirely different context.

The setSeat() function makes Mandango even better

Download at WoweBook.Com

260 Chapter 6

Q: Is there a limit to the number of
arguments that can be passed into a
function?

A: No and yes. No, there isn’t a real limit
on the number of arguments that can be
passed into a function, unless you factor
in the limits on computer memory. If you’re
passing so many arguments that memory
becomes an issue, you might want to take
a break and rethink what you’re doing
because it takes an awful lot of arguments
to cause a memory problem. The more
practical limitation has to do with good
design, and that means keeping the number
of arguments to a manageable amount just
so function calls don’t get too ridiculously
complicated. It’s generally a good idea to not
use more than a handful of arguments.

Q: I’ve learned that functions turn big
problems into small problems, divide
scripting labor, and eliminate duplicate
code. Which is it?

A: All of the above. Functions are good at
more than one thing, and in many cases the
best functions accomplish several goals at
once. It’s not out of the question to create a
function that solves a sub‑problem, performs
a division‑of‑labor task, and eliminates
duplicate code, all at the same time. In fact,
those are three pretty good goals to have
when creating any function. But if you must
focus on one thing, you will typically want
to err on the side of dividing labor, which
really means giving every function a singular
purpose. If every function excels at one
unique thing, your scripts will benefit greatly.

Q: One more time, where do functions
go in the header or the body of a web
page?

A: Functions should appear inside the
<script> tag within the head of the
page, or in an external JavaScript file that is
imported into the head of the page.

Q: If I truly want a function to change
the value of an argument, how do I do it?

A: Function arguments can’t be directly
altered, or at least the changes won’t carry
on outside of the function. So if you want to
change a piece of data that has been passed
as an argument, you need to return the
changed value from the function. Read on to
find out how return values work!

Something isn’t right
with this thermostat—
I’m freezing!

Winter in July: feedback with functions
Although Mandango has made some big strides thanks to functions, they
aren’t faring so well on the climate change front. It seems the JavaScript
thermostat still isn’t quite working properly, resulting in some frigid users
who now long for the old Heat button that never stopped heating.

I feel great!

ask them it’s okay

Download at WoweBook.Com

you are here 4 261

functions

The significance of feedback
Our current thermostat allows you to set the temperature thanks to
function arguments but it doesn’t report the current temperature.
The current temperature is important because it gives you a basis for
determining a target temperature. Besides, different thermostats often
report different temperatures, even within the same space. What this
boils down to is the need for feedback... you need to know the current
temperature in order to set a meaningful target temperature.

The thermostat now periodically displays the current temperature as
feedback to help assist in determining an optimal temperature.

Request
temperature

The actual
temperature is
returned

getTemp();

Actual
temperature

The actual temperature is returned by the function.

So we really need a way for JavaScript functions to
return information back to the code that called them.

How do you think a function could be coaxed into returning data?

The getTemp() function
gets called to determine
the actual temperature.

The “current temperature”
display lets users know the
current temperature so that
they can make adjust the heat
with more accuracy.

Download at WoweBook.Com

262 Chapter 6

Returning data from functions
Returning information from a function involves using the return
keyword, followed by the data to be returned. This data is then returned
to the code that called the function.

Valuereturn + ;+

The return keyword indicates that a function is returning a value.
The return value can be
any data you choose.

function getTemp() {

 // Read and convert the actual temperature

 var rawTemp = readSensor();

 var actualTemp = convertTemp(rawTemp);

 return actualTemp;

}

A return statement can be placed anywhere within a function; just know
that the function will exit immediately upon encountering a return. So
the return statement not only returns data but also ends a function.
As an example, the getTemp() function ends by returning the actual
temperature, as read from a sensor.

The actual temperature is
returned from the function
using the return statement.

function heat(targetTemp) {

 while (getTemp() < targetTemp) {

 // Do some heating somehow

 ...

 }

}

If you think back carefully, the getTemp() function has already been
used in the thermostat code:

The getTemp() function provides
the value that is used in the test
condition for the heat() while loop.

The return value of the getTemp() function replaces the getTemp()
function call and becomes part of the test condition in the while loop.

A return value allows
you to return a piece of
data from a function.

The return value of a
function replaces the
call to the function.

The sensor data is in a weird format and needs to be converted to degrees.

return to caller

Download at WoweBook.Com

you are here 4 263

functions

Many happy return values
Since the return statement immediately ends a function, you can use it
to control the flow of a function, in addition to returning data. Not only
that, but it’s very common for functions to indicate their success using
return values. The heat() function presents an opportunity to do both:

function heat(targetTemp) {

 if (getTemp() >= targetTemp)

 return false;

 while (getTemp() < targetTemp) {

 // Do some heating somehow

 ...

 }

 return true;

}

No need to do any
heating, so return false
and end the function.

Finished heating, so return
true to indicate success.

The heat() function demonstrates how a boolean return value can
control the flow of a function and also indicate success or failure. For pure
flow control, you can use the return statement with no return value at
all as a means of bailing out of a function. For example, here’s another
version of the heat() function that doesn’t rely on the return value to
indicate success or failure.

function heat(targetTemp) {

 if (getTemp() >= targetTemp)

 return;

 while (getTemp() < targetTemp) {

 // Do some heating somehow

 ...

 }

}

The function still ends when
it ends, without the help of
a return statement.

The return statement cuts the function short since no heating is required.

The return statement
can be used by itself
to end a function.

Remember the actualTemp variable? It
provides the return value of getTemp().

This code does the actual heating, which affects the temperature, and therefore the return value of getTemp().

Download at WoweBook.Com

264 Chapter 6

Head First: So I hear that you’re pretty slippery, able to
get out of just about anything.

Return: That’s true. Put me in any function and I’ll get
out of it in no time. I’ll even take a piece of data with me.

Head First: Where do you go when you leave a
function?

Return: Well, don’t forget that functions are always
called by other code, so returning from a function just
means returning to the code that called it. And in the case,
of returning data, it means the data is returned to the
code that called the function.

Head First: How does that work?

Return: It helps if you think of a function call as an
expression that has a result. If the function doesn’t return
any data, the result of the expression is nothing. But if the
function does return data, and many of them do, then the
result of the expression is that piece of data.

Head First: So if a function is just an expression, does
that mean you can assign the return value of a function to
a variable?

Return: No and yes. No, the function itself is not
an expression—it’s the call to the function that is the
expression. And yes, you can and often should place a
function call so that the result gets assigned to a variable.
That’s where the expression comes into play—when a
function call is evaluated, it is treated as an expression
where the result is the return value of the function.

Head First: I see. But what happens to the expression
when you don’t return anything?

Return: If you use me with no return data, then the
function returns nothing and the expression is empty.

Head First: Isn’t that a problem?

Return: No, not really. You have to remember that
people only worry about doing something with function
return values when they know the function is capable
of returning data. If a function isn’t intended to return
anything, you shouldn’t worry about trying to do anything
with a return value.

Head First: Gotcha. So getting back to your escape
skills, isn’t it a bad idea to keep a function from finishing
its natural course of execution?

Return: No, and here’s why. Just because a function has
a first line and a last line does not mean it is designed to
always run every line of code from start to finish. In fact,
it’s dangerous to even think of a function as having a start
and a finish. The “natural” finish of a function could very
well be in the middle of the code thanks to some crafty
developer putting me in the right place.

Head First: I don’t get it. Are you saying that it’s normal
for some function code to never get called?

Return: I never say never, but I will say that there is
usually more than one path through a function, and I
often help establish those paths. If something takes place
that indicates the function shouldn’t continue running,
I’m there to give it an early exit. In other scenarios, a
function may run all the way to its last line of code and
exit without ever encountering me, or it may end with me
just so I can return some data.

Head First: Oh, I see. You provide options, both in
terms of returning data and controlling the flow of
execution through a function.

Return: Hey, you’re catching on!

Head First: Yeah, I’m quick like that. Thanks for your
time.

Return: No worries. I gotta get out of here!

Return Exposed
This week’s interview:
Secrets of a function escape artist

Return Exposed
This week’s interview:
Secrets of a function escape artist

return exposed

Download at WoweBook.Com

you are here 4 265

functions

Stop local

warming

now!
It’s getting colder... honest.

It seems that JavaScript has found itself caught in the middle of a climate change scandal. The
people at We’re Against Rapid Warming, or WARM, created a script to promote their message
about local warming. But the folks at Annoyed but Responsible Citizens Tired of Increasing Cold,
or ARCTIC, are bent on suppressing WARM’s message, and have sabotaged the script code.
Your job is to sort out the good code from the bad, and unravel WARM’s intended message.

function showClimateMsg() {

 return;
 alert(constructMessage());

}

function constructClimateMsg() {

 var msg = "";

 msg += "Global "; // "Local ";

 if (getTemp() > 80)

 msg += "warming ";

 else
 msg += "cooling ";

 if (true)
 msg += "is not";

 else
 msg += "is ";

 if (getTemp() <= 70)

 return msg + "a hoax!";

 else
 return msg + "real!";

 return "I don't believe it.";

}

function getTemp() {

 // Read the actual temperature

 var actualTemp = readSensor();

 return 64;
}

WARM supporter.

ARCTIC operative.

Download at WoweBook.Com

266 Chapter 6

It’s getting
hot in this

outfit. Help!

Thanks
JavaScript!

v It seems that JavaScript has found itself caught in the middle of a climate change scandal. The
people at We’re Against Rapid Warming, or WARM, created a script to promote their message
about local warming. But the folks at Annoyed but Responsible Citizens Tired of Increasing Cold,
or ARCTIC, are bent on suppressing WARM’s message, and have sabotaged the script code.
Your job is to sort out the good code from the bad, and unravel WARM’s intended message.

function showClimateMsg() {

 return;
 alert(constructMessage());

}

function constructClimateMsg() {

 var msg = "";

 msg += "Global "; // "Local ";

 if (getTemp() > 80)

 msg += "warming ";

 else
 msg += "cooling ";

 if (true)
 msg += "is not";

 else
 msg += "is ";

 if (getTemp() <= 70)

 return msg + "a hoax!";

 else
 return msg + "real!";

 return "I don't believe it.";

}

function getTemp() {

 // Read the actual temperature

 var actualTemp = readSensor();

 return 64;
}

actualTemp;

This return prevents the
alert from ever appearing.

The intended text
was commented
out to keep it out
of the message.

An if statement
that is permanently
true doesn’t make
much sense.

The if-else statement
keeps the function
from ever getting to
this code, so there’s
no reason to have it. Return the actual temperature read from the sensor.

This code is fine since the actual temperature is controlling the message.

exercise solution

Local Warming is real!

Download at WoweBook.Com

you are here 4 267

functions

Getting the status of a seat
Back at Mandango, Seth and Jason are sick of hearing about climate
change, and are ready to make some more improvements to their script
code. Some users have reported difficulty in making out the different
colors of seats, and would like to be able to click and query any seat for its
availability. Sounds as if Mandango needs a new function.

function getSeatStatus(seatNum)
{

 if (!= ‑1 &&

 (== ||
 == (+ 1) || ==

(+ 2)))

 return "yours";

 else if ([Math.floor(
 / [0].length)][

% [0].length])

 return "available";

 else

 return "unavailable";

}

Request the
seat status

The seat status
is returned

Seat
status

All this temperature
talk is killing me. I’ve got

Mandango stuff to fix!

getSeatStatus(seatNum);

Seat
number

The seats are numbered left to right, top to bottom, starting at 0.

The seat status is a
string, such as “available”,
“unavailable”, or “yours”.

getSeatStatus() function Magnets
The getSeatStatus() function in Mandango is missing some important code that helps it figure out
the status of a given seat. The function first checks to see if the seat is part of the series of three selected
seats. If not, it looks up the seat in the seat array to see if it is available or unavailable. Use the magnets
below to finish the missing pieces of code.

seats
seatNumselSeat

Download at WoweBook.Com

268 Chapter 6

Showing the seat status
Getting the seat status is handy but allowing the user to query any seat for its
status requires a means of showing the seat status when the user clicks a seat.
The showSeatStatus() function provides a simple solution to this problem,
delegating the dirty work to the getSeatStatus() function that we just wrote.

function showSeatStatus(seatNum) {

 alert("This seat is " + getSeatStatus(seatNum) + ".");

}

Pass along the seat number to getSeatStatus() to get the seat status.

Concatenate the strings
to build a status message.

function getSeatStatus(seatNum)
{

 if (!= ‑1 &&

 (== ||
 == (+ 1) ||

 == (+ 2)))

 return "yours";

 else if ([Math.floor(
 / [0].length)][

 % [0].length])

 return "available";

 else

 return "unavailable";

}

seats

seatNum

selSeat

selSeat seatNum selSeat seatNum selSeat

seatNum seats
seatNum seats

The selSeat global variable
is -1 when no seat is
selected, so check it first.

We’re dealing with three seats in a row, so
you must check this seat and the next two.

getSeatStatus() function Magnets Solution
The getSeatStatus() function in Mandango is missing some important code that helps it figure out
the status of a given seat. The function first checks to see if the seat is part of the series of three selected
seats. If not, it looks up the seat in the seat array to see if it is available or unavailable. Use the magnets
below to finish the missing pieces of code.

You could hardcode 9 here but it would break if you ever changed the size of the seats array.

Figure out the array column of
the seat by getting the remainder
of the seat number divided by the
number of seats in the row.

Figure out the array row of the seat by dividing the seat number by the number of seats in the row, and then rounding off to an integer.

getSeatStatus() magnets solution

Download at WoweBook.Com

you are here 4 269

functions

The return statement allows functions to return data
back to the code that called them.

When a piece of data is returned from a function, it
stands in for the code that called the function.

A function can only return a single piece of data.

The return statement can be used without any data
to simply end a function early.

Wiring this function to a seat image on the Mandango page allows the user
to query the seat for its status by clicking the image. Each image must have
its onclick event tied to showSeatStatus(), like this:

A click is all it takes to view the status of any seat in an alert box,
which is useful for anyone who has trouble making out the seat
images, and just wants to click an individual seat for its status.

Seat number 23.

onclick!

The showSeatStatus() function is called when the user clicks the “seat23” image.

You can link the function to an image

Download at WoweBook.Com

270 Chapter 6

Repetitive code is never a good thing
The Mandango script is working pretty well but the guys are
starting to worry about maintaining the script over the long haul.
In particular, Jason has been doing some research, and has learned
that modern web applications often benefit from separating HTML,
JavaScript, and CSS code.

<html>
 <head>
 <title>Mandango ‑ The Macho

Movie Ticket Finder</title>

 <script type="text/javascrip

t">

 ...

 function initSeats() {

 ... }

 function getSeatStatus(sea

tNum) {

 ...
 }

 function showSeatStatus(se

atNum) {

 alert("This seat is " +
getSeatStatus(seatNum) + ".");

 }

 function setSeat(seatNum,

status, description) {

 document.getElementById(
"seat" + seatNum).src = "seat_"

+ status + ".png";

 document.getElementById(
"seat" + seatNum).alt = descript

ion;

 }

 function findSeats() {

 ...
 }
 </script>

 </head>

 <body onload="initSeats();">

 <div style=”margin‑top:25px;
 text‑align:center”>

 <img id="seat0" src="" alt
="" onclick="showSeatStatus(0);"

 />

 <img id="seat1" src="" alt
="" onclick="showSeatStatus(1);"

 />

 <img id="seat2" src="" alt
="" onclick="showSeatStatus(2);"

 />

 <img id="seat3" src="" alt
="" onclick="showSeatStatus(3);"

 />

 <img id="seat4" src="" alt
="" onclick="showSeatStatus(4);"

 />

 <img id="seat5" src="" alt
="" onclick="showSeatStatus(5);"

 />

 <img id="seat6" src="" alt
="" onclick="showSeatStatus(6);"

 />

 <img id="seat7" src="" alt
="" onclick="showSeatStatus(7);"

 />

 <img id="seat8" src="" alt
="" onclick="showSeatStatus(8);"

 />

 <img id="seat9" src="" alt
="" onclick="showSeatStatus(9);"

 />

 <img id="seat10" src="" al
t="" onclick="showSeatStatus(10)

;" />

 <img id="seat11" src="" al
t="" onclick="showSeatStatus(11)

;" />

 <img id="seat12" src="" al
t="" onclick="showSeatStatus(12)

;" />

 <img id="seat13" src="" al
t="" onclick="showSeatStatus(13)

;" />

 <img id="seat14" src="" al
t="" onclick="showSeatStatus(14)

;" />

 <img id="seat15" src="" al
t="" onclick="showSeatStatus(15)

;" />

 <img id="seat16" src="" al
t="" onclick="showSeatStatus(16)

;" />

 <img id="seat17" src="" al
t="" onclick="showSeatStatus(17)

;" />

 <img id="seat18" src="" al
t="" onclick="showSeatStatus(18)

;" />

 <img id="seat19" src="" al
t="" onclick="showSeatStatus(19)

;" />

 <img id="seat20" src="" al
t="" onclick="showSeatStatus(20)

;" />

 <img id="seat21" src="" al
t="" onclick="showSeatStatus(21)

;" />

 <img id="seat22" src="" al
t="" onclick="showSeatStatus(22)

;" />

 <img id="seat23" src="" al
t="" onclick="showSeatStatus(23)

;" />

 <img id="seat24" src="" al
t="" onclick="showSeatStatus(24)

;" />

 <img id="seat25" src="" al
t="" onclick="showSeatStatus(25)

;" />

 <img id="seat26" src="" al
t="" onclick="showSeatStatus(26)

;" />

 <img id="seat27" src="" al
t="" onclick="showSeatStatus(27)

;" />

 <img id="seat28" src="" al
t="" onclick="showSeatStatus(28)

;" />

 <img id="seat29" src="" al
t="" onclick="showSeatStatus(29)

;" />

 <img id="seat30" src="" al
t="" onclick="showSeatStatus(30)

;" />

 <img id="seat31" src="" al
t="" onclick="showSeatStatus(31)

;" />

 <img id="seat32" src="" al
t="" onclick="showSeatStatus(32)

;" />

 <img id="seat33" src="" al
t="" onclick="showSeatStatus(33)

;" />

 <img id="seat34" src="" al
t="" onclick="showSeatStatus(34)

;" />

 <img id="seat35" src="" al
t="" onclick="showSeatStatus(35)

;" />

 <input type="button" id="f
indseats" value="Find Seats" onc

lick="findSeats();" />

 </div>
 </body>
</html>

I see a lot of
different code
mixed up in there.

JavaScript and
HTML code are
mixed together
throughout the
Mandango web
page.

The mixed JavaScript and HTML code can be isolated to event handler HTML attributes.

structural code enhancements

Download at WoweBook.Com

you are here 4 271

functions

Separate your functionality from your content
So what’s the big deal with mixing code? It obviously works, right? The problem
has a lot to do with viewing your JavaScript-powered web pages not as pages, but as
applications. And like any good application, JavaScript applications require careful
planning and design for long-term success. More to the point, good applications are less
buggy and easier to maintain when there is a separation of content, presentation, and
functionality. As it stands, Mandango very much represents a murky merger of all three.

How would you go about using functions to separate
functionality from content in Mandango?

Content
This is the HTML code in the page,

which provides the structure for how

the page physically goes together, as

well as housing the data in the page.

Presentation
This is the CSS part of the page, which
dresses up the content and determines
its appearance, such as fonts, colors,
and even layout.

Functionality
This is the JavaScript code that drives
the page and makes it interactive. You
can think of this part of the page as the
part that does things.

Think about the code separation issue this way. Let’s say Seth and Jason
find a really slick movie seat management script that they’d like to use
instead of their own code. They would need to overhaul Mandango so
that it uses the new script code, but they would have to risk screwing up
the structure of the page because the JavaScript code is intimately tied to
the HTML code. It would be much better if the HTML code was isolated,
and the JavaScript-to-HTML connection occurred purely in JavaScript.

<html>
 ...
</html>

<script>
 ...
</script>

<style>
 ...
</style>

Separating content,
presentation, and
functionality turns a big problem into small problems.

Separating
functionality from
content makes
web applications
easier to build
and maintain.

Download at WoweBook.Com

272 Chapter 6

Functions are just data
In order to effectively separate code you’ll need to understand how
functions are wired to events; so far, we’ve done this using HTML
attributes. There’s another way, which a lot of people consider to be
superior to mixing JavaScript and HTML code. This other way of wiring
event handlers requires a different view of functions.

Surprisingly enough, functions are really just variables. It’s true.
The twist is that the function body is the value, while the function name is
the variable name. Here’s the way you’re accustomed to viewing functions:

function showSeatStatus(seatNum) {

 alert("This seat is " + getSeatStatus(seatNum) + ".");

}

That code works fine, but here’s the same function
created in a different way.

var showSeatStatus = function(seatNum) {

 alert("This seat is " + getSeatStatus(seatNum) + ".");

};

The function name is the variable name.

The function body is the value of
the variable, also known as a function
literal when expressed like this.

The function is created just
like always.

This code shows how a function can be created using the same syntax
as a variable, and even consists of the same pieces and parts: a unique
identifier (function name) plus a value (function body). When a function
body appears by itself without a name, it is known as a function literal.

What makes this revelation about functions so interesting is that it shows
that functions can be manipulated like variables. For example, what do
you think the following code does?

var myShowSeatStatus = showSeatStatus;

?

Assign the showSeatStatus() function to the
myShowSeatStatus variable.

data = functions

Download at WoweBook.Com

you are here 4 273

functions

A function is really
just a variable
whose value is a
reference to the
function body.

When you assign the name of a function to another variable, you’re giving that
variable access to the body of the function. In other words, you can write code
like this to call the same function:

alert(myShowSeatStatus(23)); Call the same function through
the myShowSeatStatus variable.

The end result of calling myShowSeatStatus() is the same as calling
showSeatStatus() because both functions ultimately reference the
same code. For this reason, a function name is also known as a function
reference.

function() {

 ...

};

showSeatStatus

myShowSeatStatus

function doThis(num) {
 num++;
 return num;
}

function doThat(num) {
 num‑‑;
 return num;
}

var x = doThis(11);
var y = doThat;
var z = doThat(x);
x = y(z);
y = x;
alert(doThat(z ‑ y));

Analyze the following code, and write down what number appears in the alert box.

The distinction between referencing a function and calling a function
has to do with whether you follow the function name with parentheses ().
Function references appear by themselves, while function calls are always
followed by parentheses, and in many cases function arguments.

var myShowSeatStatus = showSeatStatus;

myShowSeatStatus(23);

Assign a function
reference to
myShowSeatStatus.

Run the myShowSeatStatus()
function, which is the same
as showSeatStatus().

Calling or referencing your functions

Download at WoweBook.Com

274 Chapter 6

Analyze the following code, and write down what number appears in the alert box.

x = 12
y = doThat
z = doThat(12) = 11
x = doThat(11) = 10
y = 10
alert(doThat(11 - 10))

Q: Is separating content really that big
of a deal?

A: Yes and no. For simple applications,
it’s not necessarily wrong to blend HTML,
CSS, and JavaScript code. The benefits of
code separation become significant in more
complex applications that involve lots of
code. It’s much harder to get a handle on
the big picture in larger applications, which
means it’s easy to get in trouble when
making changes, especially when different
kinds of code are all mixed together. By
cleanly separating the code, you can feel
safer making functional changes without
breaking something in the structure or
appearance of the page. This also allows
people with different areas of expertise to
work on the same project.

For example, web designers can work
on the structure and presentation of an
application without fear of creating errors in
functional JavaScript code that they may not
understand.

Q: If a function is just data, how can
I distinguish a function from a normal
variable?

A: The difference between a function
and a “normal” variable comes down to
what you do with the data. The data (code)
associated with functions is capable of being
executed. You indicate that you want to run
a function by following the function name
with parentheses, including arguments if the
function requires them.

Q: What’s the point of function
references?

A: Unlike a normal variable, which stores
its data as a value in an area of memory,
functions store a reference to their code.
So the value of a function variable isn’t the
code itself but a reference to the location in
memory where the code is stored. It’s kind of
like how your mailing address is a reference
to your house, not the house itself.

Functions use references instead of actual
values because it is more efficient than
storing multiple copies of function code. So
when you assign a function to an event
handler, as you do in a moment, you’re really
just assigning a reference to the function
code, not the code itself.

exercise solution

function doThis(num) {
 num++;
 return num;
}

function doThat(num) {
 num‑‑;
 return num;
}

var x = doThis(11);
var y = doThat;
var z = doThat(x);
x = y(z);
y = x;
alert(doThat(z ‑ y));

Download at WoweBook.Com

you are here 4 275

functions

*69 (callback features) for functions
Function references are closely linked to a special way of calling functions
that has a lot to do with separating content from functionality. You’re
familiar with calling a function from your own Mandango code.

How do you think Mandango could take advantage of
callback functions?

OK, so function references sound pretty
neat, but what do they have to do with
separating content from functionality?

setSeat(i * seats[i].length + j, "select", "Your seat");

function setSeat(seatNum, status
, description) {

 ...

}

But this isn’t the only way functions can get called in scripts. Another kind
of function known as a callback function can get called without you
having anything directly to do with it.

Download at WoweBook.Com

276 Chapter 6

Tonight’s talk: Normal function and Callback function
confront each other

Normal function:
So you’re the guy I keep hearing about, who won’t
accept local calls. What’s with the attitude?

You mean like the browser? Real exotic. I think
you’re just a little stuck up about those of us who
talk with script code on a regular basis.

Boy, that sure would be a loss. Not! Who cares what
goes on outside of the script?

You may have a point there. I do like knowing when
the page loads or when the user clicks or types
something. So you’re saying I wouldn’t know about
those things without you?

Well, I’m glad to hear that we really aren’t so
different after all.

Don’t call me, I’ll call you.

Callback function:

No attitude, I just serve a different purpose. I prefer
to only be called from exotic, faraway places.

Look, it’s not about who is better or worse. We’re
all script code, it’s just that I give outsiders a means
of accessing script code. Without me, you would
never know when anything takes place outside of
the script.

Actually, everyone. Don’t forget that the whole point
of scripting is to provide web users with a better
experience. If a script had no means of detecting
events outside of itself, the user experience would
be awful tough to improve.

That’s right. The browser calls me, and in many
cases I call you since responding to outside
happenings often requires several functions.

Yep. So I guess I’ll see you around.

Good luck with that.

normal function v. callback function

Download at WoweBook.Com

you are here 4 277

functions

Events, callbacks, and HTML attributes
We’ve been using callback functions all along, which are called by the
browser, instead of your own code. The most common use of callback
functions is in handling events. Mandango already heavily relies upon
callback functions. In fact, event handling functions are the basis of
the problem involving the mixing of HTML and JavaScript code.

onclick!
showSeatStatus(26);

initSeats();

onload!

These callback functions are wired to events in the HTML code
for the Mandango page.

<body onload="initSeats();">

The onload HTML attribute
is used to wire the initSeats()
function to the onload event.

The onclick HTML attribute is
used to wire the showSeatStatus()
function to the onclick event.

This technique of tying event handling functions to events via HTML
attributes works just fine, but it has the downside of requiring JavaScript
code to be mixed with HTML code. Function references make it possible
to separate this mixture and break apart HTML and JavaScript...

The browser calls
initSeats() when
the page is loaded.

Can I call
you back?

Download at WoweBook.Com

278 Chapter 6

Wiring events using function references
Instead of using an HTML attribute to wire a callback function to an
event as an event handler, you can assign a function reference directly in
JavaScript code. In other words, you don’t have to venture into HTML
code at all—just set the callback function using a function reference, all
from within JavaScript code.

window.onload = initSeats;

The onload event is a property of the window object.

A reference to the initSeats()
function is assigned to the
onload event property.

There are no parentheses following the function name because you don’t want to run the function, you just want to reference it.

Function references
provide a
convenient way to
wire event handler
functions to events.

So setting an event handler purely in JavaScript code involves assigning a
function reference to an event property of an object. In the case of this
onload event handling code, the assignment of the function reference
causes the initSeats() function to get called when the event is
triggered. Even though this call happens automatically when the event is
fired, the effect is this:

initSeats();onload! window.onload();

The upside to using a function reference to assign an event handler
function to an event is that it allows us to cleanly separate JavaScript code
from HTML code—there’s no need to assign JavaScript code to HTML
event attributes.

The onload event triggers an
event handler through the
window.onload property...

...and since the property is set to a
function reference, the initSeats()
function gets called to handle the event.

<body onload=”initSeats();”>

Now the <body> tag can just be the <body> tag since the function
handler is wired purely in JavaScript code. We just have to make sure that
the event assignment code gets run as early as possible, so usually it takes
place in the head of the page.

But there’s a problem. What happens if we need to pass an argument into
an event handler to help it do its job? This isn’t a problem with onload
in Mandango, but the onclick event needs to pass along the number of
the seat that was clicked. Function references offer no means of passing
through arguments, so we need another option...

<body>

avoiding HTML with function references

Download at WoweBook.Com

you are here 4 279

functions

document.getElementById(“seat26”).onclick = function(evt) {

 showSeatStatus(26);

};

The function literal is used purely as a wrapper around the call to the
showSeatStatus() function, but it plays a critical role in allowing us
to pass along the appropriate seat number to the function. You can think of
the function literal as a nameless function that handles the event. For this
reason, function literals are sometimes called anonymous functions.

This code reveals how JavaScript offers an event object that is passed into
event handlers, in this case through the evt argument. The event object
contains information specific to each different event. In this case we don’t
need to know any detailed information about the event, so it’s OK to just
not use the evt argument.

The function literal “wraps” the
call to showSeatStatus(), allowing
an argument to be passed into it.

The function literal is assigned to the onclick event property as a function reference.

The seat image object is retrieved so that
its onclick property can be accessed.

Function literals to the rescue
The onlick event for seat images in Mandango must call the
showSeatStatus() function with an argument (the seat number)
indicating the seat that was clicked. Simply assigning a reference to the
function won’t pass along the argument, which presents a big problem,
but there is another way. The solution is to use a function literal as the
function reference, and then call the showSeatStatus() function
from inside the function literal.

Function literals
let you create
anonymous event
handler functions.

An event object is automatically
passed to an event handler as
its first argument.

onclick!

Wire the initSeats() function to the onload event handler, but this time use a function
literal instead of a function reference.

Download at WoweBook.Com

280 Chapter 6

Wire the initSeats() function to the onload event handler, but this time use a function
literal instead of a function reference.

window.onload = function(evt) {
 initSeats();
};

Where’s the wiring?
There’s still an unresolved issue related to event wiring through function
literals. We know that the onload event handler can just be assigned in
the head of the page inside the <script> tag, just like normal script
code. And that works great because the code tied to onload doesn’t run
until after the page is loaded (when the onload event fires), just as if we
had used the old approach of assigning initSeats() to the HTML
onload attribute of the <body> tag. But where do other function literal
event handlers get wired?

The answer goes back to the onload event handler callback function,
which serves as a great place to wire all events for a page.

window.onload = function() {

 // Wire other events here

 ...

 // Initialize the seat appearances

 initSeats();

};

What this code boils down to is that the onload event handler becomes
an event initialization function where all other events in a page are set.
So the onload event handler not only performs normal start-up duties
for the page, such as initializing the seats, but also wires all other event
handler callback functions for the application.

All other events on the page can be wired inside of the onload event handler.

The code specific to the
onload event is still run
inside the event handler.

The initSeats() function is called inside of the onload event handler function literal.

The evt argument is ignored since
the onload event handler has no
need for the event object.

The onload event
handler is an
excellent place to
initialize all events.

exercise solution

Download at WoweBook.Com

you are here 4 281

functions

Finish the missing code in Mandango’s new onload event
handler function.

window.onload = function() {

 // Wire the Find Seat button e
vent

 document.getElementById("finds
eats"). = ;

 // Wire the seat image events

 document.getElementById("seat0
"). = function(evt) {

 };

 document.getElementById("seat1
"). = function(evt) {

 };

 document.getElementById("seat2
"). = function(evt) {

 };

 ...

 // Initialize the seat appeara
nces

};

Q: Why do callback functions matter?

A: Callback functions are significant
because they allow you to react to things
that take place outside of your code. Instead
of you calling a function from your own
code, you create a callback function that is
essentially on standby waiting for something
to take place so that it can leap into action.
When that something takes place, it is the
browser’s responsibility to let the callback
function know it can run. All you do is set
the stage by wiring the callback function to a
trigger, usually an event.

Q: Are there callback functions other
than event handlers?

A: Yes. We explore another common
usage of callback functions in Chapter 12
when they are called to process data sent by
the server in a request for data using Ajax.

Q: I’m still confused about function
literals. What are they, and why are they
such a big deal?

A: A function literal is just a function body
without a name, kind of like a literal piece of

data such as a number or string. Function
literals are important because they are
ideal in situations where you need a quick
one‑off callback function. In other words, the
function is only called once, and not by your
code. So you create a function literal and
assign it directly to an event property, as
opposed to creating a named function and
assigning its reference. It’s really more of
a coding efficiency issue, taking advantage
of the fact that you don’t need a formally
named function in some situations. And don’t
forget that function literals are really only
necessary when you need to do more than
simply reference a function, such as pass an
argument to a function.

Download at WoweBook.Com

282 Chapter 6

Finish the missing code in Mandango’s new onload event
handler function.

window.onload = function() {

 // Wire the Find Seat button e
vent

 document.getElementById("finds
eats"). = ;

 // Wire the seat image events

 document.getElementById("seat0
"). = function(evt) {

 };

 document.getElementById("seat1
"). = function(evt) {

 };

 document.getElementById("seat2
"). = function(evt) {

 };

 ...

 // Initialize the seat appeara
nces

};

onclick findSeats

onclick
onclick
onclick

showSeatStatus(0);
showSeatStatus(1);
showSeatStatus(2);

initSeats();

Callback functions are called by the browser in response
to things that take place outside of the script.

Function references can be used to assign functions
as if they were variables.

Function references let you wire event handler functions
in JavaScript code without altering HTML code.

Function literals are nameless functions that are handy
in situations when a named function isn’t necessary.

The findSeats() function is
tied to the onclick event
using a function reference.

The entire onload
event handler is a
function literal.

The initSeats() function is called to finish up
the onload tasks.

The onlick property for each
seat image is accessed to set
onclick event handlers.

showSeatStatus() is called
from within a function
literal so that an argument
can be passed into it.

sharpen solution

Download at WoweBook.Com

you are here 4 283

functions

A shell of an HTML page
Separating the JavaScript code from the HTML code in
Mandango reveals how truly minimal the structural part
of the page becomes. This makes the HTML code much
easier to maintain without fear of trampling JavaScript
code that might break the application.

<body>
 <div style=”margin‑top:75px; text‑align:center”>

 <input type="button" id="findseats" value="Find Seats" />

 </div>
</body>

Q: Why is the onload event handler in Mandango
created as a function literal?

A: Because there isn’t really any reason to create a named
function for it. The function only gets called once, and that’s
in response to the onload event. We could’ve just as
easily created a named function and assigned its reference to
window.onload, but the connection between callback
function and event is clearer when the function is directly tied to
the event using a function literal.

Q: Do the other callback functions have to be wired in
the onload event handler?

A: Yes. You might think you could wire them directly within
the <script> tag in the head of the page. But remember
that the content for the page hasn’t finished loading at that point.
So, all of the getElementById() calls would fall flat
on their faces and the event handlers wouldn’t get wired. The
onload handler guarantees you that the page has loaded.

Look at that
code! It’s so
maintainable.

Dude, I need a
picture of that!

Download at WoweBook.Com

284 Chapter 6

One small step for JavaScript...
Although we didn’t manage to solve world peace, we did take a step in
the right direction by using JavaScript to get a handle on climate control.
Turning big problems into small problems, focusing on a singularity
of purpose, and striving for code reuse are all ways that functions can
improve scripts.

And of course, Seth and Jason put the same problem-solving techniques
to work by creating a better organized and more maintainable version of
Mandango. If nothing else, the world of macho movie-going is at peace...

Construction

ShelterI’m at peace with
Mandango now. I’m feeling you.

Front row!

functional JavaScript

Download at WoweBook.Com

you are here 4 285

functions

JavaScriptcross
Well, it’s that time again. Take a load off and twist
your cerebellum around this crossword puzzle.

Untitled Puzzle
Header Info 1

Header Info 2

etc...

1 2

3

4

5

6

7

8 9

10 11

12

13

Across
3. When you assign a function to a variable, you use a
function
5. Functions help eliminate this kind of code.
6. You never call this kind of function yourself.
10. A nameless function body.
12. When code is relatively easy to modify, it is considered to
have good
13. HTML code represents this part of a Web page.

Down
1. is at peace with Mandango now.
2. Functions improve the of code so that you don't
unnecessarily duplicate it.
4. JavaScript represents this part a Web page.
7. To pass data back from a function, just it.
8. A piece of reusable JavaScript code.
9. Functions are good at breaking these down.
11. This is how you pass data into a function.

Untitled Puzzle
Header Info 1

Header Info 2

etc...

1 2

3

4

5

6

7

8 9

10 11

12

13

Across
3. When you assign a function to a variable, you use a
function
5. Functions help eliminate this kind of code.
6. You never call this kind of function yourself.
10. A nameless function body.
12. When code is relatively easy to modify, it is considered to
have good
13. HTML code represents this part of a Web page.

Down
1. is at peace with Mandango now.
2. Functions improve the of code so that you don't
unnecessarily duplicate it.
4. JavaScript represents this part a Web page.
7. To pass data back from a function, just it.
8. A piece of reusable JavaScript code.
9. Functions are good at breaking these down.
11. This is how you pass data into a function.

Download at WoweBook.Com

286 Chapter 6

JavaScriptcross SolutionUntitled Puzzle
Header Info 1

Header Info 2

etc...

S
1

R
2

R
3

E F E R E N C E

F
4

T U

D
5

U P L I C A T E H S

N C
6

A L L B A C K

C R
7

B

T F
8

E P
9

I

I U T R L
10

I T E R A
11

L

O N U O I R

N C R B T G

M
12

A I N T A I N A B I L I T Y U

L I E M

I O M E

T N S C
13

O N T E N T

Y T

Across
3. When you assign a function to a variable, you use a
function [REFERENCE]
5. Functions help eliminate this kind of code. [DUPLICATE]
6. You never call this kind of function yourself. [CALLBACK]
10. A nameless function body. [LITERAL]
12. When code is relatively easy to modify, it is considered to
have good [MAINTAINABILITY]
13. HTML code represents this part of a Web page. [CONTENT]

Down
1. is at peace with Mandango now. [SETH]
2. Functions improve the of code so that you don't
unnecessarily duplicate it. [REUSABILITY]
4. JavaScript represents this part a Web page.
[FUNCTIONALITY]
7. To pass data back from a function, just it. [RETURN]
8. A piece of reusable JavaScript code. [FUNCTION]
9. Functions are good at breaking these down. [PROBLEMS]
11. This is how you pass data into a function. [ARGUMENT]

JavaScriptcross solution

Download at WoweBook.Com

you are here 4 287

functions

It’s hot. I’m not comfortable.

 Peace is always a tricky proposition. Even
 with JavaScript code, only the most
 organized code leads to tranquility and
 calm. It’s not easy to lead a life of
 comfort, at least in terms of JavaScript.

What do functions add to your JavaScript life?

I’m so cold.

Civil rights

Shelter

Food

Page Bender

It’s a meeting of the minds!

Fold the page vertically
to line up the two brains
and solve the riddle.

Download at WoweBook.Com

Download at WoweBook.Com

this is a new chapter 289

forms and validation7

Getting the User to Tell All

You don’t have to be suave or sneaky to successfully get
information from users with JavaScript. But you do have to be

careful. Humans have this strange tendency to make mistakes, which means you

can’t always count on the data provided in online forms being accurate or valid. Enter

JavaScript. By passing form data through the right JavaScript code as it is being

entered, you can make web applications much more reliable, and also take some

load off of the server. We need to save that precious bandwidth for important

things like stunt videos and cute pet pictures.

You don’t have to be suave or sneaky to successfully get
information from users with JavaScript. But you do have to be

careful. Humans have this strange tendency to make mistakes, which means you

can’t always count on the data provided in online forms being accurate or valid. Enter

JavaScript. By passing form data through the right JavaScript code as it is being

entered, you can make web applications much more reliable, and also take some

load off of the server. We need to save that precious bandwidth for important

things like stunt videos and cute pet pictures.

I wonder if my suave,
debonair personality will be
enough to get this Betty’s phone
number...looking for some
validation here, you know?

Download at WoweBook.Com

290 Chapter 7

Bannerocity: messaging the friendly skies
Stunt-loving aviator Howard has turned his love of flying into an aerial banner
business, Bannerocity. Howard wants to put a whole new meaning to the term

“banner ad” by taking online orders for aerial banners. In addition to kick starting
his new business, Howard hopes the online order system will free up his time so
he can spend more of it enjoying the friendly skies.

It’s very important for the Bannerocity online order form to
capture all of the order information that is associated with an
aerial banner order. Howard figures the online order form should
include all of the fields on the paper form, plus an email field
since customers will be filling out the form online.

Bannerocity...banner ads in
 th

e
sk

y!

Howard got an
awesome deal
on this vintage
WWII era plane.

Message: Duncan’s Donuts... only the best!
ZIP code: 74129

Fly date: December 14th, 2008
Name: Duncan Glutenberg

Phone #: 408-555-5309

Currently, Howard’s paper
order form captures all of
the information necessary
for an aerial banner order.

Message
The message to be displayed

in the aerial banner ad.

ZIP code
The geographical area where
the message is to be displayed.
Howard flies over a specified ZIP
code when showing an ad.Fly date

The date on which the

banner ad is flown.

Name
The customer’s name.

Phone number
The customer’s

phone number.

Email
The customer’s
email address.

banner data fields

Download at WoweBook.Com

you are here 4 291

forms and validation

The Bannerocity HTML form
With a little help from HTML, Howard’s first stab at an
online order form for Bannerocity looks great.

The shiny new Bannerocity order form has all of the
necessary form fields, and is ready for taking orders
without using any JavaScript code. What’s the catch?

Wow, the online order
form looks really good.

Try your hand at writing an order using Howard’s HTML order
form. Don’t worry, you won’t be charged for the banner ad!

Howard has been in the
private sector for a while
now, but he can’t seem to let
go of that handsome uniform.

Download it from http://www.headfirstlabs.com/books/hfjs/ and get to work!

Download at WoweBook.Com

292 Chapter 7

Try your hand at writing an order using Howard’s HTML order
form. Don’t worry, you won’t be charged for the banner ad!

Mandango... the movie seat picker for tough guys!

100012

March 11, 2009

Seth Tinselman

(212) 555-5339

setht@mandango

You didn’t know but Howard can
only display 32 characters on his
aerial banner, so this one is too long.

Too many numbers in the ZIP
code - should just be five.

The date is not in the
MM/DD/YYYY format
that the form expects.

OK, the
name is fine.

The phone number is
supposed to be in the form
###-###-####,
with no parentheses.

This is an invalid email
address - it’s missing the
domain extension, such as .biz.

When HTML is not enough
Online forms are only as good as the data entered into them, Howard realizes
he’s going to need the help of JavaScript to make sure his form data is reliable.
And he needs to help clarify to the user what exactly constitutes “good data.”
For example, without some kind of cue from the Bannerocity page, the user
has no clue that there is a 32-character limit on the banner ad message, or
that the date must be entered as MM/DD/YYYY.

There’s a small problem. All the clever data manipulating
JavaScript code in the world won’t help Howard until he
figures out how to gain access to form data from JavaScript...

Mandango... the movie seat picker for tough guys!

I’m sorry, there’s a
32-character limit
on banner ad text.

No, HTML forms
don’t normally talk!With some help from

JavaScript, this invalid
data can be prevented.

sharpen solution

Download at WoweBook.Com

you are here 4 293

forms and validation

Accessing form data
In order to access the data that has been entered into a form, it’s first
necessary to uniquely identify each field in a form. This is handled in
HTML code, using one of two (or both!) attributes.

<input id="zipcode" name="zipcode" type="text" size="5" />

100012

The id attribute
uniquely identifies
any element in a page.

The name attribute
uniquely identifies a field within a form.

The reason for two different identification approaches for form fields
has to do with how fields are accessed. The first approach uses the
getElementById() function that is used to access any element on a
page. This approach works fine but there is a simpler approach that is
specific to form fields.

Every form field has a form object that can be passed along to any
function that is called to validate form data.

Both attributes serve
as identifiers for the
input field.

function showIt(theForm) {

 alert(theForm["zipcode"].value);

}

The name of the form
object argument.

The unique name of the form
field, as set in the name
attribute of the <input> tag.

We want the value stored in the field, not the field itself.

The value of the ZIP
code field is displayed.

This approach to accessing form data is no better or worse than using
getElementById(), other than making code easier to read since it involves
less of it. The form object provides a shortcut, so you might as well use it.

The neat thing about the form object is that it is also an array that holds
all of the fields in the form. But the items in the array aren’t stored using
numeric indexes; instead they are stored using their unique identifier as
set in the name attribute! So if the form object is passed into a function
as an argument named theForm, the value entered in the ZIP code field
can be accessed like this:

<input id="zipcode" name="zipcode" type="text" size="5" onclick="showIt(this.form)"/>

Download at WoweBook.Com

294 Chapter 7

Knowing when to check form data is
dependent upon choosing the correct
user input event to handle.
The answer to the “when” of data validation involves
events, and understanding which event lets you know
when the user has entered data into a particular
field. In other words, the challenge is to respond to
the event that is triggered immediately after data has
been entered. But the question still remains... which
event is it?

Q: Why does an individual form field even have access to
the form object?

A: Sometimes it doesn’t, but keep in mind that a form field is
capable of calling a validation function that needs access to the
data in other form fields. In this case, the form object made
available within each field becomes the key to conveniently
accessing other form fields. This object is typically passed into
the validation function so that the function can quickly grab any
field it needs. The Bannerocity example continues to lean heavily
on the form object to access fields in its order form.

Q: So is value a property of a form field? Does that mean
each form field is really an object?

A: Yes and yes. Each form field is represented by an
object to JavaScript code, and the form object provides a
quick and easy way to access such an object for any field in
a form. Once you have a form field object in hand by way of
form["objectname"], you can then access its value by
tacking on the value property. You’ll learn all about objects in
Chapters 9 and 10.

I get that knowing how to access form data in
JavaScript is important for making sure data is
OK. But how do you know when to check it?

when to validate

Download at WoweBook.Com

you are here 4 295

forms and validation

Form field follow a chain of events
When data is entered into a form, a flurry of events are generated. You
can use these events as an entry point for validating data on a field by field
basis. But doing so involves taking a look at a typical input sequence and
understanding exactly which events are fired... and when.

Which event makes the most sense
for validating a field of form data?

Mandango... the movie seat picker for tough guys!

100012

 Select the input field (onfocus).11

 Enter data into the field.22

 Leave the input field to move to the next
one (onblur/onchange).

33

 Select the next input field (onfocus).44

 Enter data into the field...55

1

2

3
4

5

onfocus!

onblur!
onchange!

onfocus!

The onfocus event is fired when a field first gets
selected for input, while onblur is fired when a field
loses input selection. The onchange event is similar
to onblur except that it only gets triggered if the field
loses input selection and its contents have been changed.

Entering data into
a form sets off a
chain of interesting
JavaScript events.

Download at WoweBook.Com

296 Chapter 7

Losing focus with onblur
While there is an argument to be made for using the onchange event
for data validation, there is a particular problem in that you can’t use it to
validate an empty field. The reason is that nothing is present when a form
is first loaded, but since the form data hasn’t changed either, onchange
won’t trigger even if a user navigates through empty form fields. The
onblur event solves this problem by always being triggered any time the
input selection, or focus, leaves a field.

onfocus!

onblur!

The message field gains
the input focus.

The message field loses
the input focus.

Unlike onchange, onblur gets fired every time a field loses focus, even
if the data hasn’t been touched. This means onblur is very powerful,
but also means you have to be careful about how and when you go about
notifying the user of data validation issues. Case in point... the alert box,
which can be an easy but risky proposition for validation notification.

The onblur event
is a perfect trigger
for data validation.

Q: Aren’t some events generated when the user actually
enters form data?

A: Yes. Several events are generated in response to keypresses,
such as onkeypress, onkeyup, onkeydown, etc. While
there are certainly situations where it makes sense to respond to these
events, they aren’t usually a good idea for validating data because the
user is typically still in the midst of entering information when these
events get triggered. Validating data using these events would be
somewhat overbearing, notifying the user of every typo and unfinished
piece of data as it is being entered. It’s probably better to wait until users
leave a field, which is an indication that they are finished entering data
into it. And this is done by responding to the onblur event.

Q: onblur seems like a weird name for an event. What
does it mean?

A: The idea is that onblur is supposed to be the counterpart to
onfocus. So if onfocus is fired when an element or form field
gains input focus, then onblur is fired when a field loses focus.
Even though the word “focus” in this context isn’t exactly referring
to vision, the word “blur” is used to indicate a lack of focus. It’s a
JavaScript play on words that ends up being a little confusing. Just
remember that onblur is fired when a field loses focus.

Nothing is entered
in the name field.

The text field gains input focus when the user clicks it with the mouse or tabs to it using the keyboard.

am I seeing things?

Download at WoweBook.Com

you are here 4 297

forms and validation

You can use an alert box for validation messages
Alert boxes are certainly handy for quickly displaying information to the user, and they
happen to represent the most simple form of notification for letting the user know
something is wrong with form data. Just call the alert() function while handling the
onblur event if a problem is detected with the form data.

function validateNonEmpty(inputF
ield) {

 // See if the input value cont
ains any text

 if (inputField.value.length ==
 0) {

 // The data is invalid, so n
otify the user

 alert("Please enter a value."
);

 return false;

 }

 return true;

}

How many onblur events are generated by the following input sequence?
How many onchange events? Don’t worry about onfocus.

Number of onchange events:

Number of onblur events:

Seth Tinselman

setht@mandango

A validation function is called
to validate the name data.

Since the name
field is empty, an
alert is displayed.

Instructs the user on how
to remedy the problem.

Check to see if the
form field is empty.

Download at WoweBook.Com

298 Chapter 7

Seth Tinselman

setht@mandango

How many onblur events are generated by the following input sequence?
How many onchange events? Don’t worry about onfocus.

Number of onchange events:

Number of onblur events: 3
2

onblur!
onchange!

onblur!
onblur!
onchange!

Tonight’s talk: onblur and onchange discuss when to react to
bad form data

onblur:
These days it seems as if scripts are always worried
about what the user is up to. I guess that’s where
you and I come in.

That’s something I’ve been meaning to talk to you
about. Rumor is there has been some empty data
floating around and a lot of fingers have been
pointing your way.

That’s true. Nobody is questioning your reliability
when data has changed. Problem is, what happens
if a form starts off with empty data that never
changes?

onchange:

That’s right. We’re quite a pair, always there to let
somebody know when an element or form field
loses focus or some data has changed... or both!

I’m frankly a little shocked by the accusation. You
know I never miss a beat when it comes to notifying
a script of data that has changed.

onblur and onchange face off

Download at WoweBook.Com

you are here 4 299

forms and validation

onblur:

That’s true, it doesn’t make any sense, and neither
do some users, but they try to do it just the same.

Calm down, it’s OK. It’s not your fault. Look,
it’s not your responsibility to worry about data
that never changes. Remember, you’re name is
onchange.

Let’s not get carried away. Like I was saying, it’s
not your responsibility. So if a script is worried
about validating a form to make sure fields aren’t
empty, it really shouldn’t be using you to trigger the
validation code.

Hang on, try not to react so much. Even though you
may not be ideal for triggering validation code, that
doesn’t mean scripts aren’t sometimes interested
in whether data has changed or not. What about
a form that lets people edit data that gets stored
away? You would make perfect sense for only
allowing a save if the data has truly changed.

Absolutely! So there’s no need to keep beating
yourself up.

You’re welcome. All right, I’d love to chat some
more but I have some data to validate... see ya!

onchange:
Are you saying a user is capable of trying to submit
a form with blank fields? That doesn’t make any
sense.

OK, so a form starts off blank with empty fields.
The user skips entering some of the data and
submits the form with the fields still empty... oh
man, I think I’m starting to have a panic attack!

But what about the scenario we just talked about
where I fail the script miserably on the empty data
and the world starts coming apart at the seams?

Well that’s a relief, even if it does mean I might not
be of use to anyone anymore. Wait, I think I feel the
panic coming on again...

Hey, that’s true. So you’re saying I still have a
purpose?

Thanks. That’s very reassuring,

Download at WoweBook.Com

300 Chapter 7

Checking for... something
Back at Bannerocity, Howard knows that at the very least he needs to be
validating the Bannerocity form to make sure all fields have data. But
from a JavaScript point of view, this involves looking at things from an
odd perspective. More specifically, instead of checking to see if a field
has something, you have to check and see if the field doesn’t have
nothing. In other words, “something” equals “not nothing.”

Not nothing=Something
The reason for this counterintuitive thinking is because it’s easier to check
a form field for emptiness than “fullness.” So a first line of defense for data
validation involves checking to see if a field is non-empty.

Empty.

Non-empty.

<input id="phone" name="phone" type="text" size="12"

 onblur="validateNonEmpty(this);"/>

Howard’s validation function must respond to the onblur event for each
form field in order to perform the non-empty validation. For example:

The validateNonEmpty() function is called in response to onblur to check and see if the field is non-empty.
The form field object is
passed into the function
using the this keyword.

The form field is uniquely identified
so that it can be accessed from
other parts of the script.

The this keyword is used in this code to reference the form field itself. By
passing the form field as an object to the validation function, it gives the
function an opportunity to access both the value of the form field as well
as the form object that holds all form fields, which is sometimes helpful.

Seth Tinselman

move along nothing to see here

Download at WoweBook.Com

you are here 4 301

forms and validation

Can you think of any drawbacks to using an alert
box to notify the user of bad form data?

function validateNonEmpty(inputF
ield) {

 // See if the input value cont
ains any text

 if (inputField.value.length ==
 0) {

 // The data is invalid, so n
otify the user

 alert("Please enter a value.
");

 return false;

 }

 return true;

}

Each form field has similar code that wires the onblur event to the
validateNonEmpty() function. By tying the onblur event of each
field to the function, all of the data on the form gets validated.

<input id="name" name="name" type="text" size="32"

 onblur="validateNonEmpty(this);"/>

In this example, the return values of the validateNonEmpty()
function aren’t used. Their purpose is to communicate back to the calling
code the result of the validation: true if the data is OK, or false if it’s
not. A little later we’ll see how these return values are used to make sure
form data is OK before submitting a form to the server for processing.

The phone number form field
calls the validation function to
see if there is a phone number.

The name form field calls
the validation function to
see if there is a name.

There is no phone number so
the function displays an alert
and returns false.

There is a name so
the function simply
returns true.
...

A non‑empty validation
function checks to make
sure form fields aren’t
left empty.

The length property
reveals the number of
characters in a string.

Validate fields to make sure you have “not nothing”

Download at WoweBook.Com

302 Chapter 7

Validation without aggravating alert boxes
It didn’t take long for Howard to realize that alert boxes aren’t ideal for
notifying the user of invalid data. He’s getting lots of complaints about all of
the alert boxes that pop up when users are trying to enter Bannerocity orders.
We’ve all become somewhat conditioned to be annoyed when a pop-up
window interrupts the online experience, and data validation is no different,
even though the alert boxes in this case are trying to be helpful.

Howard’s solution is a “passive help system,” which doesn’t involve alert boxes,
and therefore doesn’t interrupt the flow of data entry. This passive approach
to notifying the user does require adding a few new HTML elements to the
form, however.

A new HTML element provides a place for displaying validation help messages.

The new HTML help element represents a significant improvement over alert
boxes because it doesn’t get in the way, yet it still conveys the same information
to the user. And all it requires structurally is the addition of an HTML
tag that is named to match the form field that it sits next to. This new
tag appears in the code for the web page form just below the input field.

<input id="phone" name="phone" type="text" size="12"

 onblur="validateNonEmpty(this, document.getElementById('phone_help'));" />

A second argument to
validateNonEmpty()
now passes along the
help text element.

The tag is initially
empty but it does have an ID
that associates it with the
phone number form field.

The style class is used to
format the help text in a red
italic font, although it’s hard
to see red on this printed page!

With the span element in place that houses the help text, all that’s missing
is the code that actually displays the help message. And based upon the
new second argument to the validateNonEmpty() function, there’s a
good chance that function will be responsible for making sure the help text
gets seen by the user.

These two IDs must match
in order for help text to be
displayed for the input field.

let’s not annoy users

Download at WoweBook.Com

you are here 4 303

forms and validation

A more subtle non-empty validator
Howard’s ingenious passive help message solution reveals itself in a new
and improved validateNonEmpty() function that now also handles
the task of setting and clearing help messages for a form field.

function validateNonEmpty(inputField, helpText) {

 // See if the input value contains any text

 if (inputField.value.length == 0) {

 // The data is invalid, so set the help message

 if (helpText != null)

 helpText.innerHTML = "Please enter a value.";
 return false;

 }

 else {

 // The data is OK, so clear the help message

 if (helpText != null)

 helpText.innerHTML = "";

 return true;

 }

}

That’s much better...no
alert boxes...less intrusive.

When data is missing,
Bannerocity now just displays
a passive help message.

Data validation in Bannerocity is now greatly improved thanks to the new
passive help approach, which still uses a healthy dose of JavaScript but in
a much cleaner way, at least in terms of streamlining the user experience.

First make sure the
help text element exists
(helpText != null), then set
its innerHTML property to
the help message.

It’s important to also
clear the help text once
data has been entered
into a form field.

The help text object is
passed into the function
as the second argument.

Seth Tinselman

Name data is
present so the
help message
isn’t shown.

Download at WoweBook.Com

304 Chapter 7

What’s wrong with this banner, and what
can be done to solve the problem?

Too much of a good thing
As it turns out, non-empty validation works great but too much data
can be as problematic as not enough. Check out Howard’s latest banner,
which reveals a new problem with the Bannerocity order form.

Mandango... the movie seat p
ic

ke
r f

o
Dude, where’s
the rest of
our banner?

I don’t know, but
flyboy Howard is
about to get a strongly
worded text message!

Only part of the banner ad
text is displayed on the aerial
banner... Seth and Jason are
not happy!

Hey, what’s
wrong, guys?

does this fit all right?

Download at WoweBook.Com

you are here 4 305

forms and validation

Size matters…
The trouble with Bannerocity is that Howard’s aerial banner can only
hold 32 characters but the message field on the order form has no limit.
Sure, it’s great that the user gets warned if they don’t enter a message at
all, but a message that is too long still gets through with no problem. And
this is in fact a big problem for Howard!

Mandango... the movie seat picker for tough guys!

Mandango...the movie seat picker fo

Mandango... macho movie tickets!

Mandango... macho movie tickets!

Attempting to show unlimited text in a limited space doesn’t work, and
ultimately results in unhappy customers... like Seth and Jason. The
solution is to validate the message field so that it has a maximum length. A
more customized help message for the new validation is also a good idea
to make sure that users understand the message size limitation.

Write pseudocode that shows how a new Bannerocity length
validation function will work, making sure to validate both the
minimum and maximum lengths.

The user has entered
too much text but
Bannerocity doesn’t tell
them it’s a problem.

Since there is more text
than the banner can
hold, the ad text gets
chopped... not good!

This banner text is within
the 32-character limit.

The text fits on the banner
just fine when it is constrained
within the maximum size limit.

Download at WoweBook.Com

306 Chapter 7

Validating the length of data
The role of the new validateLength() function is to check and see
if the value in a form field adheres to certain minimum and maximum
lengths. In the case of Bannerocity, the function is primarily used to limit
the length of the banner text field, although it does enforce a minimum
length of one character as well. It’s unlikely that Howard will find a client
who wants to fly a letter L by itself, for example, but the main idea is to
make sure there are no more than 32 characters and no less than one.

In addition to the minimum and maximum lengths to be enforced by
validateLength(), the function also requires two more arguments for
the input field to be validated and the help text element used to display a
help message. That makes for a total of four arguments to the function.

If (fieldValue is shorter than minLength OR fieldValue is longer than maxLength)
 Show the help text
Else
 Clear the help text

Write pseudocode that shows how a new Bannerocity length
validation function will work, making sure to validate both the
minimum and maximum lengths.The function arguments

minLength and
maxLength would be
set to 1 and 32 for the
Bannerocity banner text.

minLength
The minimum amount of text

required in the input field.

maxLength
The maximum amount of text
allowed in the input field.

inputField
The input field whose length
is being validated.

helpText
The element in which help

text is to be displayed.

The validateLength() function takes the value of the inputField
argument and checks to make sure it is at least as long as minLength but
no longer than maxLength. If the value is too short or too long, a help
message is displayed in the helpText element on the page.

validateLen
gth(minLength,

 maxLength, inputField,

 helpText);

Mandango...the movie seat picker for tough guys!

the long and short of it

<input id="message" name="message" type="text" size="32"

 onblur="validateLength(1, 32, this, document.getElementById(‘message_help’))" />

The banner message
input field object.

Download at WoweBook.Com

you are here 4 307

forms and validation

Finish the code for the validateLength() function, making
sure to pay close attention to the arguments being passed to it.

function validateLength(minLength, maxLength, inputField, helpText) {

}

// See if the input value contains at least minLength but no more than maxLength characters

 // The data is invalid, so set the help message

 // The data is OK, so clear the help message

Every form field is accessible as a JavaScript object.

Within a form field object there is a property called
form that represents the entire form as an array of
fields.

The onblur event is fired when the input focus
leaves a form field, and is a great way to trigger a data
validation function.

Alert boxes are a very clunky and often annoying way of
notifying users of data validation problems.

A passive approach to validation help is much more
intuitive and less of a hassle for users.

The length property of a string reveals the number of
characters in the string.

Download at WoweBook.Com

308 Chapter 7

Message problem solved
Howard is relieved that the banner length problem is solved.
Short of buying a longer banner, he didn’t have any other
good options, so attacking the problem at the JavaScript level
turned out being a good idea. At least users now know the
limitations of Bannerocity banners up front before they order.

Finish the code for the validateLength() function, making
sure to pay close attention to the arguments being passed to it.

function validateLength(minLength, maxLength, inputField, helpText) {

}

Check both
the minimum
and maximum
lengths of
the form
field value.

// See if the input value contains at least minLength but no more than maxLength characters
if (inputField.value.length < minLength || inputField.value.length > maxLength) {
 // The data is invalid, so set the help message
 if (helpText != null)
 helpText.innerHTML = “Please enter a value “ + minLength + “ to “ + maxLength +
 “ characters in length.”;
 return false;
}
else {
 // The data is OK, so clear the help message
 if (helpText != null)
 helpText.innerHTML = “”;
 return true;
}

Set the help
message to
reflect the
field length
problem.

Clear the
help text
if the field
length is OK.

Get your adventure on with Stick Figure Adventure!

The help text now calls out a banner message that exceeds the limit.

sharpen solution

Download at WoweBook.Com

you are here 4 309

forms and validation

Q: What’s really so wrong with alert
box validation? Don’t most people realize
that an alert box isn’t a pop‑up ad?

A: While it’s probably true that most
people realize a JavaScript alert box isn’t a
pop‑up ad, it still doesn’t eliminate the fact
that alert boxes are regarded to be highly
intrusive. Anything that requires the user to
stop what they’re doing and click something
in another window is disruptive. So while
alert boxes have a place in JavaScript
programming, data validation isn’t it.

Q: The usage of this in the
onblur code for form fields is still
confusing. Is the form field an object or is
the form itself an object?

A: The answer is both. Within the context
of an HTML element, the this keyword
refers to the element as an object. So in the
case of a form field, this is a reference
to the form field object. Within a given form
field object, there is a property called form
that provides access to the entire form as
an object. So when you see this.form
in the onblur code for a form field, what
you’re really seeing is a reference to the
form itself, as an object.
The purpose of this.form in the
Bannerocity code is to gain access to the
help text element that is associated with
a particular input field. Remember that
this.form is a reference to the form
object, which is also an associative array
containing all of the form fields. So you can
quickly access a field named my_field
using array notation with the code this.
form["my_field"]. You could also
use getElementById(), but the
form approach is a little more concise.

Q: When a help text element is
associated within an input field, what
is the significance of the name and id
attributes of each?

A: The id of a help text element is
based upon the id/name of its associated
input field but it’s not exactly the same.
More specifically, the help text ID uses
the input field ID with the text _help
tacked on to the end. The point of this
naming convention is to create a clear and
consistent connection between an input field
and the element that displays help text for
the field. In reality, you can name the help
text element IDs anything you want as long
as they are unique and get properly passed
into the validation functions.

Q: Why is it necessary to clear the
help message when data validates as
being OK in a validation function?

A: Keep in mind that the point of help
text is to give the user help when there is
a problem. If the data entered into a form
field checks out OK, there is no problem
and therefore no reason to display a help
message. And since a help message may
already be visible from an earlier validation
on the same field, the safe play is to clear
the help message any time a field validates
with good data.

Q: What happens if a help text element
isn’t provided as an argument to a
validation function?

A: The script searches and searches for
the missing element, overheats the page,
and leaves a charred mess in the browser.
OK, not really. By design, the passive help
system in Bannerocity quietly disappears
if the text help argument isn’t used in a
validation function. So the help text for the
input field just isn’t shown. This means the
help text system is designed to be entirely
optional. What’s nice about this approach is
that it allows help text to be used as much
or as little as desired; even with individual
fields, you aren’t forced to add a help text
element for every field on a form.
The validation code that checks to see if the
htmlText argument is non‑null is what
allows the help text element to be optional.
If the help text element is not null, it
means the element exists and help text can
be displayed. Otherwise, it just does nothing
because the element is missing.

Q: Doesn’t the size attribute of an
HTML form field already limit the length
of the field?

A: The HTML size attribute only limits the
physical size of the form field on the page—it
has nothing to do with limiting how much data
is entered. As an example, the ZIP code field
in Bannerocity has its size attribute set to
5, which means the field is sized on the page
to fit about five characters of text. It is possible
to limit the actual length of text in HTML using
the maxlength attribute, but there is
no minlength equivalent. A validation
function provides the utmost flexibility in
controlling the length of characters that may
be entered into a field, although in the case of
a ZIP code it would really be better to not only
look for five characters of text, but to also make
sure that they are five numbers. Maybe this is
something Howard should consider adding to
Bannerocity...

Download at WoweBook.Com

310 Chapter 7

74129

74128

74122

74130

74127

74123

74121

74124

74125

74126

Duncan’s Donuts...only the best!

Right banner, wrong location
Howard’s online form continues to cause problems despite his best
validation efforts. This time a ZIP code has been entered incorrectly,
resulting in Howard flying around for several hours over the wrong
location. Perhaps worse than Howard’s wasted time is his unhappy
customer, Duncan, who missed out on some donut sales.

Remember Frankie,
Duncan’s hotdog nemesis?

7412I

A capital letter I
is entered instead
of the number
9, but it gets
misinterpreted as
the number 1.

In this situation, human error adds to data entry
error and creates a really big mess. The customer
accidentally typed an I instead of the number
9 since the keys are near each other on the
keyboard. Howard interpreted the I as a 1, and
ends up flying a banner over the wrong location.

How would you validate a ZIP code?

Ha ha, I couldn’t have planned
that one better myself...
Duncan’s banner is getting
shown in the wrong location!

where you at?

Download at WoweBook.Com

you are here 4 311

forms and validation

function validateZIPCode(inputField, helpText) {
 // First see if the input value length is anything other than 5

 if () {

 // The data is invalid, so set the help message
 if (helpText != null)
 helpText.innerHTML = "Please enter exactly five digits.";

 }
 // Then see if the input value is a number

 else if () {

 // The data is invalid, so set the help message
 if (helpText != null)
 helpText.innerHTML = "Please enter a number.";

 }
 else {
 // The data is OK, so clear the help message
 if (helpText != null)
 helpText.innerHTML = "";

 }
}

Validating a ZIP code
Howard’s problem has to do with a ZIP code not getting entered
properly. At its simplest, a U.S. ZIP code consists of exactly five
numbers. So validating a ZIP code can be as simple as making sure
the user enters exactly five numbers... nothing more and nothing less.

Exactly five
numbers.

A3492

Finish the code for the validateZIPCode() function that
validates ZIP codes to make sure they are exactly five characters
long, as well as numeric.

007JB

37205

741265

5280
OK!

No letters allowed.

Too long.

Too short.

Download at WoweBook.Com

312 Chapter 7

 It isn’t always safe to assume postal codes are purely numeric.

If a web form is capable of receiving postal codes for addresses outside of the
U.S., then validating for a purely numeric ZIP code won’t be such a good idea. This
is because plenty of other countries rely on postal codes that contain a mixture of
letters and numbers. Additionally, full U.S. ZIP codes actually consist of 9 digits in

the form #####-####, in which case the hyphen would make the ZIP code data non-numeric.

function validateZIPCode(inputField, helpText) {
 // First see if the input value length is anything other than 5

 if () {

 // The data is invalid, so set the help message
 if (helpText != null)
 helpText.innerHTML = "Please enter exactly five digits.";

 }
 // Then see if the input value is a number

 else if () {

 // The data is invalid, so set the help message
 if (helpText != null)
 helpText.innerHTML = "Please enter a number.";

 }
 else {
 // The data is OK, so clear the help message
 if (helpText != null)
 helpText.innerHTML = "";

 }
}

Finish the code for the validateZIPCode() function that
validates ZIP codes to make sure they are exactly five characters
long, as well as numeric.

inputField.value.length != 5

isNaN(inputField.value)

return false;

return false;

return true; Return true to indicate that the ZIP code validated OK.

See if the length of the ZIP code
string is anything other than 5.

Return false since the ZIP code
is not a number.

Return false since the length of
the ZIP code isn’t exactly 5.

The isNaN() function checks to
see if a value is Not a Number.

sharpen solution

Download at WoweBook.Com

you are here 4 313

forms and validation

Bad data should never make it to the server.
Yikes! All the data validation code in the world won’t matter if
the user can sidestep all of it by clicking a button and submitting
the form despite a bunch of good intentions. Bannerocity’s fatal
flaw is that it doesn’t subject the form fields to validation before
submitting the form, which is why bad form data is currently
capable of getting sent along to the server.

Bannerocity needs another function, and its job is to validate all
of the form fields before submitting the form to the server for
processing. The custom placeOrder() function is tied to the
Order Banner button, and gets called to make a final round of
validation before completing the order.

<input type="button" value="Order Banner" onclick="placeOrder(this.form);" />

None of the data validation matters if the user has the option of ignoring it and submitting the form with bad data anyway.

The Order Banner button
needs some validation
before passing the form
data to the server.

The Bannerocity validation functions are neat and
all, but what happens if the user ignores the help messages
and clicks the Order Banner button with bad data? Does

the form still get submitted to the server?

A really robust
application would also validate the data on the server just to be safe.

Download at WoweBook.Com

314 Chapter 7

The placeOrder()
function Up Close

function placeOrder(form) {

 if (validateLength(1, 32, form["message"], form["message_help"]) &&

 validateZIPCode(form["zipcode"], form["zipcode_help"]) &&

 validateNonEmpty(form["date"], form["date_help"]) &&

 validateNonEmpty(form["name"], form["name_help"]) &&

 validateNonEmpty(form["phone"], form["phone_help"]) &&

 validateNonEmpty(form["email"], form["email_help"])) {

 // Submit the order to the server

 form.submit();

 } else {

 alert("I'm sorry but there is something wrong with the order information.");

 }

}

The function expects a form object to
be passed as its only argument so that
it can access individual form fields.

Most of the function
is one big if/else
statement that calls
validation functions on
each form field.

A validation problem when placing
an order is significant enough to
warrant an alert box.

The submit() method is called to
submit the form to the server if
the form fields validate OK.

Each form field and help
text element is accessed
through the form object
using array notation.

Q: How does the placeOrder() function control
whether or not the form gets submitted to the server?

A: First off, the if/else statement in the function is structured
so that the conditional involves a validation of every field in the form,
which means if any of the form data is invalid, the else clause
will run. The else clause only contains a call to the alert()
function, so nothing else happens if the function makes it into this
clause. On the other hand, if the data validates OK, the submit()
method is called on the form object, which submits the form to the
server. So the submission of the form to the server is controlled by
calling or not calling the form’s submit() method. This method is
the JavaScript equivalent of an HTML submit button.

Q: I thought alert boxes were bad for data validation. What’s
the deal?

A: In many cases they are, but the real issue here is when it’s OK
to interrupt the flow of a page to display a pop‑up message (alert)
and require the user to read a message and click OK. Since the
Order Banner button is only clicked when the user intends to submit
an order, it’s worth making sure they know there is a problem with
the data. So in this case the problem is severe enough that an alert
is appropriate. And don’t forget that passive help messages are still
displayed to help guide the user to a fix.

place your order and look up

Download at WoweBook.Com

you are here 4 315

forms and validation

Sunday Monday Tuesday Wednesday Thursday Friday Saturday

1

8

15

22

29

2 3

9

16

23

30

10

17

24

31

7

14

21

28

6

13

20

27

5

12

19

26

4

11

18

25

Timing is everything…date validation
Unfortunately, Howard’s ZIP code and form submission validation fixes
provide only a fleeting sense of relief because there is now an entirely
new problem. He no longer flies over the wrong location thanks to
validated ZIP codes, but now he finds himself sometimes flying banners
on the wrong date, which is perhaps even worse. Something is amiss
with the fly dates that are being entered...

Well, here it is
Monday and I see no
trace of my banner!

How could Howard validate the fly date form field so that
dates conform to a specific pattern, such as MM/DD/YYYY?

05/1o/2008

A typo resulted in a date containing
the letter o instead of a 9...it seems
no one can type a 9 correctly.

Ellie is not a
happy customer.

Howard interpreted the
letter o as a zero, and flew on the 10th instead of the intended date, the 19th.

Download at WoweBook.Com

316 Chapter 7

Validating a date
Howard apparently isn’t going to get by with just checking to see if the user
entered data into the date field—he’s going to have to actually check to see
if a valid date has been entered. The key to validating a date is deciding on a
specific date format, and then enforcing it. A common date format involves
specifying the two-digit month, then the two-digit day, then the four-digit year,
separated by slashes.

MM/DD/YYYY

Nailing down a format for a date is the easy part... coming up with code to
validate a piece of data against that format is where things get messy. There
are some powerful string functions that make it possible to tear a string
apart based upon a certain character, such as a forward slash. But it’s a fairly
complex endeavor breaking apart a string into pieces and then analyzing each
piece to make sure it is numeric and that it adheres to a certain length. It’s
kind of like the ZIP code validation challenge taken to the extreme.

Let’s work through the steps of how a date validation function might work:

Each portion of the
date is separated by
a forward slash.

The month and
day consist of two
characters each.

The year consists of four
characters... we’d hate to
create a Y3K problem!

 Break apart the form field value into a collection of substrings,
using a forward slash as the basis for separating the string.

11

 Analyze the month substring to make sure it is exactly two
characters in length and that it is a number.

22

 Analyze the day substring to make sure it is exactly two
characters in length and that it is a number.

33

 Analyze the year substring to make sure it is exactly four
characters in length and that it is a number.

44

 Ignore any other data following the second forward slash.55

While this series of steps isn’t necessarily nightmarish from a coding
perspective, it seems like an awful lot of work to validate a relatively
simple pattern.

"05"

"05/1o/2008"

"1o"

"2008"

"05"
"1o"

"2008"

Two characters
and a number...OK.

Two characters
but not a
number...problem!

Four characters
and a number...OK.

"" No trailing data.

1

2

3

4

5

05/1o/2008

dating issues

Download at WoweBook.Com

you are here 4 317

forms and validation

Wouldn't it be dreamy if there was a
better way to validate data than hacking
apart strings...A girl can dream, can’t she?

Download at WoweBook.Com

318 Chapter 7

Regular expressions aren’t “regular”
JavaScript happens to have an extremely powerful built-in tool called a
regular expression that is designed specifically for matching patterns
in text. A regular expression allows you to create a pattern and then apply
it to a string of text, searching for a match much like a suspect in a police
lineup... but with more cooperative characters!

Tall, no glasses, short hair=Pattern

The pattern describes physical properties of a person that are then
matched against actual people. Regular expressions allow you to do the
same kind of pattern matching with strings.

Sounds like a case of height, hair
style, and vision profiling to me...

I don’t see the
point in any of this.
When can I leave?

There must
be some kind
of mix up.

No worries... I’m always
ready for trouble. I have
my alibi right here!

A regular expression
is used to match
patterns in text.

A match!

The pattern involves
physical attributes
of a person.

haven’t you heard that expression?

Download at WoweBook.Com

you are here 4 319

forms and validation

"A3492"

"007JB"

"37205"

"741265"

"5280"

#####=Pattern
Just as a pattern for a police lineup might involve the height,
hair style, and other physical attributes of a person, a text
pattern involves a certain sequence of characters, such as five
numbers in a row. Wait a minute, that sounds like a familiar
pattern... a ZIP code maybe?

/^\d{5}$/=Pattern

The pattern involves
a sequence of exactly
five numeric digits.

Contains a
letter.

Contains letters.

Too few digits.

Too many digits.

Unfortunately, turning the five-digit pattern
for a ZIP code into a regular expression
isn’t all that intuitive. This is because regular
expressions rely on a very compact, and
also somewhat cryptic syntax for describing
patterns of text. It’s not easy to immediately
see that this regular expression can be used to
match a five-digit ZIP code:

Pipe down over there. I’m
trying to see a pattern.

The string must start with
the defined pattern, no
non-digit is allowed.

The string must end
with this pattern.A single

numeric digit.

The single digit must
repeat 5 times.

All regular expressions
are enclosed by
forward slashes.

A match!

 Don’t panic if this regular expression
stuff seems a bit overwhelming.

It will make a lot more sense as we work
through some practical validation examples.

Regular expressions define patterns to match

Download at WoweBook.Com

320 Chapter 7

Regular expressions exposed
Creating a regular expression is sort of like creating a string
literal except that the regular expression appears inside of
forward slashes (//) instead of inside quotes or apostrophes.

Expression/ /+ +

A pair of forward
slashes is used to enclose
a regular expression.

Within the expression itself, a collection of special symbols known as
metacharacters are used in conjunction with letters and numbers
to create highly descriptive text patterns. The good news is that it isn’t
necessary to know every nuance of the regular expression “language” in
order to create practical regular expressions. Following are some of the
more commonly used regular expression metacharacters:

\d
Match any numeric digit.

.
Match any character
other than a newline.

\w
Match any alphanumeric
(letter or number) character.

\s
Match a whitespace
character.

^
The string must begin
with the pattern.

$
The string must end
with the pattern.

Although these descriptions of the regular expression metacharacters
are accurate, the metacharacters are much easier to understand when
examined in the context of a real pattern...

Yes, it’s just a period. Whitespace includes
spaces, tabs, newlines,
and returns.

Regular expressions
always start and end
with a forward slash.

The string being
matched can’t have
any text preceding
the pattern.

The pattern must be the
very last characters in
the string.

Many metacharacters
start with a backslash...
very different than
the forward slashes
used to enclose a
regular expression.

regular expression break down

Download at WoweBook.Com

you are here 4 321

forms and validation

/\d\d$/

Metacharacters are
symbols used to
construct regular
expressions.

/./

Write a regular expression that matches a full U.S. ZIP code, which takes the form
#####‑####, and must appear by itself.

/\w/

/\d/

/^\d/

"7"

"A"

"%"

So there are several different approaches available in regular
expressions for matching a single character. But what about strings that
contain more than one character? Following are some more practical
pattern matching scenarios:

One digit at
the beginning
of a string. A single digit.

/\d/

/^\d/

"2nite"

"007"
"catch22"

/\d\d\d/

/cat$/

“cat” appearing
at the end of a
string...no matches!

“cat” appearing at the
beginning of a string.

Any single
character.Any single

alphanumeric
character.

One digit at
the beginning
of a string.

Three digits
in a row.

Two digits at the
end of a string.

Metacharacters represent more than one literal character

/^cat/

Download at WoweBook.Com

322 Chapter 7

Drilling into regular expressions: quantifiers
Any text that isn’t a metacharacter is matched as-is in a regular expression,
meaning that /howard/ matches the text "howard" in any part of a
string. Additionally, there are some other regular expression constructs called
quantifiers that further refine patterns. Quantifiers are applied to sub-patterns
that precede them within a regular expression, and provide control over how
many times a sub-pattern appears in a pattern.

Write a regular expression that matches a full U.S. ZIP code, which takes the form
#####‑####, and must appear by itself.

/^\d\d\d\d\d-\d\d\d\d$/Start the regular
expression with a
forward slash.

Matches exactly
five digits in a row.

The hyphen has no special
meaning here... it’s just
a hyphen separating the
numbers in the ZIP code.

Matches exactly
four digits in a row.

Close the regular expression
with another forward slash.

+
Preceding sub-pattern must
appear 1 or more times.

*
Preceding sub-pattern must
appear 0 or more times.

?
Preceding sub-pattern must
appear 0 or 1 time.

{n}
Preceding sub-pattern
must appear exactly n
times in a row.

()
Group characters and/or
metacharacters together in
a sub-pattern.

The sub-pattern is
optional, and can appear
any number of times.

The sub-pattern is
optional, but can
only appear once if
it does appear.

The sub-pattern is
required, and can appear
any number of times.

Control exactly how many
times a sub-pattern can appear.

Although not technically a quantifier,
parentheses are used to group together
sub-patterns much as you group
together mathematical expressions.

The string must start
with the pattern.

The string must end
with the pattern.

exercise solution

Download at WoweBook.Com

you are here 4 323

forms and validation

The pattern finishes at the end of the string..

Match each regular expression metacharacter or quantifier to what it
does within a pattern.

Quantifiers allow regular expressions to be written much more concisely
than with metacharacters alone. Instead of repeating sub-patterns
explicitly, a quantifier can specify exactly how many times a sub-pattern
should appear. As an example, the following pattern matches a ZIP code
using quantifiers:

/^\d{5}-\d{4}$/ With the help of the {}
quantifier, it’s no longer
necessary to list out each digit.

It’s possible to get very creative with metacharacters and quantifiers to
create quite powerful regular expressions that match just about anything
that can appear in a string.

The sub-pattern is optional, and can
appear any number of times.

\w

Match any alphanumeric (letter or number)
character.

$

Match any character other than a newline.
\d

Match any numeric digit.+

The sub-pattern is required, and can
appear any number of times.

*

/.+/ /(Hot)? ?Donuts//\w*/
Any character must appear
one or more times...matches
a non-empty string.

Matches any number of
alphanumeric characters,
including an empty string!

Matches either “Donuts”
or “Hot Donuts”.

Quantifiers control
the number of
times a sub‑pattern
appears in a
regular expression.

Pattern quantification

Download at WoweBook.Com

324 Chapter 7

The pattern finishes at the end of the string..

Match each regular expression metacharacter or quantifier to what it
does within a pattern.

The sub-pattern is optional, and can
appear any number of times.

\w

Match any alphanumeric (letter or number)
character.

$

Match any character other than a newline.
\d

Match any numeric digit.+

The sub-pattern is required, and can
appear any number of times.

*

Q: Is a regular expression a string?

A: No. You can think of a regular
expression more as a description of a
string, or at least a description of part of a
string. Regular expressions are closely tied
to strings, and are used to match patterns of
text that appear in strings, but they are not
strings themselves.

Q: Can regular expressions be applied
to other kinds of data?

A: No, regular expressions are designed
solely for matching patterns of characters
within a string of text, so they only apply
to strings. But that doesn’t limit them from
being extremely useful in carrying out
complex text‑matching tasks that would be
extremely difficult using strings alone.

Q: What happens if you want to match
a metacharacter, such as a dollar sign?

A: Similar to JavaScript strings,
characters with special meaning in regular
expressions can be escaped with a
backslash. So to match a dollar sign within
a regular expression, you would specify
the $ character as \$. This same rule
applies to any other character that has a
special meaning within a regular expression,
such as ^, *, and +, to name a few. Any
character that doesn’t have a special
meaning can be placed directly in a regular
expression with no special formatting.

Q: Do regular expressions have
anything to do with data validation?
Weren’t we originally trying to validate a
date form field in Bannerocity?

A: Ah, patience, young Jedi. Soon use
regular expressions you will. Yes, the reason
for this little detour into regular expressions
is to work out a way to validate data with a
complex format, such as a date or an email
address. Bannerocity still needs plenty of
help on the data formatting front, so there
will be plenty of opportunities to apply
regular expressions. Just hang in there a
little while longer.

Q: How are regular expressions used
in JavaScript?

A: We’re getting there...really! Regular
expressions are represented in JavaScript
by an object, which supports several
methods for using regular expressions to
match patterns within strings.

ask away

Download at WoweBook.Com

you are here 4 325

forms and validation

Head First: So you’re the one I keep hearing about
who is capable of looking into strings and recognizing
patterns. Is that true?

Regular Expression: Yes, I’m a code breaker of
sorts, able to look at a string of text and immediately
pick apart patterns. The CIA could really use a guy like
me... but they haven’t returned my calls.

Head First: So you have an interest in spying?

Regular Expression: No, I just love looking for
patterns in text. In fact, I am a pattern, any pattern.
Just give me some parameters about what you’re
looking for and I’ll find it, or at least let you know
whether it exists in a string or not.

Head First: Sounds great, but can’t the indexOf()
method of the String object already handle string
searching?

Regular Expression: Please tell me you didn’t just
go there... that amateur doesn’t know the first thing
about patterns. Look, if you need a painfully simple
search feature that just looks for the word “lame” in a
string, then indexOf() is your answer. Otherwise,
you’re going to quickly realize that indexOf() falls
way short of doing anything serious when it comes to
analyzing strings.

Head First: But isn’t a string search a form of pattern
matching?

Regular Expression: Yes, and walking to the
mailbox is a form of exercise but you don’t see it in the
Olympics... yet. My point is that a simple string search
is really the most simplistic form of pattern matching
possible—the pattern is a static word or phrase. Now
consider something like a date or a web site URL.
Those are true patterns because although they adhere
to strict formats, the specifics of what is being searched
for is not static.

Head First: I think I see what you mean. A pattern is
a description of text that can appear in a string but
not necessarily the text itself ?

Regular Expression: Exactly. It’s like if I ask you
to let me know when a person walks by who is tall, has
short hair, and no glasses. That is a description of a
person but not an actual person. If a guy named Alan
walks by matching that description, we can say that the
pattern has been matched. But there could be plenty of
other people who also match that description. Without
patterns, we wouldn’t be able to look for a person based
upon a description—we’d have to look for an actual
person. So the difference between searching for a
specific piece of text using indexOf() and matching
a pattern using me is the difference between looking for
Alan or looking for a person who is tall, has short hair,
and no glasses.

Head First: That makes sense now. But how does
pattern matching apply to data validation?

Regular Expression: Well, validating data is
primarily about making sure data fits a certain
preconceived format, or pattern. So my job is to take a
pattern and see if a string of text conforms to it. If so,
then the data is considered valid. Otherwise, the data is
bad.

Head First: So is there a different regular expression
for matching different kinds of data?

Regular Expression: Oh yes. And that’s really
where most of the work takes place in using me to
validate data—coming up with a regular expression that
successfully models a data format.

Head First: That is very interesting. I appreciate you
explaining the role you play in data validation.

Regular Expression: No problem. I often have to
explain myself...I suppose that’s a behavioral pattern.

Master of Patterns
This week’s interview:
The cryptic but powerful
regular expression

Master of Patterns
This week’s interview:
The cryptic but powerful
regular expression

Download at WoweBook.Com

326 Chapter 7

var regex = /^\d{5}$/;

if (!regex.test(inputField.value))

 // The ZIP code is invalid!

Validating data with regular expressions
As thrilling as it may be to create regular expressions purely for the sake
of seeing patterns in text, we have a pressing need for regular expressions
to help validate the date field in Bannerocity and get Howard back in
the air. A regular expression in JavaScript is represented by the RegExp
object, which includes a method called test() that is the key to using
regular expressions for data validation. The test() method checks for
the existence of a pattern within a string.

The regular expression
matches a 5-digit
ZIP code.

The test() method is
called on the regular
expression object.

The value of an input
field, a string, is passed
into the method.

Although we could make a call to the test() method inside of each
different validation function, there is an opportunity to create a general
regular expression-based validation function that more specific functions
can call to do the generic validation work. The following steps must be
carried out by the general validateRegEx() function:

 Perform a test on the regular expression that is passed as an
argument, using the input string that is also passed in.

11

 If the pattern matches, set the help message to the help text
that is passed as an argument, and then return false.

22

 If the pattern doesn’t match, clear the help message and
return true.

33

The return value of test() is true
if the pattern matches with the
string, or false otherwise.

validateReg
Ex(regex,

 inputStr, helpText,

 helpMessage);

Now all that’s missing is the code for the function, which as it turns
out, isn’t so bad. In fact, the vast majority of this code already
appeared in the other validation functions, so validateRegEx() is
as much about code reuse as it is about creating an all-purpose regular
expression validator.

The test() method of
the RegExp object
is used to test a
string for a regular
expression pattern.This object literal automatically

creates a RegEx object.

If the test() method returns false, the pattern failed and the data is invalid.

regular expressions get validation

Download at WoweBook.Com

you are here 4 327

forms and validation

function validateRegE
x(regex, inputStr, he

lpText, helpMessage)
{

 // See if the input
Str data validates OK

 if (!regex.test(inp
utStr)) {

 // The data is in
valid, so set the hel

p message and return
false

 if (helpText != nu
ll)

 helpText.innerH
TML = helpMessage;

 return false;

 }

 else {

 // The data is OK
, so clear the help m

essage and return tru
e

 if (helpText != n
ull)

 helpText.innerH
TML = "";

 return true;

 }

}

Write the code for the validateDate() function, which calls
both validateNonEmpty() and validateRegEx() to
validate the date form field in Bannerocity. Hint: The function
accepts two arguments, the date input field and its related help
text element.

The regular expression
is tested against the
input string.If the test fails, the

data is invalid, so the help message text is displayed.

If the data checks out OK,
the help message is cleared.

The regular expression,
input string, help message
text, and help message
element are all passed in
as arguments.

Download at WoweBook.Com

328 Chapter 7

function validateDate(inputField, helpText) {
 // First see if the input value contains data
 if (!validateNonEmpty(inputField, helpText))
 return false;

 // Then see if the input value is a date
 return validateRegEx(/^\d{2}\/\d{2}\/\d{4}$/, inputField.value, helpText,
 “Please enter a date (for example, 01/14/1975).”);
}

Write the code for the validateDate() function, which calls
both validateNonEmpty() and validateRegEx() to
validate the date form field in Bannerocity. Hint: The function
accepts two arguments, the date input field and its related help
text element.

The validateNonEmpty()
function is called first to make
sure the field isn’t empty.

The date regular
expression is
passed into the
validateRegEx()
function.

The date regular expression uses
metacharacters and quantifiers to enforce
the MM/DD/YYYY format.

Y2100 is a long way away...
Knowing that we won’t change centuries again for quite some time, it’s
probably OK to allow users to enter the year as two digits instead of
four. Realistically, it’s unlikely that any JavaScript code written today will
survive the 90 or so years it will take to present a problem. Howard briefly
considered a strict approach to future-proofing Bannerocity by sticking
with four-digit years, and then decided that he can live with a tweak later
if the code is still in use at the turn of the next century.

It might be a good
idea to also allow
people to enter the
year as only two digits.

It’s debatable whether
your scripts will still be
used in the year 2100.

Since forward slashes have a special
meaning in regular expressions, they
have to be escaped with a backslash.

sharpen solution

Download at WoweBook.Com

you are here 4 329

forms and validation

Q: Why is it necessary to call the validateNonEmpty()
function in validateDate()? Doesn’t the regular
expression already factor in empty data?

A: Yes, the regular expression does inherently validate the date
to make sure it isn’t empty, and the non‑empty validation could be
removed and the date would still get validated just fine. However, by
first checking to see if data has been entered, the page becomes
more intuitive to the user, offering up specific help messages based
upon the particular validation problem. If no data has been entered,
a different message is displayed then if an invalid date has been
entered. The end result is a passive help system that feels as if
it guides the user through filling out the form. This subtle usability
enhancement seems to be a worthy tradeoff for how little extra code
is required.

Q: What if I really want to future‑proof my script code? Is that
a problem?

A: No, not at all. It’s rarely a problem attempting to anticipate
future needs and writing code that can adapt to those needs. In the
case of Bannerocity, a four‑year date field is certainly more future‑
proof than the two‑year version. And keep in mind that if you really
wanted to be crafty, you could allow the user to enter only two digits,
and then prepend the number of the century to those digits behind
the scenes. So the effect on the form is a two‑digit year but the date
is actually being stored as a four‑digit year.

Matching mins and maxes
The {} quantifier accepts a number that determines how many times
a sub-pattern can appear in a string. There is another version of this
quantifier that takes two numbers, which specify the minimum and
maximum number of times a sub-pattern can appear. This provides
a handy way to fine-tune the presence of a sub-pattern.

 Not all dates are
in the format
MM/DD/YYYY.

It’s not necessarily
safe to assume

that all users are comfortable
entering dates as MM/DD/YYYY.
Many parts of the world reverse
the months and days so that the
format is DD/MM/YYYY.

Rewrite the regular expression used in the validateDate()
function so that it allows both 2-digit years and 4-digit years.

{min,max}
Preceding sub-pattern must appear
at least min times in a row but no
more than max times.

Control how many times a
sub-pattern can appear as a
minimum and maximum range.

/^\w{5,8}$/ Some passwords allow between five and eight alphanumeric characters, which is perfect for the min/max {} quantifier.

Download at WoweBook.Com

330 Chapter 7

/^\d{2}\/\d{2}\/\d{2,4}$/

Rewrite the regular expression used in the validateDate()
function so that it allows both 2-digit years and 4-digit years.

The min/max version of the {} quantifier sets the minimum and maximum number of year digits allowed in the date.

No amount of revisionist history
can add JavaScript support to the
first through tenth centuries.
And since it wasn’t supported back then, there’s
no reason to allow users to enter the year part
of a date in the hundreds. In fact, there’s no
need to let users order aerial banners at any
point in the past if we can possibly help it. So
eliminating 3-digit years from the validation
code is an important fix, and will help prevent
Howard from facing an onslaught of new
Bannerocity data entry problems.

Hang on a second. It looks as if the
new date validation code also allows 3-digit
years? That doesn’t make much sense...

03/01/200

The date regular expression
matches 3-digit years as
OK...not good!

sharpen solution

A regular expression
matches a pattern of text
in a string, and is enclosed
within forward slashes.

In addition to normal text,
regular expressions are built
out of metacharacters and
quantifiers, which provide
careful control over how a
text pattern is matched.

In JavaScript, regular
expressions are supported
by the built‑in RegExp
object, but it is rarely
seen because regular
expressions are typically
created as literals.

The test() method in the
RegExp object is used to
a test a regular expression
pattern on a string of text.

Download at WoweBook.Com

you are here 4 331

forms and validation

Eliminating three-digit years with this...or that
Another very useful metacharacter in the regular expression toolbox is the alternation
metacharacter, which looks and works a lot like the logical OR operator in JavaScript.
Unlike the JavaScript OR operator, the alternation metacharacter involves only one
vertical bar, |, but it does allow a pattern to specify a list of alternate sub-patterns. In
other words, the pattern will successfully match if any of the alternate sub-patterns
match. This is a lot like the logical OR operator because it’s basically saying “this, or
this, or this...”

Rewrite the regular expression used in the validateDate()
function one more time, and this time make sure the year can
only be 2 digits or 4 digits, and nothing else.

this|that
The pattern matches if the
this sub-pattern or the
that sub-pattern match.

/(red|blue) pill/

The alternation metacharacter
provides a handy way to
specify alternate matches.

/small|medium|large/

A simple choice of
two, this pattern
matches both “red
pill” and “blue pill”.

Multiple possibilities can be
specified using more than one
alternation metacharacter.

Download at WoweBook.Com

332 Chapter 7

/^\d{2}\/\d{2}\/(\d{2}|\d{4})$/

Rewrite the regular expression used in the validateDate()
function one more time, and this time make sure the year can
only be 2 digits or 4 digits, and nothing else.

The alternation metacharacter (|) lets the pattern accept both 2-digit and 4-digit years.

Leave nothing to chance
Howard really likes the new, robust date validator that relies on regular
expressions for precise pattern matching. In fact, he likes the validator
so much that he wants to move forward and use regular expressions to
validate the remaining two fields on the Bannerocity form: the phone
number and email address.

Mandango...macho movie tickets!

10012
03/11/200

Looking good...but
I want more!

The date form field is now validated using
a regular expression, which is very accurate
about enforcing the date format.

Howard’s idea about validating the phone number and email address on
the Bannerocity order form is a very good one, but it does mean we’ll
need to cook up some new regular expressions to successfully reign in
those data formats.

is this your real number?

Download at WoweBook.Com

you are here 4 333

forms and validation

Can you hear me now? Phone number
validation
From a validation perspective, phone numbers aren’t too terribly difficult to
grasp because they follow such a rigid format. Of course, without regular
expressions, they would still involve a fair amount of string hacking, but
regular expressions make phone numbers a breeze to validate. Phone
numbers in the U.S. conform to the following pattern:

###-###-####=Pattern
By changing the dashes in the phone number pattern to slashes and
tweaking the number of digits, it becomes apparent that the phone
number pattern is very similar to the date pattern.

/^\d{2}\/\d{2}\/\d{2,4}$/

/^\d{3}-\d{3}-\d{4}$/

function validatePhone(inputField, helpText) {

 // First see if the input value contains data

 if (!validateNonEmpty(inputField, helpText))

 return false;

 // Then see if the input value is a phone number

 return validateRegEx(/^\d{3}‑\d{3}‑\d{4}$/,

 inputField.value, helpText,

 "Please enter a phone number (for example, 123‑456‑7890).");

}

The validatePhone() function becomes fairly predictable thanks to the
phone number regular expression and the validateRegEx() function.

The date pattern conforms a
date to MM/DD/YYYY or
MM/DD/YY using the \d
metacharacter and {} quantifier.

The phone number pattern is similar to
the date pattern except it uses hyphens
to separate a different number of digits.

Since Howard doesn’t plan
on flying outside of his local
area, it’s safe to assume a
U.S. phone number format.

Download at WoweBook.Com

334 Chapter 7

You’ve got mail: validating email
With the phone number validation task nailed down, Howard’s final
challenge is to validate the email address field on the Bannerocity form.
Like any other data, the key to validating an email address is to break the
format down to a consistent pattern that can be modeled using a regular
expression.

What other variations of the email pattern
are possible? Think about all the different
email addresses you’ve ever seen.

LocalName@DomainPrefix.DomainSuffix=Pattern

That doesn’t look too bad—an email address is just three pieces of
alphanumeric text with an at symbol (@) and a period thrown in.

2 or 3 character
alphanumeric.

Alphanumeric.

sales@duncansdonut
s.com

howard@bannerocity.com

puzzler@youcube.ca

Creating a regular expression to match this email pattern is fairly
straightforward considering that everything is so predictable.

All of these email addresses
conform to the email pattern.
Our work is done here...or is it?

/^\w+@\w+\.\w{2,3}$/

Although this pattern does the job, something
seems amiss. Do all email addresses truly
adhere to such a predictable format?

The email address must
start with one or more
alphanumeric characters.

Following the @ symbol, one or more
alphanumeric characters appear.

The period must be escaped
since it is a special character
in regular expressions.

The email address must
end with a 2- or 3-
character alphanumeric.

was that dot com or dot org?

Download at WoweBook.Com

you are here 4 335

forms and validation

The exception is the rule
Email addresses are actually more complex than they appear to be at first
glance. There are quite a few variations on the basic email format that
have to be considered when formulating a reliable email pattern for data
validation. Here are some examples of perfectly valid email addresses:

Email addresses present the need to match optional
characters in a pattern.
As it turns out, there are several different optional characters that can be
sprinkled throughout the parts of an email address that we previously
handled as purely alphanumeric. We need a way to incorporate such
optional characters into a pattern...

Wow, we really need a
way to match optional
characters to validate
email addresses.

cube_lovers@youcube.c
a

aviator.howard@bannerocity.com

seth+jason@mandango.us

i-love-donuts@duncansdonuts.com

rocky@i-rock.mobi

ruby@youcube.com.nz

Underscore in
the local name.

Hyphen in the
domain name prefix.

Period in the
local name.

Plus sign in
the local name.

Extra domain suffixes,
which is really just extra
periods in the domain name.

Hyphens in the local name.

Four characters in the domain suffix

Download at WoweBook.Com

336 Chapter 7

Matching optional characters from a set
Another very handy regular feature that directly affects the email
address pattern is character classes, which allow you to create tightly
controlled sub-patterns within a pattern. More specifically, character
classes excel at establishing rules where optional characters play heavily
into a sub-pattern. You can think of a character class as a set of rules for
matching a single character.

 Don’t forget to escape
special characters in
regular expressions.

Characters that have
special meaning in

regular expressions must be escaped
to include the actual character in a
regular expression. Escape one of the
following characters by preceding it with
a backslash (\): [\^$.|?*+().

[CharacterClass]
CharacterClass is a set of regular
expression rules for matching a
single character.

/d[iu]g/

Within a character class, every character listed is considered legal for the
character match, kind of like how the alternation between metacharacters
lets you build a list of alternate sub-patterns. However, the result of a
character class is always a match for a single character unless the character
class is followed by a quantifier. A few examples will help put character
classes into perspective.”

Character classes are
always enclosed within
square brackets.

"dig"

"dug"

Both strings are matches
for the pattern.

/\$\d[\d\.]*/

Character classes
offer an efficient way
to control optional
characters in a regular
expression pattern.

"$5"

"$3.50"

"$19.95"All of these financial
strings match the pattern.

Character classes are exactly what we need to whip
the email address pattern into shape and add email
validation to Bannerocity...

a cast of characters

Download at WoweBook.Com

you are here 4 337

forms and validation

Constructing an email validator
It’s now possible to create a much more robust pattern for email addresses
by factoring in all of the possible optional characters that can appear in
the local name and domain name.

function validateEmail(inputField, helpText) {

 // First see if the input value contains data

 if (! (inputField, helpText))

 return false;

 // Then see if the input value is an email address

 return validateRegEx(,

 inputField.value, helpText,

);

}

Finish the missing code for the validateEmail() function,
which is used to validate an email address in Bannerocity.

LocalName@DomainPrefix.DomainSuffix=Pattern

Keep in mind that there are many different ways to approach the creation
of patterns, including the email address pattern. It can be surprisingly
tough to create a pattern that successfully addresses every little nuance of
a particular data format. We’ve already experienced how once the general
pattern design is worked out, translating it to an actual regular expression
is fairly straightforward.

This part of the email address
can appear one or more times.

Any alphanumeric, as well as ., -, _, and +.
Any alphanumeric,
as well as -.

Any 2-, 3-, or
4-character
alphanumeric,
preceded by a
period.

The period is
considered part of the domain suffix.

Download at WoweBook.Com

338 Chapter 7

A bulletproof Bannerocity form
The aerial banner order data collection in Bannerocity is now sheer
perfection thanks to some intense validation efforts. Howard is so
excited that he has decided to fly a banner ad of his very own.

function validateEmail(inputField, helpText) {

 // First see if the input value contains data

 if (! (inputField, helpText))

 return false;

 // Then see if the input value is an email address

 return validateRegEx(,

 inputField.value, helpText,

);

}

Finish the missing code for the validateEmail() function,
which is used to validate an email address in Bannerocity.

The email regular expression uses most
of the regular expression tricks we’ve
learned to validate an email address.

/^[\w\.-_\+]+@[\w-]+(\.\w{2,4})+$/

“Please enter an email address (for example, johndoe@acme.com).”

validateNonEmpty

The validateNonEmpty() function is still
called initially to check for a lack of data.

If the email validation fails, a help message is displayed that clarifies the input format with an example.

(212) 555-5339

setht@mandango

Seth Tinselman

03/11/2009
10012

Mandango...macho movie tickets! The phone number and email address fields now validate according to very strict data formats.

Howard is thrilled that he can get back to
what he loves...flying!

Da

ta validation is a good th
ing!

The domain name
suffix can be 2
to 4 alphanumeric
characters at the
end of the string.

The local name can be an alphanumeric,
as well as ., -, _, and +, and must be
at the start of the string.

sharpen solution

Download at WoweBook.Com

you are here 4 339

forms and validation

JavaScriptcross
Here’s a pattern you might recognize... a crossword
puzzle! No validation required—just a few answers.

1

2

3

4 5

6

7

8

9

10 11

12

13

Across
1. The JavaScript object that supports regular expressions.
2. Triggered when the data in a form field changes.
4. A handy way to specify optional characters in a regular
expression.
7. This object contains all of the individual fields in a form.
9. A special character in a regular expression.
10. A description of a data format.
12. This kind of validation checks to make sure a form field has
data.
13. Controls how many times a sub-pattern appears in a regular
expression.

Down
1. Used to match patterns of text.
3. Do this to form data to make sure it is legit.
5. The method used to match a string with a regular expression.
6. Triggered when the user leaves a form field.
8. HTML attribute that uniquely identifies a field within a form.
11. Handy in many cases but usually not the best way to notify
the user about invalid data.

1

2

3

4 5

6

7

8

9

10 11

12

13

Across
1. The JavaScript object that supports regular expressions.
2. Triggered when the data in a form field changes.
4. A handy way to specify optional characters in a regular
expression.
7. This object contains all of the individual fields in a form.
9. A special character in a regular expression.
10. A description of a data format.
12. This kind of validation checks to make sure a form field has
data.
13. Controls how many times a sub-pattern appears in a regular
expression.

Down
1. Used to match patterns of text.
3. Do this to form data to make sure it is legit.
5. The method used to match a string with a regular expression.
6. Triggered when the user leaves a form field.
8. HTML attribute that uniquely identifies a field within a form.
11. Handy in many cases but usually not the best way to notify
the user about invalid data.

Download at WoweBook.Com

340 Chapter 7

JavaScriptcross Solution

R
1

E G E X P

O
2

N C H A N G E

G

V
3

U

C
4

H A R A C T
5

E R C L A S S

L E A O
6

I S F
7

O R M N

D T E B

A X L

T N
8

P U

M
9

E T A C H A R A C T E R

M E

P
10

A
11

T T E R N S

L S

E I

R N
12

O N E M P T Y

Q
13

U A N T I F I E R N

Across
1. The JavaScript object that supports regular expressions.
[REGEXP]
2. Triggered when the data in a form field changes.
[ONCHANGE]
4. A handy way to specify optional characters in a regular
expression. [CHARACTERCLASS]
7. This object contains all of the individual fields in a form.
[FORM]
9. A special character in a regular expression.
[METACHARACTER]
10. A description of a data format. [PATTERN]
12. This kind of validation checks to make sure a form field has
data. [NONEMPTY]
13. Controls how many times a sub-pattern appears in a regular
expression. [QUANTIFIER]

Down
1. Used to match patterns of text. [REGULAREXPRESSION]
3. Do this to form data to make sure it is legit. [VALIDATE]
5. The method used to match a string with a regular expression.
[TEST]
6. Triggered when the user leaves a form field. [ONBLUR]
8. HTML attribute that uniquely identifies a field within a form.
[NAME]
11. Handy in many cases but usually not the best way to notify
the user about invalid data. [ALERT]

JavaScriptcross solution

Download at WoweBook.Com

you are here 4 341

forms and validation

 JavaScript has a lot to offer web
 forms, so it’s difficult to make a valid
 argument for any one thing. The
 answer almost certainly involves
 data on some level, but how, specifically?

What does JavaScript bring to Web forms?

/^val(ley|ue|krie)/ /name|id$/

"Mandango...the movie seat picker for tough guys!"

March 11, 2009

(212) 555-5339

setht@mandango

"...macho movie seats!"

100012105012

03/11/200

212-555-5339

seth%t@mandango.us

That data
looks awful!

Looks fine to
me! This feels
like surfing...

Page Bender

It’s a meeting of the minds!

Fold the page vertically
to line up the two brains
and solve the riddle.

Download at WoweBook.Com

Download at WoweBook.Com

this is a new chapter 343

wrangling the page8

Slicing and Dicing HTML
with the DOM

Taking control of web page content with JavaScript is a lot
like baking. Well, without the mess... and unfortunately, also without the edible

reward afterward. However; you get full access to the HTML ingredients that go into a

web page, and more importantly, you have the ability to alter the recipe of the page. So

JavaScript makes it possible to manipulate the HTML code within a web page to

your heart’s desire, which opens up all kinds of interesting opportunities all made possible

by a collection of standard objects called the DOM (Document Object Model).

With the right ingredients and a
few flicks of the wrist, I can whip
up just about anything. I just have
to get close to what I’m making...

you know, be the pie.

Download at WoweBook.Com

344 Chapter 8

Functional but clumsy…interface matters
The Stick Figure adventure script from Chapter 4 is a good example of
interactive decision making with JavaScript, but the user interface is a bit
clumsy, especially by modern web standards. The alert boxes tend to feel
tedious to navigate through, and the cryptic option buttons aren’t very
intuitive, seeing as how they are simply labeled 1 and 2.

Ellie realizes that it’s time to right the wrongs
in the Stick Figure Adventure user interface...

Stick Figure Adventure
works fine... but it could
work a lot better.

Alerts can get annoying,
and they break up the
flow of the application.

The decision options are
very cryptic, providing little context for making decisions.

interface aspirations

Download at WoweBook.Com

you are here 4 345

wrangling the page

Describing scenes without alert boxes
The problem with the alert box approach to displaying the scene
descriptions is that the text disappears once the user clicks OK. It could
be better if the description was displayed directly on the page to get rid
of annoying alerts and bring the story into the body of the web page.
This is what Ellie wants the Stick Figure Adventure to look like:

What do you think would be the best way for JavaScript
to support the new scene description functionality?

An alert is no longer
necessary because
the scene description
text is shown
directly on the page.

The scene description
area now appears on the
page as a replacement
for alert boxes.

Yeah, the buttons are still
cryptic... one fix at a time!

The newest set of files for the Stick Figure Adventure are ready for you at http://www.headfirstlabs.com/books/hfjs/.

Download at WoweBook.Com

346 Chapter 8

<body>

 <div style="margin‑top:100px; text‑align:center">
 <div id="scenetext"></div>

 Please choose:

 <input type="button" id="decision1" value="1" onclick="changeScene(1)" /> <input type="button" id="decision2" value="2" onclick="changeScene(2)" /> </div>

</body>

Creating space on the page with div
In order to display scene description on the page, we first need to define a
physical area on the page as an HTML element before we can get serious
about using JavaScript code. Since the scene description text appears as its
own paragraph, a <div> tag should work fine for holding the scene text.

I see that the <div> tag has its
id attribute set. Can we use that
ID to access the scene description?

An ID is precisely how elements are accessed on
the page, including the scene description <div>.
It’s true, the id attribute of the <div> tag can be used as the basis
for accessing the element on the page from JavaScript code. In fact,
we’ve already done that...

The <div> tag has an ID
that uniquely identifies
the element for holding
scene description text.

 The IDs of elements
on a page should
always be unique.

Don’t forget that the whole
point of the id attribute

is to uniquely identify elements on a
page. For this reason, they should
always be unique within a given page.

where do you want me to put this?

Download at WoweBook.Com

you are here 4 347

wrangling the page

Accessing HTML elements
The getElementById() method of the standard document
object that we’ve used quite a lot. It allows you to reach within a
page and access an HTML element...as long as that element has a
unique ID.

Write JavaScript code to gain access to the orange image in the following HTML body code, first
using getElementById(), and then using getElementsByTagName().

<body>

 <p>Before starting, please choose an adventure
 stress level:</p>

 <img id="green" src="green.png" alt="Relaxing"
 />

 <img id="blue" src="blue.png" alt="Irritating"
 />

 <img id="yellow" src="yellow.png" alt="Frazzle
d" />

 <img id="orange" src="orange.png" alt="Panicke
d" />

</body>

Using getElementsByTagName():

Using getElementById():

var sceneDesc = document.getElementById("scenetext");

This must match the id attribute of the HTML element, in this case a div.

With the scene description element in hand, we’re one step closer to
manipulating the content stored in it. But there’s one other method
worth investigating first. It’s the getElementsByTagName()
method, which grabs all of the elements on a page of a certain kind,
like div or img. This method returns an array containing all of the
elements on the page, in the order that they appear in the HTML.

var divs = document.getElementsByTagName("div");

The name of the tag
itself, without the <>.

 <img id="sceneimg" src="scene0.png" ...
 <div id="scenetext"></div>

 Please choose:

The div element is
accessed using its id attribute.

Download at WoweBook.Com

348 Chapter 8

<body>

 <p>Before starting, please choose an adventure
 stress level:</p>

 <img id="green" src="green.png" alt="Relaxing"
 />

 <img id="blue" src="blue.png" alt="Irritating"
 />

 <img id="yellow" src="yellow.png" alt="Frazzle
d" />

 <img id="orange" src="orange.png" alt="Panicke
d" />

</body>

Getting in touch with your inner HTML
OK, the real point of all this HTML element access business is getting
to the content stored in an element. You can access HTML elements
that are capable of holding text content, such as div and p, by using a
property called innerHTML.

Write JavaScript code to gain access to the orange image in the following HTML body code, first
using getElementById(), and then using getElementsByTagName().

Using getElementsByTagName():

Using getElementById(): document.getElementById(“orange“)
document.getElementsByTagName(“img“)[3]

The orange image
is the fourth
element in the
array, which has
an index of 3.

You are standing
alone in the woods. <p id="story">

 You are standing

 alone in the woods.

</p>

document.getElementById("story").innerHTML

The innerHTML
property provides access
to all of the content
stored in an element.

innerHTML gets all of
the content of an element,
including any HTML tags.

Formatted HTML content
is also stored within the
innerHTML property.

exercise solution

Download at WoweBook.Com

you are here 4 349

wrangling the page

Assuming the scene description message is already being
correctly set based upon decisions made by the user, write the
line of code that sets the message text to the scene description
element on the Stick Figure Adventure page using innerHTML.

You are not alone!

innerHTML can also be used to set
content on the page.
The innerHTML property is actually used for
setting HTML content just as much as it is for
getting it. The content of an element can be
set to a string of HTML text just by assigning
the string of text to the element’s innerHTML
property. The new content replaces any content
that previously belonged to the element.

document.getElementById("story").innerHTML =

 "You are not alone!";

Element content is set, or in this
case replaced, by assigning a string
to the innerHTML property.

It seems as if you should be able to set
the content of an HTML element as easily
as you can get it. Is that possible?

Download at WoweBook.Com

350 Chapter 8

An adventure with less interruptions
The dynamically changing scene description area gives Stick Figure
Adventure a smoother and more enjoyable user experience with no
pesky alerts.

Assuming the scene description message is already being
correctly set based upon decisions made by the user, write the
line of code that sets the message text to the scene description
element on the Stick Figure Adventure page using innerHTML.

document.getElementById(“scenetext”).innerHTML = message;

The ID of the
scene message <div>
is “sceneText”.

Wow, that’s a subtle change,
but I love it.

Other than adding the <div> for the scene description (message) area
and the code to set the innerHTML property, the only other changes to
the Stick Figure Adventure code involve adding a message variable, and
then setting it in each different scene...

The scene description
now fits into the
flow of the page.

sharpen solution

Download at WoweBook.Com

you are here 4 351

wrangling the page

Stick Figure Adventure
Code Up Close

<html>
 <head>
 <title>Stick Figure Adventure</title>

 <script type="text/javascript">
 // Initialize the current scene to Scene 0 (Intro)
 var curScene = 0;

 function changeScene(decision) {
 // Clear the scene message
 var message = "";

 switch (curScene) {
 case 0:
 curScene = 1;
 message = "Your journey begins at a fork in the road.";
 break;
 case 1:
 if (decision == 1) {
 curScene = 2
 message = "You have arrived at a cute little house in the woods.";
 }
 else {
 curScene = 3;
 message = "You are standing on the bridge overlooking a peaceful stream.";
 }
 break;
 ...
 }

 // Update the scene image
 document.getElementById("sceneimg").src = "scene" + curScene + ".png";

 // Update the scene description text
 document.getElementById("scenetext").innerHTML = message;
 }
 </script>
 </head>

 <body>
 <div style="margin‑top:100px; text‑align:center">

 <div id="scenetext"></div>

 Please choose:
 <input type="button" id="decision1" value="1" onclick="changeScene(1)" />
 <input type="button" id="decision2" value="2" onclick="changeScene(2)" />
 </div>
 </body>
</html>

The message local variable
is created to store the
scene description message
for the new scene. The message variable is

set to description text
unique to each scene.

The scene description
text is set to the message variable contents using
the innerHTML property.

Download at WoweBook.Com

352 Chapter 8

Well, yes, but are web standards really anything to
worry about?
It’s true, innerHTML was originally created by Microsoft as a proprietary
feature for the Internet Explorer browser. Since then, other browsers have
adopted innerHTML, and it has become an unofficial standard for
quickly and easily changing the content of web page elements.

But the fact remains that innerHTML isn’t standard. That may not seem
like a big deal but the idea behind standards is to make web pages and
applications work on as many browsers and platforms as possible. Besides,
there is a standards-compliant way of accomplishing the same task that
is ultimately more flexible and more powerful, even if it isn’t quite as
simple. This approach involves the DOM, or Document Object Model,
a collection of objects that provide JavaScript with complete and total
control over the structure and content of web pages.

Not so fast. I heard innerHTML isn’t
even a Web standard. Is that true?

Q: Can I use getElementById()
to access any element on a page?

A: Yes, but only if the element has its
id attribute set to a unique value. The id
attribute is absolutely essential to using the
getElementById() method.

Q: Can innerHTML be used to set
the content of any HTML element?

A: No. In order to set the “inner HTML”
content of an element, the element must
be capable of containing HTML content. So
in reality, innerHTML.is for setting the
content of elements like div, span, p, and
other elements that act as content containers.

Q:When you set the content of an
element with innerHTML what
happens to the content?

A: The innerHTML property always
completely overwrites any prior content
when you set it. So there is no concept
of appending content to innerHTML,
although you can get the effect of appending
content by concatenating the new content
onto the old content, and then assigning
the result to innerHTML, like this:
elem.innerHTML += " This
sentence gets appended.

ask away

Download at WoweBook.Com

you are here 4 353

wrangling the page

Seeing the forest and the trees: the Document
Object Model (DOM)
The DOM offers a script-friendly view into the structure and content of a web page,
which is important if you’d like to use JavaScript to dynamically alter a page. Through
the lens of the DOM, a page looks like a hierarchy of elements in the shape of a tree.
Each leaf on the tree is a node, which directly relates to each element on a page. When
a node appears beneath another node on the tree, it is considered a child of that node.

html

headbody

p

"in the woods."strong

Document

<html>

 <head></head>

 <body>

 <p id="story">

 You are standing <
strong>alone in

 the woods.

 </p>

 </body>

</html>

DOM

"" ""

"You are standing"

"alone"

Yeah, it’s a strange-looking
tree, but the nodes for a
page do resemble a tree.

At the top of every
DOM tree sits the
Document node,
which is just above
the HTML element.

The DOM “sees”
a web page as a
hierarchical tree
of nodes.

The whitespace surrounding
the <p> tag on the page is
interpreted as empty text.

The strong text “alone”
appears beneath a node
for the tag.

These are
all nodes.

Download at WoweBook.Com

354 Chapter 8

Applying node types to the DOM tree for a web page helps to clarify
exactly how each piece of a page is perceived by the DOM. Of particular
interest is how the TEXT nodes always appear immediately beneath an
ELEMENT node as part (or all) of the node’s content.

Your page is a collection of DOM nodes
Every node in a DOM tree is classified according to its type. The main
node types correspond to structural parts of a page, primarily consisting of
element nodes and text nodes.

DOCUMENT
The top node in a DOM tree,

representing the document itself, and

appearing just above the html element.

ELEMENT
Any HTML element that corresponds
to a tag in HTML code.

TEXT
The text content for an element,
always stored as a child node
beneath an element.

ATTRIBUTE
An attribute of an element, accessible

through an element node, but not

present directly in the DOM tree.

html

headbody

p

"in the woods."strong

Document

"" ""

"You are standing"

"alone"

DOCUMENT

ELEMENT

ELEMENTELEMENT

ELEMENT

TEXT TEXT

TEXTELEMENT

TEXT TEXT

<html>

 <head></head>

 <body>

 <p id="story">

 You are standing alone in the woods. </p>

 </body>

</html>

Although attributes are accessible
using the DOM and have their own
node type, they do not appear in
the node tree for a page.

DOM nodes
are classified
according to
their node types.

Although this head element
is empty, there are typically
child nodes beneath the
head node in most pages.

classifying tree nodes

Download at WoweBook.Com

you are here 4 355

wrangling the page

Complete the DOM tree representation of the Stick Figure
Adventure HTML code by writing in the name of each
node. Also annotate the type of each node.

<html>

 <head>

 ...

 </head>

 <body>

 <div style="margin‑top:100px; text‑align:center">

 <div id="scenetext"></div>

 Please choose:

 <input type="button" id="decision1" value="1" onclick="changeScene(1)" /> <input type="button" id="decision2" value="2" onclick="changeScene(2)" /> </div>

 </body>

</html>

html

head

Document

...

Download at WoweBook.Com

356 Chapter 8

v Complete the DOM tree representation of the Stick Figure
Adventure HTML code by writing in the name of each
node. Also annotate the type of each node.

<html>

 <head>

 ...

 </head>

 <body>

 <div style="margin‑top:100px; text‑align:center">

 <div id="scenetext"></div>

 Please choose:

 <input type="button" id="decision1" value="1" onclick="changeScene(1)" /> <input type="button" id="decision2" value="2" onclick="changeScene(2)" /> </div>

 </body>

</html>

html

headbody

div

img br div br “Please choose:“ input input

Document

ELEMENT ELEMENT
TEXT ELEMENT ELEMENT

ELEMENT ELEMENT
ELEMENT

ELEMENT

DOCUMENT

““ ““ ““ ““
TEXTTEXT TEXT TEXT

““ ““
TEXTTEXT

...

Whitespace before and
after an element counts as
an empty text element.

sharpen solution

Download at WoweBook.Com

you are here 4 357

wrangling the page

Climbing the DOM tree with properties
Most interactions with the DOM begin with the document object,
which is the topmost node in a document’s node tree. The document
object offers useful methods like getElementById() and
getElementsByTagName(), and quite a few properties too. Many of
the properties of the document object are available from every node
in a tree. Some of these objects even allow you to navigate to other nodes.
This means node properties can be used to navigate through the node tree.

The following code is referencing a node in the tree on page 356. Carefully study the code and
then circle which node it references.

document.getElementsByTagName("body")[0].childNodes[1].lastChild

childNodes
Arrays containing all of the child nodes
beneath a node, in the order that the
nodes appear in the HTML code.

firstChild
The first child node
beneath a node.

lastChild
The last child node
beneath a node.

nodeValue
The value stored in a node,
only for text and attribute
nodes (not elements).

These properties are key to being able to manuver through the document tree
to access specific node data. For example, you can use node properties with the
getElementById() node access method to quickly isolate a specific node.

alert(document.getElementById("scenetext").nodeValue);

OK, so maybe that’s not the best example, seeing as how the scene
description text div starts out empty in Stick Figure Adventure. But
it should eventually get set to some very compelling text as the story
progresses, in which case this code would look much smarter.

The scene description text
in Stick Figure Adventure
initially starts out empty.The nodeValue property accesses the

text content stored in a node.

Node properties are
handy for traversing
through nodes in the
DOM tree.nodeType

The type of a node, such
as DOCUMENT or TEXT,
but expressed as a number.

The nodeValue property always
contains pure text with no
additional formatting.

Download at WoweBook.Com

358 Chapter 8

html

headbody

img div br “Please choose:“ input input

Document

““ ““ ““

““ ““
...

br ““

div

Q: What’s the difference between getElementById()
and getElementsByTagName()in the DOM tree? Why
would I choose one over the other?

A: The two methods offer different approaches that basically have
to do with whether or not your goal is to isolate a single element or a
group of similar elements. To isolate a single element, you can’t beat
getElementById()—just hang an ID on the element and
you’re good to go.
But if you want to target a group of nodes,
getElementByTagName() is a much better option. For

example, if you wanted to hide all of the images on a page using
JavaScript, you would first call getElementsByTagName()
and pass it "img" to get all of the image nodes on the
page. Then you would change the visibility CSS style
property on each of the image elements to hide them. Oops,
we’re getting way ahead of ourselves... we get back to the DOM
and CSS later in the chapter. For now, just understand that
while getElementsByTagName() isn’t as popular as
getElementById(), it still has its place in special situations.

The following code is referencing a node in the tree on page 356. Carefully study the code and
then circle which node it references.

““

There is only one <body> tag, so it
has to be referenced as the first
element in the array returned by
getElementsByTagName().

The second child node of the body element is the div element.

The last child
of the main
div element
is an empty
text element.

document.getElementsByTagName("body")[0].childNodes[1].lastChild

The getElementsById()
method gets a single element
that is set to a specific ID.

The getElementsByTagName() method gets all of the elements of a certain tag name throughout the entire page, like <input>, for example.

exercise solution

Download at WoweBook.Com

you are here 4 359

wrangling the page

How would you change the text for
a node using the DOM?

DOM properties allow you to change web page
content and maintain web standards compliance.
Since the DOM views everything in a web page document as a
node, changing a page involves changing its nodes. In the case of
text content, the text for an element like div, span, or p always
appears as a child node or nodes, immediately beneath the element
(node) in the tree. If the text is contained in a single text node with
no additional HTML elements, then the node is located in the first
child. Like this:

So node properties make it possible
to drill into HTML code and access web
page content...but can they be used to
change that content?

You are not alone.

document.getElementById("story").firstChild.nodeValue

<p id="story">

 You are not alone.

</p>

ELEMENT

"You are not alone."

TEXT

p

Download at WoweBook.Com

360 Chapter 8

Changing node text with the DOM
If you could safely assume that a node only has one child that holds its text content,
then it’s possible to simply assign new text content to the child using its nodeValue
property. This approach works just fine, again, but only if there’s a single child node.

document.getElementById("story").firstChild.nodeValue = "OK, maybe you are alone.";

ELEMENT

"OK, maybe you are alone."

TEXT

p

The new text content
replaces the existing
content in the child.

But things aren’t always so simple. What happens if
a node has more than one child? Like this code:

<p id="story">

 You are not alone.

</p>

ELEMENT

strong

p

"alone.""You are"

ELEMENT

"not"

TEXT

TEXTTEXTThis paragraph
breaks down into
multiple child nodes.

Changing the content in the first child isn’t enough to change the entire content of the paragraph.
Since there is a tag
in the paragraph
content, there are
multiple child nodes.

If we replace only the first child, the remaining child nodes are still there,
and we’ll get some strange results like these:

document.getElementById("story").firstChild.nodeValue = "OK, maybe you are alone.";

OK, maybe you are alone.not alone.Only the first child is replaced,
which still leaves the remaining
content...and some confusing results.

problem children

Download at WoweBook.Com

you are here 4 361

wrangling the page

Three (safe) steps for changing node text
The problem with changing the content of a node by only changing the
first child is that it doesn’t factor in the prospects of other child nodes. So
to change the content of a node, we really should clear all of its children,
and then add a new child that contains the new content.

 Remove all child nodes.11

 Create a new text node based upon the new content.22

 Append the newly created text node as a child node.33

We can do this with three DOM methods:

removeChild()
Remove a child node from a node; pass
in the child node to be removed.

createTextNode()
Create a text node from a string of text.

appendChild()
Add a node as the last child of the node;
pass in the child node to be added.

1

2

3

To change the text content in the “you are not alone” example,
we have to work through these three steps, first making sure to
remove all of the child nodes, then creating a new text node,
and finally appending the text node to the paragraph.

var node = document.getElementById("story");

while (node.firstChild)

 node.removeChild(node.firstChild);

node.appendChild(document.createTextNode("OK, maybe you are alone."));

First grab the element
(node) using its ID.

1

23

Remove the first child node until there are no more child nodes.

Create a new text node.After removing all the
child nodes, append the
new text node to the
parent node. OK, maybe you are alone.

Download at WoweBook.Com

362 Chapter 8

Head First: I’m told you’re the smallest unit of storage
in a DOM tree, kind of like an atom for HTML content.
Is that true?

Node: I’m not sure how atomic I am but yes, I do
represent a discrete piece of information in a DOM tree.
Think of the DOM as breaking down every web page
into tiny bite-sized pieces of information... and I’m that
bite-sized portion!

Head First: Why does that matter? I mean, is it really
that important to be able to break down a web page into
little chunks of data?

Node: It’s only important if you care about accessing or
altering the information in a web page. Many scripts care
about this very thing, in which case the DOM matters
quite a lot. But the real reason it matters is because it is
quite empowering to be able to disassemble a web page
into all of its little pieces and parts.

Head First: Don’t you run the risk of losing a part when
taking apart a page? Far too many people take something
apart only to have pieces left over, and next thing you
know they’ve broken the thing.

Node: No, that’s not a problem with the DOM because
you don’t have to literally take anything apart to access a
web page as a tree of nodes. The DOM provides the tree
view regardless of whether you actually plan on doing any
shaping or pruning to the web data.

Head First: That’s a relief. But if I really do want to
do some web page pruning, is that where you enter the
picture?

Node: Yes. Except that you aren’t limited to pruning—
you’re free to add to the tree of web data as well.

Head First: Wow, that’s pretty amazing. How does that
work?

Node: Well, remember that every piece of information

on a page is modeled in the tree as a node. So you can go
through me to access anything within a page. Or you can
create entirely new pieces of web data using me, and then
add them to the tree. The DOM is really quite flexible.

Head First: That’s neat. One thing that still confuses
me, however, is how you relate to elements. Are you guys
really the same person?

Node: Yes, actually we are. But I do take things a step
further. Remember that an element is just another way
of looking at a tag, such as <div> or . Every
element on a page is represented by a node in the
document tree, so in that sense element and I are the
same. However, I also represent content stored within
an element. So the text stored in a <div> is also its own
node, stored just beneath the div node in the tree.

Head First: That sounds kinda confusing. How can you
tell the difference between elements and their content?

Node: Well, first of all, the content stored within an
element, or node, always appears as a child of the node in
the DOM tree. And second, all nodes are distinguishable
by type: an element node has the ELEMENT node type,
while its text content has the TEXT node type.

Head First: So if I want to access the text content of an
element, do I just look for the TEXT node type?

Node: You could; just keep in mind that the nodeType
property actually returns a number for each node type.
For example, the TEXT node type is 3, while ELEMENT is
1. But even that’s not really necessary because all you have
to do is look to the children of an element node in order
to access its content.

Head First: I see. Well thanks for your time, and for
illuminating the wonders of the DOM tree.

Node: You’re very welcome. And if you’re ever in the
mood for some tree surgery, don’t forget to look me up!

DOM Building Blocks
This week’s interview:
Node discusses the wisdom of
DOM trees

DOM Building Blocks
This week’s interview:
Node discusses the wisdom of
DOM trees

DOM exposed

Download at WoweBook.Com

you are here 4 363

wrangling the page

// Update the scene description
text

var = document.get

ElementById(" ");

while (.

)

 .

 (.
);

 . (

document.createTextNode(
));

JavaScript Magnets
The DOM-compliant version of Stick Figure Adventure is missing several pieces of
important code. Use the magnets below to finish up the code that changes the node text
for the scene text element. Magnets can be used more than once.

scenetextfirstChild

removeChild

appendChild

message
sceneText

Q: I’m still a little confused about child
nodes and how they are organized. For
example, how does the childNodes
property work?

A: When a node contains data within
it, the node is considered a parent node
and the data within it is perceived by the
DOM as child nodes. If the data consists of
anything more than raw text data, then it is
broken apart into multiple child nodes. The
child nodes beneath a parent node appear
in the parent’s childNodes property
as an array, and their order in the array
matches the order that they appear in the
HTML code itself. So the first child node in
the childNodes array can be accessed
using childNodes[0]. The array can

also be looped through to access each of the
child nodes.

Q: In the code that removes all of the
child nodes from a node, how does the
while loop test condition work?

A: The while loop test looks like this:
while(node.firstChild)
What this test is doing is checking to see if the
node still contains a first child node. If there is
still a first child node, its presence results in a
value of true in the context of the while
loop, and the loop continues for another
iteration. If there is no first child node, that
means there are no children at all. And if that’s
the case, the code node.firstChild
results in null, which automatically gets
converted to false in the context of the
while loop. So what’s really going in is
that the while loop is looking to see if the
first child node is null, which is conclusive
evidence that there aren’t any other child nodes
lurking around.

strong

p

"alone.""You are"

"not"

The p element
has three
child nodes.

pElem.childNodes[2]

pElem.childNodes[0]

The strong
element has
one child node.

Download at WoweBook.Com

364 Chapter 8

// Update the scene description
text

var = document.get

ElementById(" ");

while (.

)

 .

 (.
);

 . (

document.createTextNode(
));

JavaScript Magnets Solution
The DOM-compliant version of Stick Figure Adventure is missing several pieces of
important code. Use the magnets below to finish up the code that changes the
node text for the scene text element. Magnets can be used more than once.

sceneText scenetext

sceneText firstChild

sceneText firstChild
sceneText removeChild

sceneText appendChild
message

First grab the scene text
element using its ID.

As long as the scene
text node has child
nodes, keep looping.

Keep removing the first remaining child of the scene text node until there are no children left.

With all of the child nodes
removed, a new text node is
created and added as a child
of the scene text node.

Although not a web standard, the innerHTML
property provides access to all of the content stored in
an element.

The Document Object Model, or DOM, provides a
standardized mechanism of accessing and modifying
web page data.

The DOM looks at a web page like a hierarchical tree of
related nodes.

The DOM alternative to changing web page content with
innerHTML involves removing all of the child nodes
of an element, and then creating and appending a new
child node that contains the new content.

The loop will continue looping
as long as a first child exists.

Now that there are no children,
appending the new text node
guarantees that the content
serves as a complete replacement.

The message must
be pure text with
no formatting or
HTML tags.

JavaScript magnets solution

Download at WoweBook.Com

you are here 4 365

wrangling the page

Standards compliant adventuring
Boy, that sounds fun! The mark of any good adventure is standards
compliance... or not. But it can be a good thing in the context of modern
web apps. And more importantly, take a look at the dramatic changes the
DOM approach to altering the scene description text have brought to
Stick Figure Adventure...

Hmm. OK, so maybe the page doesn’t look any different, but behind
the scenes it adheres to the latest web standards thanks to its usage
of the DOM. Not everything in JavaScript code can be appreciated
visually, and in this case our satisfaction with the DOM-powered
version of Stick Figure Adventure will have to come from within.

Wait a minute... the scene description text looks the same as before!

The DOM is a web
standard way of
manipulating HTML that
allows more control than
using the innerHTML
property.

Download at WoweBook.Com

366 Chapter 8

In search of better options
So now the dynamic scene description text has now been overhauled twice,
but those cryptic option buttons still remain in Stick Figure Adventure.
Surely something could be done to make the story navigation a little more
engaging and intuitive than choosing between the numbers 1 and 2!

How would you implement data-driven options in Stick Figure Adventure
so that they display option text specific to each different scene?

I know they get the job done
but the option buttons really are
underwhelming. They should be
much more descriptive.

A decent improvement to the option buttons would be to change them
so that they actually reflect the available decisions. They could include
text on the buttons that spell out exactly what the two options are at
each point like this:

The numeric option buttons just
aren’t cutting it - they say nothing
about the decision facing the user.

Much better! Now the options are
playing the role of decisions.

Come to think of it, there really isn’t any reason we have to use form
buttons for this—any HTML element that can contain text could
feasibly work. CSS styles could be used to dress them up and make
them look more like input controls.

improving your options

Download at WoweBook.Com

you are here 4 367

wrangling the page

Designing better, cleaner options
Since the new and improved decision-making options in Stick Figure
Adventure are HTML elements that contain text, the DOM can be
used to dynamically alter the decision text in each scene. This means
each scene will set its decision text along with its description. And it
also means the changeScene() function needs two new variables to
store this decision text, decision1 and decision2.

Here’s how we could go about setting Scene 1 decision text as it
transitions to Scene 3 in the changeScene() function:

Dynamic options in Stick Figure Adventure require a new approach to
how the options are represented in HTML code. Write code for the new
text elements that replace the existing <input> buttons.

Hint: The CSS style class for the new elements is named "decision",
and the content of the first element is initially set to "Start Game".

<input type="button" id="decision1
" value="1" onclick="changeScene(1

)" />

<input type="button" id="decision2
" value="2" onclick="changeScene(2

)" /> Rewrite the code for
dynamic options!

curScene = 3;

message = "You are standing on the bridge overlooking a peaceful stream.";

decision1 = "Walk across Bridge";

decision2 = "Gaze into Stream";
The decision1 and decision2
variables are used to store
the scene decision text for
a given scene.

decision1

decision2

Download at WoweBook.Com

368 Chapter 8

Rethinking node text replacement
All that’s missing now in Stick Figure Adventure for the new dynamic
decision text is the code that actually sets the text for the new span
elements. This code is ultimately doing the exact same thing as the DOM
code we wrote earlier in the chapter that dynamically changes the scene
description text. In fact, this presents a problem because we now need
to carry out the exact same task on three different elements: the scene
description and the two scene decisions...

<input type="button" id="decision1
" value="1" onclick="changeScene(1

)" />

<input type="button" id="decision2
" value="2" onclick="changeScene(2

)" />

Start Game

Rewrite the code for
dynamic options...the
two buttons become
span elements.

Replacing node text sounds
like a task that would be
handy to have in a function.

Dynamic options in Stick Figure Adventure require a new approach to
how the options are represented in HTML code. Write code for the new
text elements that replace the existing <input> buttons.

Hint: The CSS style class for the new elements is named "decision",
and the content of the first element is initially set to "Start Game".

sharpen solution

Download at WoweBook.Com

you are here 4 369

wrangling the page

Write the code for the replaceNodeText() function, the all-purpose
function for replacing the text within a node that is referenced by ID.

Don’t forget that the function accepts two arguments, id and newText.

Replacing node text with a function
An all-purpose node text replacement function is a handy thing, and not
just in Stick Figure Adventure. This type of function operates much like
the scene description text replacement code we worked through earlier,
except this time the code goes to work on function arguments.

function replaceNodeText(id, newText) {

 ...

}

replaceNodeText("scenetext", message);

replaceNodeText("decision1", decision1);

replaceNodeText("decision2", decision2);

The custom replaceNodeText() function accepts two arguments: the
ID of the node whose content is to be replaced and the new text to place in
the node. Use this function to change the text content of any element on a
page that can hold text. In Stick Figure Adventure, the function allows you
to now dynamically change the scene description text and the text for the
two decisions at one time..but of course you need to write it first.

The ID of the node whose content is to be replaced.

The new text content
to place in the node.

Replace the scene
description text with
a new message.

Change the decision text for each of the two decisions.

Instead of duplicating
the same code three
times, the function is
called three times.

Download at WoweBook.Com

370 Chapter 8

Dynamic options are a good thing
The new dynamic text decisions in Stick Figure Adventure are much more
intuitive than their cryptic button counterparts.

function replaceNodeText(id, newText) {
 var node = document.getElementById(id);
 while (node.firstChild)
 node.removeChild(node.firstChild);
 node.appendChild(document.createTextNode(newText));
}

Get the element
using its unique ID.

Remove all
children from
the node.

Create a new
child text
element using the
text passed into
the function.

Dynamic,
descriptive,
delightful!

The new dynamic decisions let the users know exactly what their options are at each point in the story.

The createTextNode() function is only
available in the document object, and
has no direct tie to a particular node.

Write the code for the replaceNodeText() function, the all-purpose
function for replacing the text within a node that is referenced by ID.

Don’t forget that the function accepts two arguments, id and newText.

sharpen solution

Download at WoweBook.Com

you are here 4 371

wrangling the page

Interactive options are even better
So the dynamic text decisions in Stick Figure Adventure are an
improvement over their cryptic predecessors, but they could still be
better. For example, they could highlight when the mouse pointer
hovers over them to make it clear that they are clickable.

Highlighting is associated with CSS but the
DOM is still directly involved.
Highlighting web page content is in fact a CSS issue because
it involves tweaking the background color of an element. But
the DOM also factors into the highlighting equation because it
provides programmatic access to the CSS styles of elements...

I thought highlighting and fancy
visual effects are associated
with CSS, not the DOM.

The decision text element
highlights when the user drags
the mouse pointer over it.

Q: Why are span elements used for
the Stick Figure Adventure decisions, as
opposed to div elements?

A: Because the decision elements need
to appear side by side, which means they
can’t be block elements that start on a new
line. A div is a block element, whereas a
span is inline. Inline is what we want for
the decisions, so span is the ticket.

Q: When I create a new node with
createTextNode(), where does
the node go?

A: Nowhere. When a new text node
is first created, it’s in limbo, at least with
respect to the DOM tree for a given page.
It’s not until you append the node as a child
of another node that it actually gets added
to the tree, which then adds it to the page.

Q: Does the content of a text node
created with createTextNode()
have to be just text?

A: Yes. The DOM doesn’t work like
innerHTML, where you can assign
text that has tags mixed in with it. When
the DOM talks about a “text node,” it really
means pure text with no other tags or
formatting tacked on.

Download at WoweBook.Com

372 Chapter 8

A matter of style: CSS and DOM
CSS styles are tied to HTML elements, and the DOM provides access to
styles through elements (nodes). By using the DOM to tweak CSS styles,
it’s possible to dynamically manipulate the content presentation. One way
that CSS styles are exposed through the DOM is in an element’s style
class, which is where a group (class) of styles is applied to an element.

<style type="text/css">

 span.decision {

 font‑weight:bold;

 border:thin solid #000000;

 padding:5px;

 background‑color:#DDDDDD;

 }

</style>

 Try not to
get CSS
style
classes
confused

with JavaScript
classes.

CSS style classes and
JavaScript classes are very
different animals. A CSS
style class is a collection of
styles that can be applied
to an element on the page,
while a JavaScript class
is a template for creating
JavaScript objects. We
uncover the details of
JavaScript classes and
objects in Chapter 10.

Start Game

The DOM provides access to an element’s style class through the
className property of the node object.

alert(document.getElementById("decision1").className);

The decision style class is
what gives the decisions
their visual appeal.

The className property
provides access to an
element’s style class.

The className property of a node
provides access to the style class.

classy DOM styles

Download at WoweBook.Com

you are here 4 373

wrangling the page

<span id="decision1" class="decision" onclick="changeScene(1)"

 >Start Game

<span id="decision2" class="decision" onclick="changeScene(2)"

 >

Using the two mouse events onmouseover and onmouseout, add
code to the decision elements in Stick Figure Adventure so
that they change style classes for a mouse hover highlight effect.

Hint: The “hover” style class is named decisionhover.

Swapping style classes
To change the appearance of an element using a completely different style
class, just change its style class name to a different CSS style class.

<style type="text/css">

 span.decisioninverse {

 font‑weight:bold;

 font‑color:#FFFFFF;

 border:thin solid #DDDDDD;

 padding:5px;

 background‑color:#000000;

 }

</style>

document.getElementById("decision1").className = "decisioninverse";

A new style class is applied to the
decision element using className.

Changing the style class of an element using the className
property immediately changes the appearance of the element to the
new style class. This technique can be used to make dramatic visual
changes to elements on a page with relatively little coding effort.

The decisioninverse
style class reverses
the color scheme of
the decision text.

Same decision element,
different style classes!

Download at WoweBook.Com

374 Chapter 8

Classy options
Applying style classes to the Stick Figure Adventure
code yields two different appearances for the
decision elements: normal and highlighted.

<span id="decision1" class="decision" onclick="changeScene(1)"

 >Start Game

<span id="decision2" class="decision" onclick="changeScene(2)"

 >

onmouseover=”this.className = ‘decisionhover’”
onmouseout=”this.className = ‘decision’”

onmouseover=”this.className = ‘decisionhover’”
onmouseout=”this.className = ‘decision’”

The decisionhover style class is set in
response to the onmouseover event.

The unhighlighted decision style is restored in response to the onmouseout event.

Using the two mouse events onmouseover and onmouseout, add
code to the decision elements in Stick Figure Adventure so that
they change style classes for a mouse hover highlight effect.

Hint: The “hover” style class is named decisionhover.

<style type="text/css">

 span.decision {

 font‑weight:bold;

 border:thin solid #000000;

 padding:5px;

 background‑color:#DDDDDD;

 }

</style>

This event
is triggered
when the mouse
pointer moves
over the span
element.

This event is triggered when the mouse
pointer moves off of the span element.

The only difference between
the two style classes is the
background color.

Normal Highlighted

Q: Can’t I just use CSS to create buttons that highlight
when the mouse moves over them?

A: Yes. And in many cases that is a better way to create “hover”
buttons because CSS is more widely supported than JavaScript in
browsers, such as on some mobile devices. However, Stick Figure
Adventure is a JavaScript application, and does all kinds of things
that are impossible to do in CSS alone. So in this case it’s not a
liability in any way to use JavaScript for the scene decision buttons.

<style type="text/css">

 span.decisionhover {

 font‑weight:bold;

 border:thin solid #000000;

 padding:5px;

 background‑color:#EEEEEE;

 }

</style>

sharpen solution

Download at WoweBook.Com

you are here 4 375

wrangling the page

Test drive the stylized adventure options
The user interface for Stick Figure Adventure is now improved thanks to
the DOM’s ability to change an element’s style class on demand. Ellie is
feeling pretty good about her script.

Q: I don’t remember the
onmouseover and onmouseout
events. Are those standard events?

A: Yes. In fact, there are lots of standard
JavaScript events that we haven’t explored.
But the thing about events is how you
can react to them even when you don’t
necessarily know everything about them.
In the case of the two mouse events, their
names are really all you needed to know to
understand that one of them is fired when
the mouse pointer hovers over an element,
and the other one fires when the mouse
pointer moves out of an element.

Q: Why wasn’t it necessary to use
getElementById() in the code
that sets the style class of the decision
elements?

A: Every element in JavaScript is an
object, and in the HTML code for an element
we have access to that object through the
this keyword. So in the Stick Figure
Adventure code, the this keyword
references the node object for the span
element. And that’s the same object with the
className property that accesses its
style class. So changing the style class only
involves setting this.className.

Q: Style classes are cool but I’d really
like to just change one style property. Is
that possible?

A: Wow, what intuition! There’s a nagging
problem with Stick Figure Adventure that
Ellie has been eager to resolve. And it just
so happens to involve using JavaScript and
the DOM to manipulate style properties
individually...

Wow, the new
mouse hover
highlighting
effect rocks!

The decision elements now highlight when the mouse pointer hovers over them.

Download at WoweBook.Com

376 Chapter 8

Which other scenes have the empty option
problem? What options exist to fix this?

Options gone wrong: the empty button
It’s been there all along, and up until this point Ellie coped with it. But
it’s time to go ahead and address the weirdness associated with the empty
decisions in Stick Figure Adventure. In some scenes there is only one
viable decision yet both decision elements are still displayed, like the
screenshot here. It’s a little unsettling for the user to see an interactive
decision element with no information in it. It’s been bugging me that some

of the scenes have empty options.
An empty option doesn’t make much
sense and can only cause confusion.

The empty decision
element is both
strange and confusing.

where the buttons have no name

Download at WoweBook.Com

you are here 4 377

wrangling the page

A la carte style tweaking
Sometimes changing the entire style class of an element is just too much.
For times when a little more granularity is required, there is the style
object. The style object is accessible as a property of a node object, and
provides access to individual styles as properties. The visibility style
property can be used to show and hide elements. In the HTML for Stick
Figure Adventure, the second decision element can be initially hidden
using the following code:

Some scenes in Stick Figure Adventure must alter the visibility of the second
option element when changing to a new scene. Circle these scenes, and then
annotate the decision where each scene should show or hide the option.

Bridge
overlooking

stream

Scene 3

Little house
in the woods

Scene 2

Fork in the
road

Scene 1

Eaten by
witch

THE END

Scene 5

Witch in
window

Scene 4

Title intro

Scene 0

Troll on
bridge

Scene 7

Eaten by
troll

THE END

Scene 6

To be
continued...

Scene 8

To be
continued...

Scene 9

Second option.

document.getElementById("decision2").style.visibility = "visible";

document.getElementById("decision2").style.visibility = "hidden";

<span id="decision2" class="decision" onclick="changeScene(2)"
 onmouseover="this.className = 'decisionhover'"
 onmouseout="this.className = 'decision'"
 style="visibility:hidden">

From then on, showing and hiding the element is just a matter of setting
the visibility style property to visible or hidden.

Poof!

The style property
of a node provides
access to individual
style properties.

Download at WoweBook.Com

378 Chapter 8

Some scenes in Stick Figure Adventure must alter the visibility of
the second option element when changing to a new scene. Circle
these scenes, and then annotate the decision where each scene
should show or hide the option.

Bridge
overlooking

stream

Scene 3

Little house
in the woods

Scene 2

Fork in the
road

Scene 1

Eaten by
witch

THE END

Scene 5

Witch in
window

Scene 4

Title intro

Scene 0

Troll on
bridge

Scene 7

Eaten by
troll

THE END

Scene 6

To be
continued...

Scene 8

To be
continued...

Scene 9

Show. Hide.

Hide.

Hide.

Hide.

Second option.

The second decision element should
be hidden in any scene that leads
to a scene with only one decision,
such as starting a new game.

The second decision element
only needs to be shown once,
when a new game begins. When the game ends, the second decision element should be hidden, but the change has to come in the scene leading up to the game ending.

...
case 7:
 if (decision == 1) {

 curScene = 6

 message = "Sorry, you
 became the troll's tasty

 lunch.";

 decision1 = "Start Ov
er";

 decision2 = "";

 // Hide the second de

cision

 document.getElementBy
Id("decision2").style.vis

ibility = "hidden";

 }
 else {
 curScene = 9;

 decision1 = "?";

 decision2 = "?";

 }
 break;
...

Each scene must show or
hide the second decision
element using the visibility property of the style object.

sharpen solution

Download at WoweBook.Com

you are here 4 379

wrangling the page

No more bogus options
Manipulating individual styles using the DOM allows the
second decision element to be selectively shown and hidden.
The end result is a user interface that makes a lot more sense
now that the empty decision elements are gone.

The className node property makes big style
changes by changing the entire style class of a node.

The style node property makes small style changes
by providing access to individual style properties of a
node.

A CSS style class has nothing to do with a JavaScript
class—they are completely different things.

Elements on a page can be dynamically shown or
hidden using the visibility style property of the
element object.

Ah, much better...
those empty decisions
were really annoying!

The second decision element is
now hidden when it isn’t needed,
such as on the title scene.

The display style property can accomplish a similar show/hide effect by setting it to display:none (hide) or display: block (show).

Download at WoweBook.Com

380 Chapter 8

More options, more complexity
Ellie envisions the Stick Figure Adventure storyline growing by leaps and
bounds to reveal all kinds of interesting new scenes and decisions. There
are ways the DOM can factor into helping manage the complexity of a
much deeper Stick Figure Adventure narrative.

Bridge
overlooking

stream

Scene 3

Little house
in the woods

Scene 2

Fork in the
road

Scene 1

Eaten by
witch

THE END

Scene 5

Witch in
window

Scene 4

Title intro

Scene 0

Troll on
bridge

Scene 7

Eaten by
troll

THE END

Scene 6

...

Scene 8

...

Scene 9

...

THE END

Scene 11

...

Scene 10

...

Scene 13

...

Scene 12

Deeper adventure = Bigger decision tree!

big ol’ decision tree

* The latest version of the Stick Figure Adventure is online and
waiting for your coding assistance. Download this at http://www.
headfirstlabs.com/books/hfjs/ if you haven’t already.

Download at WoweBook.Com

you are here 4 381

wrangling the page

What do you think might be the best way to create testing
paths through such a monstrous decision tree?

Big stories can certainly turn
into big problems without a
way to test the decision tree.
As the story continues to unfold with
more scenes and decisions, it becomes
increasingly difficult to test the logic of
the story and make sure every decision
path leads to the right place. Stick Figure
Adventure is in desperate need of a way
to analyze paths through the story.

...

Scene 15

...

Scene 14

...

THE END

Scene 17

...

Scene 16

...

THE END

Scene 19

...

Scene 18

...

Scene 21

...

Scene 20

...

Scene 23

...

THE END

Scene 22

...

Scene 26

...

Scene 25

...

Scene 24

...

THE END

Scene 27

...

THE END

Scene 30

...

Scene 29

...

Scene 28

...

Scene 31

Wow! That’s a lot of decisions... but it seems
like it would be a nightmare to test.

Download at WoweBook.Com

382 Chapter 8

Tracking the decision tree
Similar to the history feature in a web browser, which keeps
track of the sequence of pages you’ve visited, a decision
history feature in Stick Figure Adventure can be used to test
and debug the storyline. The idea is to reveal the series of
decisions that leads to a particular outcome. By doing this
Ellie can make sure the decision path works as expected.

What kind of changes
are required to the
Stick Figure Adventure
Web page to support a
decision history feature?

Bridge
overlooking

stream

Scene 3

Little house
in the woods

Scene 2

Fork in the
road

Scene 1

Eaten by
witch

THE END

Scene 5

Witch in
window

Scene 4

Title intro

Scene 0

Troll on
bridge

Scene 7

Eaten by
troll

THE END

Scene 6

...

Scene 8

...

Scene 9

...

THE END

Scene 11

...

Scene 10

...

Scene 13

...

Scene 12

1 Scene 1 - Fork in the road.

Scene 0 - Title intro.

1 Scene 2 - Little house in the woods.

1 Scene 4 - Witch in window.

1 Scene 8 - ...

2 Scene 11 - ...

Start

End

The decision history is built as a list of the options and scenes that occur
in any given path through the story. The history then serves as a story
debugger that lets Ellie trace back through options and scenes.

Each scene traversed
is added to the
decision history, along
with the decision made
to arrive there.

2

1

1

1

1

Decision 1
is chosen...

... which leads to scene 4.

following the trail

Download at WoweBook.Com

you are here 4 383

wrangling the page

A decision history
feature in Stick
Figure Adventure can
be a very useful story
debugging tool.

Turn your decision history into HTML
From an HTML perspective, the code for the decision history isn’t too
terribly complex: a div element and a paragraph of text for each decision
is all that is needed.

The DOM can create any HTML element at will,
including paragraphs of text.
Actually, you can. And it involves another method of the document
object, createElement(), which can be used to create any HTML
element. The idea is that you create a new container element using
createElement(), and then you add text content to it by creating a
child text node with createTextNode(). The end result is an entirely
new branch of nodes grafted onto the node tree of a page.

That’s crazy. You
can’t just create
new paragraphs at
will... can you?

<div id="history">

 <p>Decision 1 ‑> Scene 1 : Fork in the road.</p>

 <p>Decision 1 ‑> Scene 2 : Little house in the woods.</p>

 <p>Decision 1 ‑> Scene 4 : Witch in window.</p>

 ...

</div>

Each p element
contains a decision in the decision history.

All that remains is writing some JavaScript to use the DOM to generate
the decision history as a collection of nodes.

ELEMENT

"Decision 1 ‑> Scene 1 : Fork in th
e road."

TEXT

p

div
document.createElement("p");

document.createTextNode("... ");

Download at WoweBook.Com

384 Chapter 8

Manufacturing HTML code
Creating a new element with the createElement() method only
requires the name of the tag. So creating a paragraph (p) element simply
means having to call the method with an argument of "p", making sure
to hang on to the resulting element that is created.

"Decision 1 ‑> Scene 1 : Fork in th
e road."

p

div

var decisionElem = document.createElement("p");

At this point there’s a new paragraph element with no content, and it’s
not yet part of any page either. So to add the text content to the element,
create a text node and then add it as a child of the new p node.

decisionElem.appendChild("Decision 1 ‑> Scene 1 : Fork in the road."));

p

"Decision 1 ‑> Scene 1 : Fork in th
e road."

p

The last step is to add the new paragraph element to the page as a child of
the history div element.

document.getElementById("history").appendChild(decisionElem);

The p element is still floating in space, but it now has some text content thanks to a new child text node.

The p element is added as a child of an existing div element, which merges the paragraph into the web page.

We start off with a new p element floating in space.

By repeating these steps whenever each scene is traversed in Stick Figure
Adventure, a decision history can be created dynamically.

...
<div id="history">
 <p>Decision 1 ‑> Scene 1 : Fork in the road.</p>
</div>
...

monkeying around with the HTML

Download at WoweBook.Com

you are here 4 385

wrangling the page

Add code to the changeScene() function to support the decision history
feature in Stick Figure Adventure. Hint: You need to add a new paragraph
element with a child text node to the decision history element when the
current scene isn’t Scene 0, and clear the decision history if the Scene is 0.

function changeScene(decision) {

 ...

 // Update the decision history

}

Any HTML element can be created using the
document object’s createElement() method.

To add text content to an element, a child text node must
be created and appended to the element.

By carefully adding and removing nodes in the DOM
tree, a web page can be disassembled and reassembled
at will.

Download at WoweBook.Com

386 Chapter 8

Add code to the changeScene() function to support the decision history
feature in Stick Figure Adventure. Hint: You need to add a new paragraph
element with a child text node to the decision history element when the
current scene isn’t Scene 0, and clear the decision history if the Scene is 0.

function changeScene(decision) {

 ...

 // Update the decision history

}

var history = document.getElementById(“history”);
if (curScene != 0) {
 // Add the latest decision to the history
 var decisionElem = document.createElement(“p”);
 decisionElem.appendChild(document.createTextNode(“decision “ + decision +
 “ -> Scene “ + curScene + “ : “ + message));
 history.appendChild(decisionElem);
}
else {
 // Clear the decision history
 while (history.firstChild)
 history.removeChild(history.firstChild);
}

The changeScene() function
already has a local variable
named decision, so this variable
must be named something else.

Grab the history
div using its ID.

Create a new text
node with the decision
history information.

Append the new text
node to the new
paragraph element.

Append the
paragraph
element to the
div to add it
to the page.

Clear the history div by
removing all of its children.

sharpen solution

Download at WoweBook.Com

you are here 4 387

wrangling the page

Tracing the adventure story
The decision history feature in Stick Figure Adventure now makes it
possible to carefully track the story logic as it unfolds.

The decision history is
awesome! I can finally cut loose
creatively and still keep the
decision tree under control.

The story path completes in the decision history when an ending is reached.

The story hasn’t started so there is no history.

The history
grows as the
story unfolds.

Download at WoweBook.Com

388 Chapter 8

A long strange trip...
It’s time to flex your creative muscle by expanding the Stick Figure
Adventure story into something worthy of some serious decision history
debugging. Your stick figure friend is waiting for adventure...

Dream up your very own continuation of the Stick Figure Adventure story, and add code to
incorporate it into the Stick Figure Adventure application so that you can share it online as an
interactive adventure.
There is no solution to this exercise... just have fun dreaming up adventures!

the neverending story

Download at WoweBook.Com

you are here 4 389

wrangling the page

JavaScriptcross
Before you dig too deeply into stick figure story writing, take
a moment to experience a little crossword adventure!

Untitled Puzzle
Header Info 1

Header Info 2

etc...

1 2

3 4

5

6

7 8

9

10

11

12 13

Across
1. A node appearing below another node in the DOM tree is
called a
4. The property of a node object used to get its value.
5. Used to set the style class of an element.
7. Call this method to get all of the elements of a certain type,
such as div.
10. This type of node holds text content.
11. A DOM node type that equates to an HTML tag.
12. Use this method to add a node to another node as a child.

Down
1. Call this method to create an HTML element.
2. The topmost node in a DOM tree.
3. A non-standard way to change the content of an HTML
element.
6. A clumsy way to tell an online story.
8. A leaf in a DOM tree of Web page content.
9. Use this property to access individual style properties of an
element.
13. Set this attribute on an HTML tag to make it accessible from
JavaScript.

Untitled Puzzle
Header Info 1

Header Info 2

etc...

1 2

3 4

5

6

7 8

9

10

11

12 13

Across
1. A node appearing below another node in the DOM tree is
called a
4. The property of a node object used to get its value.
5. Used to set the style class of an element.
7. Call this method to get all of the elements of a certain type,
such as div.
10. This type of node holds text content.
11. A DOM node type that equates to an HTML tag.
12. Use this method to add a node to another node as a child.

Down
1. Call this method to create an HTML element.
2. The topmost node in a DOM tree.
3. A non-standard way to change the content of an HTML
element.
6. A clumsy way to tell an online story.
8. A leaf in a DOM tree of Web page content.
9. Use this property to access individual style properties of an
element.
13. Set this attribute on an HTML tag to make it accessible from
JavaScript.

Download at WoweBook.Com

390 Chapter 8

JavaScriptcross Solution
Untitled Puzzle

Header Info 1

Header Info 2

etc...

C
1

H I L D D
2

I
3

R N
4

O D E V A L U E

N E C

N A U

E T C
5

L A S S N A M E

R E E A
6

H E N L

G
7

E T E L E M E N T S B Y T A G N
8

A M E

M E O R S
9

L M D T
10

E X T

E E
11

L E M E N T Y

A
12

P P E N D C H I
13

L D L

T D E

Across
1. A node appearing below another node in the DOM tree is
called a [CHILD]
4. The property of a node object used to get its value.
[NODEVALUE]
5. Used to set the style class of an element. [CLASSNAME]
7. Call this method to get all of the elements of a certain type,
such as div. [GETELEMENTSBYTAGNAME]
10. This type of node holds text content. [TEXT]
11. A DOM node type that equates to an HTML tag. [ELEMENT]
12. Use this method to add a node to another node as a child.
[APPENDCHILD]

Down
1. Call this method to create an HTML element.
[CREATEELEMENT]
2. The topmost node in a DOM tree. [DOCUMENT]
3. A non-standard way to change the content of an HTML
element. [INNERHTML]
6. A clumsy way to tell an online story. [ALERT]
8. A leaf in a DOM tree of Web page content. [NODE]
9. Use this property to access individual style properties of an
element. [STYLE]
13. Set this attribute on an HTML tag to make it accessible from
JavaScript. [ID]

JavaScriptcross solution

Download at WoweBook.Com

you are here 4 391

wrangling the page

<html>

 <head></he
ad>

 <body>

 <div>

 The DO
M is <

strong>often
 co

nfused

 with</
span> the br

owser, which i

s

 in con
trol.

 </p>

 </body>

</html>

 A JavaScript programmer must be careful not to
 get carried away with the DOM. It
 is certainly handy for accessing HTML
 tags. But try not to become a total
 manipulator, or you may wear out your nodes.

What is the DOM, really?

html

headbody

div

strong

span

Document

"" ""

"The DOM" "the browser, "

DOM

"which is"

span

"in control."
"is"

"often"

"confused with" em

Page Bender

It’s a meeting of the minds!

Fold the page vertically
to line up the two brains
and solve the riddle.

Download at WoweBook.Com

Download at WoweBook.Com

this is a new chapter 393

bringing data to life9

Objects as Frankendata

JavaScript objects aren’t nearly as gruesome as the good
doctor might have you think. But they are interesting in that they combine

pieces and parts of the JavaScript language together so that they’re more powerful

together. Objects combine data with actions to create a new data type that is much

more "alive" than data you’ve seen thus far. You end up with arrays that can sort

themselves, strings that can search themselves, and scripts that can grow fur and

howl at the moon! OK, maybe not that last one but you get the idea...

JavaScript objects aren’t nearly as gruesome as the good
doctor might have you think. But they are interesting in that they combine

pieces and parts of the JavaScript language together so that they’re more powerful

together. Objects combine data with actions to create a new data type that is much

more "alive" than data you’ve seen thus far. You end up with arrays that can sort

themselves, strings that can search themselves, and scripts that can grow fur and

howl at the moon! OK, maybe not that last one but you get the idea...

I once disassembled an entire
man with these...you can ask him...
I put him back together later.

Download at WoweBook.Com

394 Chapter 9

A JavaScript-powered party
There’s a party, and you’re responsible for the invitations. So the first
question is what information goes into the perfect party invitation?

Who?
What?

When?
Where?

The invitee
A puzzle party

The date/time
The location

Invitation data.

Display! Deliver!

Display the data Deliver the data

A party invitation for JavaScript would model the data as variables
and the actions as functions. Problem is, in the real world the
ability to separate data and actions doesn’t really exist.

Invitation actions.

In the real world, the invitation card combines data and actions
into a single entity, an object.

You’re invited to...

Date:

Location:

A Puzzle Party!

2112 Confounding Street

Baffleburg, CA 95099

USA

October 24th
Puzzler Ruby
5280 Unravel Avenue
Conundrum, AZ 85399
USA

Who?
What?

Where?

When?

Flip over!

Display!

Deliver!

party time

Download at WoweBook.Com

you are here 4 395

bringing data to life

Data + actions = object
You don’t always have to work with data and actions as separate things in
JavaScript. In fact, JavaScript objects combine the two into an entirely
unique data structure that both stores data and acts on that data. This
functionality allows JavaScript to apply real-world thinking to scripts. So
you can think in terms of “things” as opposed to separate data and actions.

When you look at the party invitation in terms of a JavaScript object, you
get this:

Data Actions

Object

+ =

var who;

var what;

var when;

var where;

function display(what, when, where) {
 ...
}

function deliver(who) {
 ...
}

var who;

var what;

var when;

var where;

function display() {
 ...
}

function deliver() {
 ...
}

Inside the invitation object, data and functions now co-exist and have
closer ties than they had outside of the object. More specifically, functions
placed within an object can access variables in the object without having
to pass the variables into the functions as arguments.

where

display()

what

who

when

deliver()

Invitation

The data within the invitation object is accessible to the functions but
hidden from the outside world. So the object serves as a container that
stores data and links it to code that can take action on it.

Objects link
variables
and functions
together inside
a storage
container.

Outside of an object,
data must be passed into
functions as arguments.

Download at WoweBook.Com

396 Chapter 9

An object owns its data
When variables and functions are placed within an object, they are
referred to as object members. More specifically, variables are called
object properties and functions are called object methods. They still
store data and take actions on data, they just do so within the context of a
specific object.

Variables
var who;

var what;

var when;

var where;

Functions

function display(w
hat, when, where)

{

 ...
}

function deliver(w
ho) {

 ...
}

Properties

var who;

var what;

var when;

var where;

Methods

function display() {
 ...
}

function deliver() {
 ...
}

Object

Variables become
object properties.

Functions become object methods.

Properties and methods are “owned” by an object, which means they
are stored within the object much like data is stored in an array. Unlike
arrays, however, you typically access object properties and methods using
a special operator called the dot operator.

Properties
and methods
are the object
equivalents of
variables and
functions.

.Object + + Property/Method

The name of
the object.

The name of the
property or method.Just a dot (period).

membership has its privileges

Download at WoweBook.Com

you are here 4 397

bringing data to life

The dot operator establishes a reference between a property or method
and the object to which it belongs. It’s kind of like how people’s first
names tell you who they are, but their last names tell you what family
they belong to. Same thing for objects—a property name tells you what
the property is, while the object name tells you what object the property
belongs to. And the dot operator connects the two together.

Now it’s possible to actually put together the data for a JavaScript
invitation object using properties and the dot operator:

invitation.who = "Puzzler Ruby";

invitation.what = "A puzzle party!";

invitation.when = "October 24th";

invitation.where = "2112 Confounding Street";

Keep in mind that since the data and the actions are all part of the same
object, you don’t have to pass along anything to a method in order for it
to be able to use the data. This makes taking an action on the invitation
object quite simple:

invitation.deliver();

The dot operator is used
to access each property.

Object name.
Property name.

Method name.

A dot!

Object name.

The party invitation is missing an RSVP property that allows invitees to respond with whether
they will be coming to the party or not. Write code to add an rsvp property to the Puzzler Ruby
invitation (she plans to attend), and then call the sendRSVP() method to send the response.

The dot operator
references a
property or method
from an object.

Object member references with a dot

Download at WoweBook.Com

398 Chapter 9

Q: What exactly is an object? Does it
have a data type?

A: Yes, objects have a data type. An
object is a named collection of properties
and methods. Or put more exactly, objects
are a data type. Other data types you’ve
learned about include number, text, and
boolean. These are known as primitive
data types because they represent a
single piece of information. Objects are
considered complex data types because
they encompass multiple pieces of data. You
can add "object" as a fourth data type to
the list of primitive types you already know
(number, string, and boolean). So, any object
you create or any built‑in JavaScript object
you use has a data type of object.

Q: Couldn’t I just use global variables
and functions instead of object properties
and methods? Functions can access
global variables just fine, right?

A: Yes they can. Problem is, there is
nothing stopping any other code from
accessing the global variables as well. This
is problematic because you always want to
try and limit data exposure only to code that

truly needs access to the data. This helps
prevent the data from getting accidentally
changed by other code.
Unfortunately, JavaScript doesn’t currently
allow you to truly prevent an object property
from being accessed by outside code. And
there are situations where you specifically
want an object property to be accessed
directly. However, the idea is that you place
data in an object to logically associate it with
the object. A piece of data tied to an object
has much more context and meaning than
a piece of data floating freely in a script (a
global variable).

Q: I’ve seen object notation with the
dot operator used several times already.
Was I really using objects all this time?

A: Yes. You’ll find that it’s actually quite
difficult to use JavaScript without using
objects, and that’s because JavaScript
itself is really one big collection of objects.
For example, the alert() function
is technically a method of the window
object, which means it can be called with
window.alert(). The window
object represents the browser window, and
doesn’t have to be explicitly referenced as

an object, which is why you can get away
with alert() by itself.

Q: OK, this is really confusing. So
you’re telling me that functions are really
methods?

A: Yes, although it can get confusing
thinking of functions in this manner. You
already know that a function is a chunk of
code that can be called by other code by
name. A method is just a function that has
been placed within an object. The confusion
arises when you realize that every function
actually belongs to an object.
So alert() is both a function and a
method, which explains why it can be called
as a function or as a method—most methods
have to be called as a method using object
notation. In reality, every JavaScript function
belongs to an object, thereby making it a
method. And in many cases this object is
the browser’s window object. Since this
object is assumed to be the default object if
no object is specified for a method call, such
as alert(), it’s OK to think of these
methods as functions. Their ownership by
the window object is incidental since they
have no logical connection to the object.

The party invitation is missing an RSVP property that allows invitees to respond with whether
they will be coming to the party or not. Write code to add an rsvp property to the Puzzler Ruby
invitation (she plans to attend), and then call the sendRSVP() method to send the response.

invitation.rsvp = "attending";
invitation.sendRSVP();

This could also be a boolean property
where true means the person is
attending, false means they’re not.

The dot operator references the property and method of the invitation object.

ask me anything

Download at WoweBook.Com

you are here 4 399

bringing data to life

Objects are a special kind of data structure that
combine data with code that acts on the data.

In practical terms, an object is really just variables and
functions combined into a single structure.

When placed into an object, variables become known as
properties, while functions become known as methods.

Properties and methods are referenced by supplying the
name of the object followed by a dot followed by the
name of the property or method.

A blog for cube puzzlers
On the other end of the party invitation is Ruby, a cube puzzle enthusiast
who can’t wait to get together with her other puzzler friends. But Ruby
has more on her mind than just going to parties—she wants to create a
blog where she can share her love of cube puzzles with the world. She’s
ready to start sharing her cubist wisdom on YouCube!

I’ve heard that objects will make my
code easier to maintain when I need to
make changes. That will give me more
time for my cube puzzles!

Object-oriented
YouCube = More cube

time!

Ruby has heard that JavaScript supports custom objects as a means of
creating more robust, and ultimately more manageable code. She has
also heard that lots of blogs eventually get stale because bloggers get
tired of maintaining them. So Ruby wants to start her blog out on the
right foot by building YouCube as an object-oriented script using
custom objects that will carry her far into the puzzling future.

Download at WoweBook.Com

400 Chapter 9

Deconstructing YouCube
Ruby currently has a handwritten diary, and she’s read enough blogs to know
hers will need to consist of dates and text, but she can’t figure out how to store
them using JavaScript. She just knows she’s sick of writing her cube diary
(soon to be blog) entries by hand!

Ruby desperately needs a straightforward way to store and access multiple
pairs of information (date + text). This sure sounds an awful lot like what
JavaScript objects have to offer...combining multiple pieces of information
into a single entity.

The handwritten
YouCube.

Each entry
consists of a date
combined with a
string of text.

Date of the
entry.

Body text of
the entry.

Ruby’s favorite
cube puzzle.

Blog date =Blog body Blog object+

A custom object allows
the two pieces of blog
data to be combined
into a single entity.

08/14/2008
Got the new cube I ordered. It’s a real
pearl.

08/19/2008
Solved the new cube but of course, now
I’m bored and shopping for a new one.

08/16/2008
Managed to get a headache toiling over
the new cube.
Gotta nap.

08/21/2008
Found a 7x7x7 cube for sale online. Yikes!
That one could be a beast.

be the cube

Download at WoweBook.Com

you are here 4 401

bringing data to life

Custom objects extend JavaScript
The JavaScript language includes lots of handy standard objects, several
of which we explore later in this chapter. As useful as these objects are,
there are times when they simply aren’t enough. The YouCube blog is a
good example of this limitation since it involves a data storage problem
that can’t be solved with built-in JavaScript data types...a custom object is
in order.

"Got the new

cube I ordered.

It’s a real
pearl."

String

October 24th, 2008
7:00pm

Date

Array

08/14/2008

08/19/2008

08/16/2008

08/21/2008

Got the new cube I ordered...
Solved the new cube but of...
Managed to get a headache...
Found a 7x7x7 cube for sale...

date
body0

1

2

3
"08/14/2008"

"Got the new
cube I ordered.

It’s a real pearl."

Blog

Custom objects allow you to add features to JavaScript that suit your own
specific needs. In Ruby’s case, a custom object could model a blog entry,
using properties to represent the blog date and body text. Additionally,
methods can be used to add behavior to blog entries, making it more
intuitive to create and manage them.

In order to bring such a custom object to life, however, we must first find
out how custom objects are created...

Standard JavaScript
objects.

A custom object just for the
YouCube blog!

Blog date.

Blog body.

Without the help of
objects, it might be
tempting to store blog
entries in a 2-D array.

The Blog object serves
as a compound data
type - combining two
pieces of data into one.

It’s true, strings
are really objects!

Arrays are
objects too.

Download at WoweBook.Com

402 Chapter 9

Construct your custom objects
Since objects have data associated with them that must be initialized when
an object is created, a special method called a constructor is required
to get an object up and running. Every custom object requires its own
constructor, which is named the same as the object. The constructor is
called to initialize an object upon creation. When creating a custom object,
it’s your job to write a suitable constructor that brings the object to life.

Invitation(who, what, when, where);

var who;

var what;

var when;

var where;

function display() {
 ...
}

function deliver() {
 ...
}

who = "Somebody";

what = "Something";

when = "Sometime";

where = "Somewhere";

Properties

Methods

Invitation

var who = "Somebo
dy";

var what = "Somet
hing";

var when = "Somet
ime";

var where = "Some
where";

function display() {
 ...
}

function deliver() {
 ...
}

To create an object with a constructor, you use the new operator, which
kickstarts the object creation process by calling the object’s constructor.
The constructor part of creating an object looks like a call to a method
because that’s really what it is. However, it’s important to always use
the new operator to initiate the creation of an object, as opposed to just
calling an object’s constructor directly.

var invitation = new Invitation("Somebody", "Something", "Sometime", "Somewhere");

The properties are set by passing
arguments to the constructor.

The constructor is
called just like a method.

The new object is
stored in a variable.

The properties
and methods are
created.

The properties are initialized. The newly created
object is ready
to use.

A constructor is
responsible for
creating an object.

The new operator is used
to create a new object.

The name of the
constructor matches
the object name.

caution: construction zone

Download at WoweBook.Com

you are here 4 403

bringing data to life

What’s in a constructor?
A big part of the constructor’s job is establishing the properties of an
object, along with their initial values. To create a property within a
constructor, you set the property using a JavaScript keyword called this.
The this keyword assigns ownership of the property to the object, and
also sets its initial value at the same time. The word literally does what
it means—you’re creating a property that belongs to “this” object, as
opposed to just being a local variable within the constructor.

function Invitation(who, what, when, where) {

 this.who = who;

 this.what = what;

 this.when = when;

 this.where = where;

}

Constructors are
always capitalized,
as are object names.

The constructor
arguments are assigned
to new properties.

The constructor is put
together just like any
other function.

The this keyword is
what distinguishes an object property from a normal variable.

Object properties are created and initialized in a constructor by using
object notation (the dot operator) and the this keyword. Without the
this keyword, the constructor would not know that you're creating
object properties. The result of this constructor is the creation of four
properties, which are assigned the four values passed as arguments into
the constructor.

Write a constructor for a Blog object that creates and initializes
properties for the date and body text of a blog entry.

The this keyword is
the key to creating
object properties
inside a constructor.

Download at WoweBook.Com

404 Chapter 9

Write a constructor for a Blog object that creates and initializes
properties for the date and body text of a blog entry.

function Blog(body, date) {
 this.body = body;
 this.date = date;
}

The body text and date
are passed into the
constructor as arguments.

The constructor
is named the
same as the
object.

The this keyword
references
properties of
the object.

The properties are
initialized using
constructor arguments.

Bringing blog objects to life
The Blog object is certainly shaping up but it hasn’t actually been created
yet. As good as it may seem in theory, it’s still just a hypothesis yet to be
proven. Remember that the constructor establishes the design of an object
but none are physically created until you use the new operator, which then
builds the object by calling the constructor. So let’s go ahead and create a
real live Blog object.

var blogEntry = new Blog("Got the new cube I ordered...", "08/14/2008");

function Blog(body, date
) {

 ...

}"Got the new
cube I ordered.

It’s a real pearl."

"08/14/2008"

Blog

The Blog()
constructor is called to create the object.

The object
is created.

Handwritten
blog entry.

JavaScript
Blog object.

08/14/2008

Got the new cube I ordered. It’s a real

pearl.

make it work

Follow along with the examples,
available for download at http://
www.headfirstlabs.com/books/hfjs/.

Download at WoweBook.Com

you are here 4 405

bringing data to life

var blog =

 [

];

Q: I’m confused about object creation.
Does the new operator create an object
or does the constructor?

A: Both! The new operator is responsible
for setting the object creation in motion,
and a big part of its job is to make sure
the constructor gets called. Just calling a
constructor like a function without using
the new operator would not create an
object, and using the new operator with no
constructor would be meaningless.

Q: Does every custom object require a
constructor?

A: Yes. The reason is because the
constructor is responsible for creating the

object’s properties, so without a constructor
you wouldn’t have any properties. And
without any properties, you wouldn’t have a
very meaningful object.

There is an exception to this rule about
constructors, and it applies when creating
a purely organizational object consisting
of a collection of methods that don’t act on
object properties. In this case, it’s technically
possible to do without a constructor. But
keep in mind that such an object isn’t exactly
a shining example of good object‑oriented
programming practices because it’s really
just a collection of related functions. Even so,
JavaScript itself employs an organizational
object for grouping together math related
tasks, as you learn later in the chapter.

Q: What exactly is this?

A: this is a JavaScript keyword used
to refer to an object. More specifically,
this references an object from within
that same object. Yeah, that sounds pretty
weird, and slightly schizophrenic. But it
makes sense once you wrap your brain
around it. To look at it in real world terms,
think about what would happen if you lost
your watch and someone found it in a room
full of people. When they hold the watch up,
you would probably yell, "It’s my watch!" You
used the word "my" to refer to yourself. More
importantly, the word "my" is used to clarify
that you are the owner of the watch. this
works exactly the same way—it implies
object ownership. So this.date
means that the date property belongs to
the object in which the code appears.

Create an array of Blog objects in a variable named blog that
is initialized to the blog entries in the YouCube blog. Feel free to
just write the first few words of body text in each entry.

08/14/2008
Got the new cube I ordered. It’s a real

pearl.

08/19/2008
Solved the new cube but of course, now

I’m bored and shopping for a new one.

08/16/2008
Managed to get a headache toiling over

the new cube.
Gotta nap.

08/21/2008
Found a 7x7x7 cube for sale online. Yikes!

That one could be a beast.

Download at WoweBook.Com

406 Chapter 9

Create an array of Blog objects in a variable named blog that
is initialized to the blog entries in the YouCube blog. Feel free to
just write the first few words of body text in each entry.

 new Blog("Got the new cube I ordered...", "08/14/2008"),
 new Blog("Solved the new cube but of course...", "08/19/2008"),
 new Blog("Managed to get a headache toiling...", "08/16/2008"),
 new Blog("Found a 7x7x7 cube for sale...", "08/21/2008")

var blog =

 [

];

Each blog entry is created
as a Blog object with its
own body text and date.

YouCube 1.0
Combining the array of Blog objects with some JavaScript code for
displaying the blog data yields an initial version of YouCube. Ruby
knows her work is not done, but the blog is up and running, and she’s
happy with the early results.

Let’s take a peek at the code required to bring the Blog objects to life
and make YouCube 1.0 a reality...

I like how the Blog object
combines the blog date and
body text in YouCube.

The data stored in
each Blog object is
neatly displayed on
the YouCube page.

08/14/2008
Got the new cube I ordered. It’s a real

pearl.

08/19/2008
Solved the new cube but of course, now

I’m bored and shopping for a new one.

08/16/2008
Managed to get a headache toiling over

the new cube.
Gotta nap.

08/21/2008
Found a 7x7x7 cube for sale online. Yikes!

That one could be a beast.

sharpen solution

Download at WoweBook.Com

you are here 4 407

bringing data to life

YouCube Up Close

<html>
 <head>
 <title>YouCube ‑ The Blog for Cube Puzzlers</title>

 <script type="text/javascript">
 // Blog object constructor
 function Blog(body, date) {
 // Assign the properties
 this.body = body;
 this.date = date;
 }

 // Global array of blog entries
 var blog = [new Blog("Got the new cube I ordered..", "08/14/2008"),
 new Blog("Solved the new cube but of course...", "08/19/2008"),
 new Blog("Managed to get a headache toiling...", "08/16/2008"),
 new Blog("Found a 7x7x7 cube for sale online...", "08/21/2008")];

 // Show the list of blog entries
 function showBlog(numEntries) {
 // Adjust the number of entries to show the full blog, if necessary
 if (!numEntries)
 numEntries = blog.length;

 // Show the blog entries
 var i = 0, blogText = "";
 while (i < blog.length && i < numEntries) {
 // Use a gray background for every other blog entry
 if (i % 2 == 0)
 blogText += "<p style=’background‑color:#EEEEEE’>";
 else
 blogText += "<p>";

 // Generate the formatted blog HTML code
 blogText += "" + blog[i].date + "
" + blog[i].body + "</p>";

 i++;
 }

 // Set the blog HTML code on the page
 document.getElementById("blog").innerHTML = blogText;
 }
 </script>
 </head>

 <body onload="showBlog(5);">
 <h3>YouCube ‑ The Blog for Cube Puzzlers</h3>

 <div id="blog"></div>
 <input type="button" id="showall" value="Show All Blog Entries" onclick="showBlog();" />
 </body>
</html>

The array of
Blog objects.

The showBlog() function draws the blog entries to the "blog" div on the page.

The “blog" div, which starts out empty but
gets filled with formatted blog data.

If the number of blog entries to show wasn’t passed as an argument, show all of the entries.

Alternate the background color of the blog
entries so they’re easier to read.

Show all blog entries when
the button is clicked.

Set the formatted
blog entry code to
the “blog" div.

The Blog() constructor creates
the two blog properties.

Download at WoweBook.Com

408 Chapter 9

A disorderly blog
YouCube 1.0 looks good but it isn’t without its flaws. Ruby has noticed that
the blog entries are in the wrong order—they really should appear with
the most recent post first. Right now they are displayed in whatever order
they are stored, which we can’t count on being chronological.

I just realized that I don’t
always write the blog
entries in chronological
order...that’s a problem!

Q: Why is the Show All Blog Entries
button necessary in YouCube?

A: In the current state of the blog, the
button is not necessary at all since there are
only four blog entries total. But as the blog
grows, it becomes increasingly important
to limit the number of entries shown initially
on the main YouCube page to keep from
overwhelming visitors. So the blog code
defaults to only showing the first five entries.
The Show All Blog Entries button overrides
this default by displaying all blog entries.

Q: Why is innerHTML used to
show the blog entries instead of DOM
methods?

A: Although DOM methods are certainly
preferred in terms of web standards
compliance, they are fairly unwieldy
when it comes to dynamically generating
highly formatted HTML code. The reason
is because every container tag such as
<p> and has to be created
as a parent with child nodes for their
content. innerHTML is a tremendous

convenience in this case, and simplifies the
YouCube code considerably.

Q: Why doesn’t the Blog object have
any methods?

A: Ambition, that’s good! The truth is that
there are plenty of other aspects of YouCube
to work on before Blog methods become
a true priority. But don’t worry, methods are
definitely part of the long‑range plan for
YouCube. Methods are an important part of
any well‑designed object, and the Blog
object is no different.

Users expect
the topmost blog
entry to be the
most recent.

The order of blog
entries should be
most recent first.

why, why, why

Download at WoweBook.Com

you are here 4 409

bringing data to life

The need for sorting
Ruby’s solution to the blog ordering problem is to sort the blog array by
date. Since JavaScript supports looping and comparisons, it should be
possible to loop through the blog entries, compare dates to each other, and
sort them into reverse chronological order (most recent posts first).

 Loop through the
blog array.

11

 Compare the date of each Blog object
to the next one.

22

 If the next blog entry is more recent than the current
entry, swap them.

33

Swap these two blog entries since the second one is more recent.

This blog sorting solution has some merit and sounds like it could work,
assuming we can work out the details of comparing blog dates.

"Got the new cube
I ordered. It’s a

real pearl."

"08/14/2008"

Blog

Wait a minute! If dates are stored as
strings, how can you compare them to
see which one is most recent?

"Solved the new
cube but of

course, now..."

"08/19/2008"

Blog

"Managed to get a
headache toiling
over the new..."

"08/16/2008"

Blog

"Found a 7x7x7
cube for sale

online. Yikes..."

"08/21/2008"

Blog

This blog entry should
appear first since it’s
the most recent.

A date stored in a string isn’t really a date.
Ruby’s blog sorting strategy has run into a serious snag due to the fact that
a date stored as a string has no concept of time. In other words, there is
no way to compare the strings "08/14/2008" to "08/19/2008" to
see which one is more recent because they are just strings. Although it
is possible to compare strings, such comparisons don’t understand the
specific format of a date, and therefore aren’t able to compare the month,
day, and year components of a date when carrying out the comparison.

So before we can think seriously about sorting the blog entries by date, we
first need to rethink the manner in which dates are stored in the blog.

Download at WoweBook.Com

410 Chapter 9

A JavaScript object for dating
What Ruby needs is the ability to store a date in such a way that it can be
compared to other dates. In other words, the date needs to understand
that it is a date, and behave accordingly. Wait a minute, that sounds a lot
like an object! And as it turns out, JavaScript offers a built-in Date object
that could very well be what Ruby needs.

The Date object represents a specific moment in time, down to the
millisecond, and is a standard part of JavaScript. Although the Date
object certainly uses properties internally, they are invisible to you, the user
of the object. You work with the Date object purely through its methods.

Similar to the Blog object, you create a Date object using the new
operator. Here’s an example of creating a Date object that represents the
current date and time:

var now = new Date();

Methods that
set date data.

Methods that
get date data.

Create a Date object
using the new operator.

This new Date object
represents the
current date/time.

Store the newly
created Date
object in a variable.

This Date object is created and initialized with the current date and
time. Notice that the syntax for creating a Date object is a lot like calling
a function or method, and that’s because you’re actually calling the
constructor of the Date object. You can pass the Date() constructor a
string argument to specify a date other than the present. For example, this
Date object represents the date of the first YouCube blog entry:

var blogDate = new Date("08/14/2008");The date is passed to
the constructor as a
string of text.

August 14th, 2008

setMonth()

setYear()

getDate()

getDay()

getFullYear()

The date of the first blog entry.

The built‑in Date
object represents
a moment in time.

Within the Date
object, time is
expressed in
milliseconds.

Date

have you seen my date

Download at WoweBook.Com

you are here 4 411

bringing data to life

Create two Date objects for the first two YouCube blog entries. Then call the
getDaysBetween() function, passing in the two Date objects, and displaying
the result in an alert box.

Calculating time
One of the most powerful features of objects is how they inherently know
how to manipulate themselves. For example, think about how tricky it
would be to calculate the number of days between two dates on your own.
You’d have to somehow convert a date into a number of days from some
known reference, making sure to factor in leap years. Or you could just let
the Date object do the work for you...check out this function that does
the heavy lifting with a couple of Date objects:

function getDaysBetween(date1, date2) {

 var daysBetween = (date2 ‑ date1) / (1000 * 60 * 60 * 24);

 return Math.round(daysBetween);

}

The function accepts two
Date objects as arguments.

Simple but powerful,
this is the code that
does all the work!

Convert from milliseconds to seconds to minutes to hours to days. Whew!

Round off the result and return it...round() is a method of the Math object, which we tackle later in the chapter.
This function reveals the power of the Date object in a simple piece of
code—a subtraction. All of the complexity associated with calculating
the difference between two dates is conveniently buried inside the Date
object. Our only concern is the result of the subtraction, which is the
number of milliseconds between the two dates. Convert milliseconds to
days, round off the result, and we have a handy little function that can be
reused any time we need to know the difference between two dates.

getDaysBetween(date1, date2);

Download at WoweBook.Com

412 Chapter 9

Create two Date objects for the first two YouCube blog entries. Then call the
getDaysBetween() function, passing in the two Date objects, and displaying
the result in an alert box.

var blogDate1 = new Date("08/14/2008");
var blogDate2 = new Date("08/19/2008");
alert("The dates are separated by " + getDaysBetween(blogDate1, blogDate2) + " days.");

Create Date objects for
the two blog entry dates.

Pass the two Date
objects as arguments to the function.

The function
returns the
difference.

Rethinking blog dates
While it’s great that JavaScript offers a Date object that makes it possible
to manipulate dates intelligently, the YouCube Blog object currently still
stores dates as strings, not Date objects. In order to take advantage of the
features made available by the Date object, we need to change the blog
so that the blog dates are Date objects.

"Got the new
cube I ordered.

It’s a real pearl."

"08/14/2008"

Blog

The question is, can the date property of the Blog object store a Date
object instead of a string?

August 14th, 2008

Date

The date property of the
Blog object needs to be
converted from a string
to a Date object.

exercise solution

Download at WoweBook.Com

you are here 4 413

bringing data to life

An object within an object
The Blog object is a good example of how objects must often contain
other objects. The two properties of the Blog object are actually already
objects themselves—both properties are String objects. The String
objects don’t really look like objects because they are created as object
literals by simply quoting a string of text. Date objects aren’t as flexible,
and must be created using the new operator.

To create a blog date property as a Date object, we must use the new
operator to create a new Date while creating the Blog object. If this
sounds nightmarish, maybe some code will ease the fear.

var blogEntry = new Blog("Nothing going on but the weather.",

 new Date("10/31/2008"));

This code reveals how a YouCube blog entry is now created as an object
that contains two other objects (a String object and a Date object).
Of course, we still need to build an array of Blog objects in order to
successfully represent all of the YouCube blog entries.

A Date object is created and
passed into the Blog() constructor,
also using the new operator.

The Blog object is created
using the new operator.

Rewrite the code to create an array of YouCube Blog objects
where each date is now a Date object. Feel free to shorten the
body text.

The new operator
creates objects
with the help of
constructors.

"Got the new cube
I ordered. It’s a

real pearl."

August 14th, 2008

Blog

August 14th,
2008

Date
"Got the new
cube I ordered.
It’s a real pearl."

String

date property.

body property.

The string literal
automatically creates
a String object.

Download at WoweBook.Com

414 Chapter 9

Rewrite the code to create an array of YouCube Blog objects
where each date is now a Date object. Feel free to shorten the
body text.

var blog = [new Blog("Got the new cube I ordered...", new Date("08/14/2008")),
 new Blog("Solved the new cube but of course...", new Date("08/19/2008")),
 new Blog("Managed to get a headache toiling...", new Date("08/16/2008")),
 new Blog("Found a 7x7x7 cube for sale...", new Date("08/21/2008"))];

Each blog entry is still
created as a Blog object.

The date for each Blog object is created as a Date object.
String literals work fine for the
body text of each blog entry.

Q: Why is the date in a Date object stored in milliseconds?

A: First off, understand that the Date object represents
an instant in time. If you could click the Pause button on the
universe, you’d have a frozen moment in time. But you wouldn’t
have any way to tell people when the moment occurred without
some kind of reference. So you decide on January 1, 1970 as the
arbitrary reference point for your moment in time. Now you need a
measurement from this offset. Maybe it’s 38 years, 8 months, 14
days, 3 hours, 29 minutes, and 11 seconds. But that’s a cumbersome
way to keep track of a time offset. It’s much easier to stick with a
single unit of measurement, one that is capable of representing the

tiniest fractions of time. How about a millisecond? So instead of
all those different units of time, you now have 1,218,702,551,000
milliseconds. Yeah, that’s a whole bunch of milliseconds but big
numbers aren’t a problem for JavaScript.

Q: Do I have to worry about converting milliseconds when
using the Date object?

A: It depends. The Date object includes several methods for
extracting meaningful parts of a date that avoid dealing directly with
milliseconds. However, if you need to deal with a difference between
two dates, then milliseconds will almost certainly enter the picture.

The standard JavaScript Date objects represents an
instant in time, expressed in milliseconds.

The Date object includes several methods for
accessing the different pieces and parts of a date and
time.

The Date object is smart enough to know how to
manipulate dates mathematically, as well as compare
dates to each other.

Like most objects other than String, you create a
Date object using the new operator.

sharpen solution

Download at WoweBook.Com

you are here 4 415

bringing data to life

Dates aren't useful…for humans
With the date property of the Blog object converted into a Date object,
Ruby is ready to turn her attention back to sorting the blog entries by date.
Well, almost ready. It seems she has introduced a new problem in that the
dates of the blog entries are now extremely cryptic. Ruby suspects that
users won’t really care about the time zone of each post, and it will only
distract from the YouCube experience. Clearly, the injection of Date
objects into YouCube needs to be examined more closely!

The Date object change made
sense at the time but now the
blog dates look horrible. I don’t
even remember writing code to
format the dates.

The blog dates are quite
messy...information overload!

Not only do the dates
look bad, but the blog
entries still appear in
the wrong order...ugh!

Ruby is a bit puzzled about the cryptic YouCube dates because she
doesn’t recall writing any code to display them. All she did was convert
date strings into Date objects. Are evil JavaScript forces conspiring to
make her dates ugly?

Download at WoweBook.Com

416 Chapter 9

Converting objects to text
Fortunately, there are no evil forces to blame for the ugly YouCube
dates. In fact, it’s the very natural forces of JavaScript objects that are
responsible for the date formatting—the dates formatted themselves! It
works like this: every JavaScript object has a method called toString()
that attempts to provide a text representation of the object. The cryptic
date is the output of the Date object’s default toString() method.

var blogDate = new Date("08/14/2008");

alert(blogDate.toString());

The slick part of the toString() method is that it automatically comes
into play when an object is used in a context where a string is expected.
For example, the blog date alert code could be rewritten like this, and
result in the exact same outcome:

alert(blogDate);

The alert() function expects a string, so the toString() method is called behind the scenes to provide a string representation of the Date object.

Since the alert() function expects a string, the Date object is smart
enough to know that it must provide a string representation of itself. So it
calls upon the toString() method to handle the task.

This toString() business wouldn’t be a problem except for the fact
that YouCube really needs dates to be displayed in an easy-to-read format,
such as MM/DD/YYYY. Bottom line, it doesn’t look as if YouCube will
be able to take advantage of the default string representation of the Date
object made possible by its toString() method.

The toString()
method provides a
string representation
of an object.

The toString() method is
quite helpful in providing a
string representation of a
date, but it also appears in
other objects too.

August 14th, 2008
Midnight

toString()

Date

The toString()
method reveals
how a Date
object also keeps
track of the time.

there's gotta be a better way

Download at WoweBook.Com

you are here 4 417

bringing data to life

Accessing pieces and parts of a date
Ruby needs a way to customize the format of a date. The key to custom
formatting a Date object is accessing the individual pieces of the date,
such as the month, day, and year. Then we can reassemble a date in
any format we want. Fortunately, the Date object provides methods for
accessing these pieces of information.

Fix the cryptic YouCube blog date problem by rewriting the code
that formats a blog entry and stores it in the blogText variable.
Make sure the blog date is formatted as MM/DD/YYYY. Here’s the
original version of the code:

August 14th, 2008

Midnight

getMonth()

getDate()

getFullYear
()

Date 9

24

2008

The month of the date as a number between 0 and 11.

 Pay close attention to
the values returned
by Date methods.

The getMonth() method
returns a month as a

number between 0 (January) and 11
(December), while getDate() returns the
day of the month in the range 1 to 31.

The day of the
month as a number
between 1 and 31.

The full 4-digit year.

The Date object actually supports a lot more methods
than these three, providing all kinds of different ways
to access the date and time of a Date object. However,
these three methods are all we need to whip the YouCube
blog dates into shape.

blogText += "" + blog[i].date + "
" + blog[i].body + "</p>";

Download at WoweBook.Com

418 Chapter 9

blogText += "" + (blog[i].date.getMonth() + 1) + "/" +
 blog[i].date.getDate() + "/" +
 blog[i].date.getFullYear() + "
" +
 blog[i].body + "</p>";

The blog date displayed
is now custom built in the
MM/DD/YYYY format.

Each piece of the date is
extracted from the Date
object by calling methods.

We get more
control by not
relying on the
Date object to
format itself.

Fix the cryptic YouCube blog date problem by rewriting the code
that formats a blog entry and stores it in the blogText variable.
Make sure the blog date is formatted as MM/DD/YYYY. Here’s the
original version of the code:

blogText += "" + blog[i].date + "
" + blog[i].body + "</p>";

Dates make sorting easy
Now that the blog dates have been successfully converted to Date
objects, which are much more suited to sorting than strings, it’s time to
revisit the blog order. The problem is that the blog entries are currently
displayed in the same order that they are stored in the blog array,
which isn’t necessarily chronological. Most blogs are displayed in reverse
chronological order, where the most recent posts appear first in the list of
blog entries. Knowing this, it’s possible to revisit the original blog sorting
strategy:

 Loop through the blog array.11

 Compare the Date object within each Blog object to the next one.22

 If the date of the next blog entry is more recent than the current entry, swap the entries.33

Although the date comparison part of this strategy certainly looks much
less daunting with the help of the Date object, the rest of the plan still
involves a fair amount of custom coding. Sorting a sequence of data sure
does seem like a common programming problem that has been solved
many times before. You hate to reinvent the wheel...

Now we have Date
objects that can be compared to each other.

August 14th,
2008

Date

August 19th,
2008

Date

<

sharpen solution

Download at WoweBook.Com

you are here 4 419

bringing data to life

Wouldn’t it be dreamy if JavaScript
had some kind of built-in sort
feature that took the drudgery out
of sorting a sequence of data?

Download at WoweBook.Com

420 Chapter 9

Arrays as objects
Could it be that an array is capable of sorting itself ? If a date knows
how to turn itself into a string, it’s not so far-fetched to think that an
array might be able to sort itself. For that to be possible, however, an
array would have to be an object so that the sorting could take place in a
method. And indeed it is. Remember this code from the Mandango script?

for (var i = 0; i < seats.length; i++) {

 ...

}

The seats variable
is an array.

length is an array object
property that tells you how
many elements are in the array.

So the cat’s out of the bag, arrays are objects, but does that mean they can
sort themselves? Not only do arrays have properties such as length, but
they also have methods that act on the array data, bringing it to life. And
yes, there’s a method named sort() that sorts the data in an array. Let’s
see how it works:

0 1 2 3 4
51 11 34 29 17

5 6 7 8
46 22 58 16

nums

var nums = [51, 11, 34, 29, 17, 46, 22, 58, 16];

nums.sort();

0 1 2 3 4
11 16 17 22 29

5 6 7 8
34 46 51 58

The sort() method changes the order of the elements inside the array.
The default sorting behavior is in increasing order, so the nums array
turns into this:

sort()

An array of
numbers.

Sorts the array in increasing
numerical order.

An array is
really just
an object.

sort it out amongst yourselves

Download at WoweBook.Com

you are here 4 421

bringing data to life

Custom sorting an array
The default behavior of the Array object’s sort() method is often not
enough. The good news is that the sorting behavior is determined by a
comparison function that sort() calls to handle the comparison of
each sorted item in an array. You can fine-tune the sort order by providing
your own version of this comparison function. Here’s an example of what
the function typically looks like:

function compare(x, y) {

 return x ‑ y;

}

nums.sort(compare);

The two arguments are two
array items that are being
compared for sorting purposes.

The return value determines whether x and y stay where they are in the array or y gets sorted ahead of x.
The return value of the compare() function is a number that
determines the resulting sort order of x as compared to y.

compare(x, y)

Your custom compare() function is injected into the array sorting
equation when you call the sort() method—just pass a reference to the
compare() function into the method.

The array sort is now
controlled by the custom
compare() function

Write the code for a custom comparison function named
compare() that sorts YouCube blog array entries in reverse
chronological order (most recent first). Hint: Blog objects can be
subtracted from each other by simply using a minus sign.

< 0
Sort x ahead of y.

0
Don’t sort—leave

x and y as they are.

> 0
Sort y ahead of x.

Download at WoweBook.Com

422 Chapter 9

Sorting made simple with function literals
When you think about the role of the array sort comparison function, it’s really
only used by the sort() method and nothing else. Since it is never called by
any of the YouCube script code, there’s really no reason for it to be a named
function.

Remember function literals from the thermostat in Chapter 6? The
compare() function is an excellent candidate for a function literal because
of how it is used. In fact, YouCube blog sorting can be simplified by converting
the compare() function into a function literal that’s passed directly into the
sort() method.

Subtracting the first date
from the second results in a
reverse chronological sort.

We’re subtracting the two dates as numbers (milliseconds).

The function literal is passed directly into the array sort() method.

These two
arguments are
Blog objects
since the array
contains Blog
objects.

function compare(blog1, blog2) {
 return blog2.date - blog1.date;
}

Write the code for a custom comparison function named
compare() that sorts YouCube blog array entries in reverse
chronological order (most recent first). Hint: Blog objects can be
subtracted from each other by simply using a minus sign.

blog.sort(function(blog1, blog2) {

 return blog2.date ‑ blog1.date;

});

blog.sort(function(blog1, blog2) { return blog2.date ‑ blog1.date; });

As a devout puzzler, Ruby is all about efficiency. And in this case that
equates to eliminating an unnecessary named function that is really just a
sidekick of the sort() method. Ruby is so bent on efficiency, in fact, that
she doesn’t see why the comparison function needs to take up three lines
of code. Although the organization of JavaScript code doesn’t make the
code run any differently, in this case the function literal is simple enough
that it makes some sense shrinking it to a single line of code.

The function literal
is crunched into a
single line of code.

sharpen solution

Download at WoweBook.Com

you are here 4 423

bringing data to life

Q: Does every object have a
toString() method?

A: Yes. Even if you create a custom
object and don’t give it a toString()
method, JavaScript will at least report that it
is an object if you use it in a context where
a string is expected. Granted, the string
won’t be very meaningful but it’s up to you
to provide a toString() method for
custom objects if you want it to convey
meaning about the object.

Q: How does the sort comparison
work between Date objects?

A: The goal of a sort comparison function
is to return a number whose value controls
the sorting of the two arguments. In the
case of comparing dates, you want the more
recent date to be sorted first. The more
recent date is the larger date, so subtracting
the second date from the first date achieves
the result of sorting recent dates ahead of
later dates. This means the second date is
sorted above the first date only if the second
date is larger (the result is greater than 0).

Q: How does the Array.sort()
method know to use a custom
comparison function or a default
comparison?

A: This decision is made based upon
whether or not an argument is passed
into the sort() function. If there is no
argument, a default sort comparison is
assumed. If an argument is provided, it is
interpreted as a function reference and used
as the basis for comparing items in the sort.
So the comparison function reference is an
optional argument.

Ruby and her cubes are happy
The YouCube blog is now approaching Ruby’s vision of a cube puzzle
blog that shares her every cubist thought with the universe.

I love my blog
almost as much as
my puzzles!

The blog entries
are ordered most
recent first.

The dates are
neat and clean.

Download at WoweBook.Com

424 Chapter 9

08/14/2008

Got the new cube I ordered. It’s a real

pearl.

08/19/2008

Solved the new cube but of course, now

I’m bored and shopping for a new one.

08/16/2008

Managed to get a headache toiling over

the new cube.

Gotta nap.

08/21/2008

Found a 7x7x7 cube for sale online. Yikes!

That one could be a beast.

08/29/2008

Met up with some fellow cubers to discuss

the prospect of a 7x7x7 cube. Mixed feelings.

Searching would be nice
YouCube is running pretty smoothly but several users have requested a
search feature that allows them to search all of the blog posts. Since Ruby
plans on eventually having lots of blog posts, she agrees that this could be
a very handy feature, especially over the long haul.

A search string is entered and then used to search all of the blog body text.

onclick!

Ruby just needs a plan for how to code the search feature
in YouCube...could objects possibly be involved?

A search feature would
allow users to search through
all of my blog posts just by
entering a search term.

a word search puzzle

Download at WoweBook.Com

you are here 4 425

bringing data to life

Searching the blog array
A search feature for YouCube involves looping through each entry in the
blog array looking for matching text in each blog post.

Get search text from user.

Loop through
blog entries.

Check for text
match in each
blog entry.

Bail out of the loop if
there’s a match.

How could you go about searching YouCube
blog entries for a matching string of text?

This design makes a lot of sense but how in
the world do I search for text in a blog entry?
I’m perplexed...but I know there’s a way!

Download at WoweBook.Com

426 Chapter 9

A string is a searchable object.
You’re maybe starting to figure out that objects are
everywhere in JavaScript. Strings are objects, and
include lots of handy methods for interacting with string
data (text). And yes, one of these methods allows you to
search for a piece of text within a string. A string within
a string is sometimes referred to as a substring.

We already know that a string is really
an object. So is it possible that string
could just search itself?

"Got the new

cube I ordered.

It’s a real
pearl."

indexOf()

charAt()

toLowerCase()

String

length

toUpperCase()
The number of
characters in
the string.

Search to see if
the string contains
a certain substring,

Convert the string
to lowercase or
uppercase.

Find out where a
certain character
is located in the
string.

stringing it together

Download at WoweBook.Com

you are here 4 427

bringing data to life

"A cubist cubed two cubes and ended up with eight. Was she Cuban?"

Below is one of Ruby’s favorite riddles. Identify the index of each occurrence of the substring
"cube" in the riddle string.

Searching within strings: indexOf()
The indexOf() method allows you to search for a string of text, a
substring, within a String object. The substring is passed as an
argument to the indexOf() method—since you call the method on a
String object, there’s no need to pass anything else. The indexOf()
method returns the index where the substring is located, or -1 if there is
no match.

var str = "Got the new cube I ordered. It’s a real pearl.";

alert(str.indexOf("new"));

"Got the new cube I ordered. It’s a real pearl."

0 10 20 30 40

To understand where the number 8 comes from in this example, you have
to look at a string very much like it’s an array of individual characters.

The search string "new" appears at index 8 in the string.
Each character in the string
is located at a unique index
that counts up from 0 at
the beginning of the string.When indexOf() is used to search for a string that doesn’t exist, the

result of the method is -1.

var searchIndex = str.indexOf("used");

The result is -1 since the search string doesn’t appear in the String object.

Download at WoweBook.Com

428 Chapter 9

v

Searching the blog array
String searching isn’t too difficult thanks to the indexOf() method of
the String object, but Ruby still has an entire blog to search. Her plan
is to loop through the array of blog entries, and use the indexOf()
method to search for a substring within the body text of each blog entry.
If there is a match, she wants to display the blog entry in an alert box.

Before writing a function to handle the actual blog search, the YouCube
blog needs a text field for the search text, as well as a button for initiating
a search.

The substring
index is 9.

The substring index is 19.

The beginning of the string has an index of 0.

"A cubist cubed two cubes and ended up with eight. Was she Cuban?"

Below is one of Ruby’s favorite riddles. Identify the index of each occurrence of the substring
"cube" in the riddle string.

Isn’t the
answer obvious?

With the HTML search elements in place, all that’s left is to put together
the code for the searchBlog() function. Since the function uses
an alert to display the search results, there’s no need to return any
information from it. There also isn’t any need for an argument since the
function directly reads the search text from the HTML text field.

The Search button calls
the searchBlog() function to search the blog.

Blog search text is accessible
through the searchtext ID. Search text!

<input type="button" id="search" value="Search the Blog" onclick="searchBlog();" />

<input type="text" id="searchtext" name="searchtext" value="" />

exercise solution

Download at WoweBook.Com

you are here 4 429

bringing data to life

function searchBlog() {

 var = document.ge

tElementById(" ").v
alue;

 for (var i = 0; i <

 ; i++) {

 // See if the blog entry con

tains the search text

 if (blog[i]. .toLowe

rCase().indexOf(searchText.toLow
erCase()) != ‑1) {

 alert("[" + (blog[i].

 . +) + "/
" +

 blog[i].date.getDate() +

 "/" + blog[i]. .getFullY
ear() + "] " +

 blog[i].);

 break;
 }
 }

 // If the search text wasn’t f

ound, display a message

 if (i ==)

 alert("Sorry, there are no b

log entries containing the searc
h text.");

}

JavaScript Magnets
The YouCube searchBlog() function is responsible for looping
through the array of blog entries and searching for matching text
in a blog body. Help Ruby finish the function by filling in missing
code with the magnets. Hint: The matching search result should be
displayed with its date in the form MM/DD/YYYY inside of square
brackets, followed by the blog body text.

body

searchText

searchtext

blog.length

getMonth()

date

1

Download at WoweBook.Com

430 Chapter 9

JavaScript Magnets Solution
The YouCube searchBlog() function is responsible for looping
through the array of blog entries and searching for matching text
in a blog body. Help Ruby finish the function by filling in missing
code with the magnets. Hint: The matching search result should be
displayed with its date in the form MM/DD/YYYY inside of square
brackets, followed by the blog body text.

function searchBlog() {

 var = document.ge

tElementById(" ").v
alue;

 for (var i = 0; i <

 ; i++) {

 // See if the blog entry con

tains the search text

 if (blog[i]. .toLowe

rCase().indexOf(searchText.toLow
erCase()) != ‑1) {

 alert("[" + (blog[i].

 . +) + "/
" +

 blog[i].date.getDate() +

 "/" + blog[i]. .getFullY
ear() + "] " +

 blog[i].);

 break;
 }
 }

 // If the search text wasn’t f

ound, display a message

 if (i ==)

 alert("Sorry, there are no b

log entries containing the searc
h text.");

}

searchText
searchtext

body

blog.length

getMonth()date

body

1

date

blog.length

If i equals the blog length, it
means the for loop has cycled
through all of the blog entries
without finding a match.

The matching blog entry is formatted with MM/DD/YYYY inside square brackets, followed by the body text.

First grab the search
text from the HTML
text field.

JavaScript magnets solution

Download at WoweBook.Com

you are here 4 431

bringing data to life

Searching works now, too!
YouCube 2.0 is now complete with a search feature that relies heavily on
the search capabilities built into the String object. It’s a great example
of how objects make data active, in this case turning a string of text (pure
data) into an entity that has a behavior (it can search itself). And perhaps
more importantly, it kept Ruby from having to invent her own search
routine, allowing her to focus on writing her blog.

Blog searching
is awesome!

Ruby is thrilled with the new blog feature, but she’s not one to
rest on her laurels. She already has YouCube 3.0 in mind...

Download at WoweBook.Com

432 Chapter 9

Q: I still don’t quite understand how
every string is really an object. Is that
really true?

A: Yes. Every single string in JavaScript
is an object. If you put your name in quotes
in JavaScript code, as in "Ruby", you
just created an object. Although it may seem
like overkill, the upside to JavaScript treating
every string as an object is that every string
has the ability to do useful things such as
know its own length, search for substrings
within itself, and so forth.

Q: So I get that a string is an object,
but it also seems to be a lot like an array
with the character indexes and all. Is a
string also an array?

A: No. A string is most definitely not an
array. However, it is true that many of the
String methods operate on string data
as if it was an array of individual characters.
For example, the characters within a string
start at index 0 and count up a character at
a time as you move through the string. But
you can’t access a character within a string
using square brackets ([]), as you can with
an array. So while it does help to think of the
characters within a string as being similar to
elements in an array, you don’t literally work
with a String object the same way you
work with an Array object.

Q: Could the searchBlog()
function have used charAt() instead
of indexOf() for the blog search?

A: No. The charAt() method only
searches for a single character, which
wouldn’t be very helpful in searching the
blog for a phrase of text. The indexOf()
method searches for a string, not just a
single character, and is the best tool for the
job in this case.

Q: Is it possible to search a string for
more than one occurrence of a search
substring?

A: Yes. The indexOf() method
defaults to searching for the first occurrence
of the search substring. But you can pass
in a second, optional argument that tells
indexOf() where to start the search.
So let’s say you’re searching for the string

“cube” and you’ve found a match at index
11. You can call indexOf() again with
a second argument of 11, which forces it to
start searching at index 12. So the general
solution is to pass the previous search index
into the indexOf() method to continue
searching throughout a string.

Q: What’s the purpose of the two
calls to toLowerCase() in the
searchBlog() function?

A: Great question! The answer has to do
with the problem of case when searching
for text in the blog. If someone searches the
blog for the word “cube”, they probably want
all matches for the word, including “cube”,

“Cube”, “CUBE”, and any other variations in
the case of the word. A simple way to get
around this problem is to convert both the
search substring and the blog body text
to a common case before carrying out the
search. Although the searchBlog()
function uses toLowerCase(), the
toUpperCase() method would work
just as well. The point is to remove case
from the search entirely.

The toString() method is used to convert any
object to a text representation.

Arrays and strings are both really just objects, relying
on the standard Array and String objects in
JavaScript for their methods and data storage.

The sort() method of the Array object can be
used to sort an array in any order you want.

The indexOf() method in the String object
searches for a string of text within another string,
returning the index of the search string location.

really, none of them are dumb

Download at WoweBook.Com

you are here 4 433

bringing data to life

A random YouCube
In the neverending quest to keep users interested in her blog, Ruby has
come up with one more addition to YouCube that she thinks her fellow
puzzlers will enjoy. She wants to add a Random button that allows visitors
to view a blog entry at random.

08/14/2008
Got the new cube I ordered. It’s a real pearl.

08/16/2008

Managed to get a headache toiling over the new cube.

Gotta nap.

08/19/2008
Solved the new cube but of course, now I’m bored and shopping for a new one.

08/21/2008
Found a 7x7x7 cube for sale online. Yikes! That one

could be a beast.

08/29/2008
Met up with some fellow cubers to discuss the

prospect of a 7x7x7 cube. Mixed feelings.

A random blog feature adds
a touch of fun and mystery
to YouCube. I’m all about fun
and mystery!

How could you go about choosing a
YouCube blog entry at random?

Ruby, cube puzzle
blogger and woman
of mystery.

Download at WoweBook.Com

434 Chapter 9

To help Ruby add a random feature to YouCube, we desperately need a
way to generate random numbers. This involves using a built-in JavaScript
object that isn’t quite as “alive” as some of the other objects we’ve used.
The standard Math object is where random numbers can be generated,
and it is a unique object in that it doesn’t have any data that changes, and
no methods that act on internal data.

round()

floor()

ceil()

Math

PI

random()

The mathematical
constant, 3.14.

Round a floating point
number to an integer.

Round a floating
point number DOWN
to an integer.

Round a floating
point number UP to
an integer.

Generate a
random number
between 0 and 1.

Write the results of the following calls to Math methods.

The Math object is an organizational object, which means it is just
a collection of math-related utility methods and constants. There are no
variables, which means the Math object maintains no state—you can’t use
it to store anything. The only data it contains are a few constants such as
PI (3.14). The methods in the Math object, however, are quite handy. For
one, the random() method generates a random floating point number
between 0 and 1.

The Math object is
an organizational
object that houses
math methods and
constants.

Math.round(Math.PI)

Math.ceil(Math.PI)

Math.random()

everything has its place

The Math object is an organizational object

Answers on page 436.

Download at WoweBook.Com

you are here 4 435

bringing data to life

Head First: OK, I’m really confused. You’re an
object, but I’m hearing that you don’t really do
anything other than hold a bunch of mathematical
methods and a few constants. I thought the whole
point of objects was to make data active. You know,
wrap up some data and then have methods that do
cool things with it.

Math: That’s what conventional JavaScript wisdom
leads people to think, but not all objects are about
bringing data to life. It’s perfectly acceptable for an
object to play the role of organizer, like me.

Head First: But couldn’t all those math methods
have just been created as standard functions?

Math: Yes, they could’ve, but you’re forgetting that
the JavaScript language is built out of objects. So in
reality, there’s no such thing as a “standard” function.

Head First: But I can create a function outside of
an object and it seems to work just fine.

Math: Right, but in reality all functions really
are methods because they belong to an object
somewhere, even if it’s hidden. This helps explain
why there are no “standard functions.”

Head First: Ah, I see. It’s starting to make more
sense why you contain those math methods.

Math: And don’t forget that just because I don’t have
internal data that gets manipulated by my methods,
it doesn’t mean I don’t play an important role in
being an object.

Head First: What do you mean?

Math: Well, imagine a group of people who all share
a common interest, such as cube puzzles. In many
cases, such people organize together so that they can
interact with each other about their interest. While
math methods aren’t exactly as social as people, they
do benefit from the organization I provide.

Head First: You mean because they’re all related to
a common interest.

Math: Yes! And that interest is carrying out
mathematical tasks, such as rounding numbers,
carrying out trigonometric operations, and
generating random numbers.

Head First: You mention generating random
numbers. I’ve heard your numbers aren’t truly
random. Any truth to the rumor?

Math: I have to confess that no, they are not truly
random. And neither are most computer-generated
random numbers. My random numbers are
“pseudorandom,” which is good enough for most
situations.

Head First: Pseudorandom, is that like
pseudo-science...or pseudocode?

Math: Uh, no and yes. No, nothing at all like
pseudo-science. And yes, a little like pseudocode
since pseudocode is intended to represent the idea
behind code without actually being code. In the
case of pseudorandom numbers, they approximate
randomness without truly being random.

Head First: So, can I trust that pseudorandom
numbers are sufficiently random for most JavaScript
applications?

Math: Yes, and that’s a good way to put it:
“sufficiently random.” You probably wouldn’t want
to trust pseudorandom numbers for issues involving
national security, but they work great for injecting
randomness into everyday scripts.

Head First: Got it. Well, thanks for your time...and
your honesty regarding random numbers.

Math: Glad to do it...you know I can’t lie.

The Math Object Exposed
This week’s interview:
When math functions collide

Download at WoweBook.Com

436 Chapter 9

Generate random numbers with Math.random
Pseudorandom or not, random numbers generated by the random() method of
the Math object are extremely useful in applications such as YouCube that need
to make a random selection from a collection of data. The problem is, random()
returns a random number in the range 0 and 1, while Ruby needs a random number
that is in the range 0 to the end of blog array. In other words, she needs to generate
a random blog index.

Write the results of the following calls to Math methods.

Math.round(Math.PI)

Math.ceil(Math.PI)

Math.random()

3
4
? Sorry, it was a

trick question! You
can’t know because
it’s random.

3.14 rounds to 3. The ceiling (round up) of 3.14 is 4.

The value of the constant PI is 3.14.

alert(Math.random());

alert(Math.random());

alert(Math.random());

To generate a random number within a range other than 0 to 1, you have
to lean on the Math object a little more and use another method. The
floor() method rounds a number down to the nearest integer, and is
perfect for generating random integers within a given range of integers.

Each of the random
numbers is in the
range 0 to 1.

var oneToSix = Math.floor(Math.random() * 6) + 1;

0 - 5

1 - 6

exercise solution

Download at WoweBook.Com

you are here 4 437

bringing data to life

Write the code for a randomBlog() function that selects a
blog entry at random and then displays it in an alert box. Hint:
The blog entry in the alert box can be formatted the same as the
search result in searchBlog().

Q: Why isn’t it necessary to create a
Math object before using it?

A: Ah, that’s a perceptive question, and it
touches on a very important concept related
to objects. Since the Math object doesn’t
actually contain data that can change, also
known as instance data, there is no need to
create an object. Remember that the Math
object is just a collection of static methods
and constants, so everything that goes into
the Math object already exists—there’s
nothing to create. This will make much more
sense in Chapter 10 when you learn the
details of object instances and classes.

Q: What’s the difference between the
round() and floor() methods of
the Math object?

A: The round() method rounds
the number up or down depending upon
its decimal part. For example, Math.
round(11.375) results in 11, while
Math.round(11.625) results
in 12. The floor() method, on other
hand, always rounds down, no matter what
the decimal part is. You can just think of the
floor() method as always chopping off
the decimal part.

Q: What else can the Math object
do?

A: Lots of things. Two handy methods
that we haven’t had the need for yet are
min() and max(), which analyze two
numbers and return the lesser or greater
of the two. abs() is another very useful
Math method—its job is to return a positive
number no matter what number you give it.

Geek BitsGeek Bits

If you find yourself working on a JavaScript
application that desperately needs true random

numbers, stop by http://random.org to learn more about
how to go beyond the realm of pseudorandom numbers.

Download at WoweBook.Com

438 Chapter 9

Random but still lacking
Ruby’s blog now supports a random blog search feature, which she is very
happy about. Users can now view the YouCube blog with a healthy sense
of intrigue since they don’t know what entry they’ll get.

function randomBlog() {
 // Pick a random number between 0 and blog.length - 1
 var i = Math.floor(Math.random() * blog.length);
 alert("[" + (blog[i].date.getMonth() + 1) + "/" + blog[i].date.getDate() + "/" +
 blog[i].date.getFullYear() + "] " + blog[i].body);
}

Write the code for a randomBlog() function that selects a
blog entry at random and then displays it in an alert box. Hint:
The blog entry in the alert box can be formatted the same as the
search result in searchBlog().

Generate a random number between 0 and one less than the blog length.

Format the blog entry with a MM/DD/YYYY
date followed by the body text.

Use a random number
to select a blog entry.

Randomly chosen blog entry.

Even with the excitement over the new
blog feature, Ruby has a nagging feeling
that something is still amiss with YouCube.
Her Blog “object” is currently just a
couple of properties that rely on a bunch
of separate functions. That doesn’t seem
like a very good object design...

sharpen solution

Download at WoweBook.Com

you are here 4 439

bringing data to life

I really could use
some blog methods.

An object in search of actions
Ruby’s instincts about the YouCube object are dead-on. The behavioral
part of the object is extremely lacking, and could use some serious
restructuring so that it uses methods to handle blog-specific tasks. Ruby
needs methods that add some actions to the Blog object!

Study the YouCube code and circle any code you think could be
placed within Blog methods; make sure to name each method.

function showBlog(numEntries) {
 // First sort the blog in reverse chronological order (most recent first)
 blog.sort(function(blog1, blog2) { return blog2.date ‑ blog1.date; });

 // Adjust the number of entries to show the full blog, if necessary
 if (!numEntries)
 numEntries = blog.length;

 // Show the blog entries
 var i = 0, blogText = "";
 while (i < blog.length && i < numEntries) {
 // Use a gray background for every other blog entry
 if (i % 2 == 0)
 blogText += "<p style=’background‑color:#EEEEEE’>";
 else
 blogText += "<p>";

 // Generate the formatted blog HTML code
 blogText += "" + (blog[i].date.getMonth() + 1) + "/" +
 blog[i].date.getDate() + "/" +
 blog[i].date.getFullYear() + "
" +
 blog[i].body + "</p>";

 i++;
 }

 // Set the blog HTML code on the page
 document.getElementById("blog").innerHTML = blogText;
}

function searchBlog() {
 var searchText = document.getElementById("searchtext").value;
 for (var i = 0; i < blog.length; i++) {
 // See if the blog entry contains the search text
 if (blog[i].body.toLowerCase().indexOf(searchText.toLowerCase()) != ‑1) {
 alert("[" + (blog[i].date.getMonth() + 1) + "/" + blog[i].date.getDate() + "/" +
 blog[i].date.getFullYear() + "] " + blog[i].body);
 break;
 }
 }

 // If the search text wasn’t found, display a message
 if (i == blog.length)
 alert("Sorry, there are no blog entries containing the search text.");
}

function randomBlog() {
 // Pick a random number between 0 and blog.length ‑ 1
 var i = Math.floor(Math.random() * blog.length);
 alert("[" + (blog[i].date.getMonth() + 1) + "/" + blog[i].date.getDate() + "/" +
 blog[i].date.getFullYear() + "] " + blog[i].body);
}

Download at WoweBook.Com

440 Chapter 9

Study the YouCube code and circle any code you think could be
placed within Blog methods; make sure to name each method.

Blog.toString()
Convert a blog entry to a string, which makes sense to use in any situation where the date is shown in square brackets with the body text beside it.

Blog.containsText()
Not much code but still worthy
of a method since a blog entry
should be capable of searching
its own body for text.

Blog.toHTML()
Convert a blog entry to formatted HTML code, which takes a huge burden off of other code that wants to display a cleanly formatted blog.

function showBlog(numEntries) {
 // First sort the blog in reverse chronological order (most recent first)
 blog.sort(function(blog1, blog2) { return blog2.date ‑ blog1.date; });

 // Adjust the number of entries to show the full blog, if necessary
 if (!numEntries)
 numEntries = blog.length;

 // Show the blog entries
 var i = 0, blogText = "";
 while (i < blog.length && i < numEntries) {
 // Use a gray background for every other blog entry
 if (i % 2 == 0)
 blogText += "<p style=’background‑color:#EEEEEE’>";
 else
 blogText += "<p>";

 // Generate the formatted blog HTML code
 blogText += "" + (blog[i].date.getMonth() + 1) + "/" +
 blog[i].date.getDate() + "/" +
 blog[i].date.getFullYear() + "
" +
 blog[i].body + "</p>";

 i++;
 }

 // Set the blog HTML code on the page
 document.getElementById("blog").innerHTML = blogText;
}

function searchBlog() {
 var searchText = document.getElementById("searchtext").value;
 for (var i = 0; i < blog.length; i++) {
 // See if the blog entry contains the search text
 if (blog[i].body.toLowerCase().indexOf(searchText.toLowerCase()) != ‑1) {
 alert("[" + (blog[i].date.getMonth() + 1) + "/" + blog[i].date.getDate() + "/" +
 blog[i].date.getFullYear() + "] " + blog[i].body);
 break;
 }
 }

 // If the search text wasn’t found, display a message
 if (i == blog.length)
 alert("Sorry, there are no blog entries containing the search text.");
}

function randomBlog() {
 // Pick a random number between 0 and blog.length ‑ 1
 var i = Math.floor(Math.random() * blog.length);
 alert("[" + (blog[i].date.getMonth() + 1) + "/" + blog[i].date.getDate() + "/" +
 blog[i].date.getFullYear() + "] " + blog[i].body);
}

Convert the blog entry to formatted HTML - Blog.toHTML().

sharpen solution

Download at WoweBook.Com

you are here 4 441

bringing data to life

"Met up with some
fellow cubers
to discuss the

prospect... "

August 14th, 2008

Blog

Q: How do you know what script code
should go into a method?

A: Well, you have to first remind yourself
what a method is ideally intended to do, and
that is to take some kind of action based
upon the state (data) of an object. To some
extent, figuring out methods for an object
involves figuring out what it is the object is
exactly doing, or needs to do. Then focus
on empowering objects to do things for
themselves.

As an example, it makes sense for the
Blog object to turn itself into a string
or formatted HTML code since those two
actions require access to internal blog data.
Similarly, searching for text within a blog
entry is an action that should be internal
to the Blog object, and therefore makes
perfect sense as a method.

Q: So is there an example of an action
that the Blog object shouldn’t take?

A: Actions that are very much outside
of the scope of the Blog object could
be things like showing or searching the
list of blog entries. This is because the
Blog object represents a single blog
entry. That’s why the blog array consists
of multiple individual Blog objects. So
each individual Blog object doesn’t need
to concern itself with a collection of Blog
objects. Instead, an individual Blog object
should take care of its own business, which
involves taking action based solely upon its
own date and body text.

Write the code for the Blog object’s containsText()
method, which is created in the Blog() constructor by
assigning a function literal to this.containsText.

body

date

toString()

toHTML()

containsText()

Turn a function into a method
Now that some pieces of YouCube code have been isolated that would
make a good fit as methods of the Blog object, let’s take a closer
look at converting one of them into a Blog method. The method is
containsText(), which takes on the responsibility of searching the
body of a blog entry for a substring. Moving the search code to a method
primarily involves operating directly on the body property of a Blog
object, as opposed to a local variable in the searchBlog() function.
These steps help clarify the process:

 Declare the method, complete with an argument
list, if required, such as the search text argument
to containsText().

11

 Move the existing code to the new method.22

 Change relevant code to use object properties, such
as this.body in the containsText() method.

33

Download at WoweBook.Com

442 Chapter 9

Unveiling the shiny new blog object
The other two new blog methods join the containsText() method in
a new version of the Blog object that has both properties and behaviors.

this.containsText = function(text) {
 return (this.body.toLowerCase().indexOf(text.toLowerCase()) != -1);
};

Write the code for the Blog object’s containsText()
method, which is created in the Blog() constructor by
assigning a function literal to this.containsText.The method is created by

assigning a function literal
to a method reference.

The this keyword is used to create a method similarly to how it is used to create properties.
The code within the method accesses an object property directly using the this keyword.

function Blog(body, date) {

 // Assign the properties

 this.body = body;
 this.date = date;

 // Return a string representat

ion of the blog entry

 this.toString = function() {

 return "[" + (this.date.getM
onth() + 1) + "/" + this.date.ge

tDate() + "/" +

 this.date.getFullYear() +
"] " + this.body;

 };

 // Return a formatted HTML rep

resentation of the blog entry

 this.toHTML = function(highligh
t) {

 // Use a gray background as
a highlight, if specified

 var blogHTML = "";

 blogHTML += highlight ? "<p
style=’background‑color:#EEEEEE’

>" : "<p>";

 // Generate the formatted bl

og HTML code

 blogHTML += "" + (th
is.date.getMonth() + 1) + "/" +

 this.date.getDate() + "/"
+ this.date.getFullYear() + "</s

trong>
" +

 this.body + "</p>";

 return blogHTML;
 };

 // See if the blog body contai

ns a string of text

 this.containsText = function(te
xt) {

 return ((this.body.toLowerCa
se().indexOf(text.toLowerCase())

 != ‑1);

 };
}

The toString() method returns the blog entry formatted as a string of text

The toHTML() method
returns the blog entry
as fancy formatted
HTML code.

The containsText() method returns true if the body text contains the search string, or false otherwise.

Create and initialize the properties.

Hey, I’ve shaped
up quite nicely!

presto change-o

Download at WoweBook.Com

you are here 4 443

bringing data to life

What do objects really offer YouCube?
It’s not until the new version of the Blog object (available at http://www.
headfirstlabs.com/books/hfjs/) is plugged into the YouCube script that the
real benefits of object-oriented programming are revealed. Now that
several important blog-specific tasks are delegated to Blog methods, the
script code gets considerably simpler.

// Show the list of blog entries
function showBlog(numEntries) {
 // First sort the blog in reverse chronological order (most recent first)
 blog.sort(function(blog1, blog2) { return blog2.date ‑ blog1.date; });

 // Adjust the number of entries to show the full blog, if necessary
 if (!numEntries)
 numEntries = blog.length;

 // Show the blog entries
 var i = 0, blogListHTML = "";
 while (i < blog.length && i < numEntries) {
 blogListHTML += blog[i].toHTML(i % 2 == 0);
 i++;
 }

 // Set the blog HTML code on the page
 document.getElementById("blog").innerHTML = blogListHTML;
}

// Search the list of blog entries for a piece of text
function searchBlog() {
 var searchText = document.getElementById("searchtext").value;
 for (var i = 0; i < blog.length; i++) {
 // See if the blog entry contains the search text
 if (blog[i].containsText(searchText)) {
 alert(blog[i]);
 break;
 }
 }

 // If the search text wasn’t found, display a message
 if (i == blog.length)
 alert("Sorry, there are no blog entries containing the search text.");
}

// Display a randomly chosen blog entry
function randomBlog() {
 // Pick a random number between 0 and blog.length ‑ 1
 var i = Math.floor(Math.random() * blog.length);
 alert(blog[i]);
}

The toHTML() method is entirely
responsible for formatting a blog
entry as HTML code.

The containsText() method takes care of searching a
blog entry for a substring.

The toString() method is a little more
subtle, getting called automatically
when a blog entry is used in a context
where a string is expected.

The new Blog
object simplifies the
YouCube script.

Download at WoweBook.Com

444 Chapter 9

YouCube 3.0!
It’s been quite a project but Ruby has officially deemed YouCube 3.0 good
enough for her to take a break and get back to puzzling. She’s also excited
about spending some time preparing for that party she was invited to...

"Met up with some
fellow cubers
to discuss the

prospect..."

August 14th, 2008

body

date

toString()

toHTML()

containsText()

Blog

Who knew Blog
object would be my
favorite puzzle?

The blog is sorted and
cleanly formatted... ...the blog can be

searched...

...the blog can be
viewed randomly...

...thanks to a custom object called Blog!

ready for greatness

Download at WoweBook.Com

you are here 4 445

bringing data to life

JavaScriptcross
Ruby has been waiting all chapter for this...a puzzle!
But it’s not a cube puzzle, it’s a crossword puzzle. Oh
well, you can’t have it all.

Untitled Puzzle
Header Info 1

Header Info 2

etc...

1 2

3

4 5 6

7

8

9

10 11 12

13

14

Across
1. Use this String method to search for a string of text.
4. When you place a function in an object, it becomes a
6. JavaScript arrays and strings are really
8. Use this to access a member of an object.
11. Nearly random.
13. This method converts any object into a string of text.
14. Ruby's hometown.

Down
2. Use this object to work with time.
3. A Math method that rounds down a number.
5. In an object, properties store this.
7. Object properties are created here.
9. A piece of data in an object.
10. Methods allow objects to take these.
12. Call this method to change the order of the items in an array.

Untitled Puzzle
Header Info 1

Header Info 2

etc...

1 2

3

4 5 6

7

8

9

10 11 12

13

14

Across
1. Use this String method to search for a string of text.
4. When you place a function in an object, it becomes a
6. JavaScript arrays and strings are really
8. Use this to access a member of an object.
11. Nearly random.
13. This method converts any object into a string of text.
14. Ruby's hometown.

Down
2. Use this object to work with time.
3. A Math method that rounds down a number.
5. In an object, properties store this.
7. Object properties are created here.
9. A piece of data in an object.
10. Methods allow objects to take these.
12. Call this method to change the order of the items in an array.

Download at WoweBook.Com

446 Chapter 9

page goal header

JavaScriptcross Solution
Untitled Puzzle

Header Info 1

Header Info 2

etc...

I
1

N D
2

E X O F

A F
3

T L

M
4

E T H O D
5

O
6

B J E C T S

C
7

A O

D
8

O T O P E R A T O R

N A P
9

S R

T A
10

P
11

S
12

E U D O R A N D O M

R C O P

U T
13

O S T R I N G E

C I T R

T O T

C
14

O N U N D R U M Y

R S

Across
1. Use this String method to search for a string of text.
[INDEXOF]
4. When you place a function in an object, it becomes a
[METHOD]
6. JavaScript arrays and strings are really [OBJECTS]
8. Use this to access a member of an object. [DOTOPERATOR]
11. Nearly random. [PSEUDORANDOM]
13. This method converts any object into a string of text.
[TOSTRING]
14. Ruby's hometown. [CONUNDRUM]

Down
2. Use this object to work with time. [DATE]
3. A Math method that rounds down a number. [FLOOR]
5. In an object, properties store this. [DATA]
7. Object properties are created here. [CONSTRUCTOR]
9. A piece of data in an object. [PROPERTY]
10. Methods allow objects to take these. [ACTIONS]
12. Call this method to change the order of the items in an array.
[SORT]

Download at WoweBook.Com

you are here 4 447

bringing data to life

 Search all you want, but it’s unlikely that
 you’ll find anything better than a
 JavaScript object to do things like sort
 and analyze data. They’re even able to
 randomize numbers without any trouble at all.

What can JavaScript objects do to their data?

You’re invited to...

Date:

Location:

A Puzzle Party!

2112 Confounding Street

Baffleburg, CA 95099

USA

October 24th

Puzzler Ruby
5280 Unravel Avenue
Conundrum, AZ 85399

USA

Date

String

Array

Math

Page Bender

It’s a meeting of the minds!

Fold the page vertically
to line up the two brains
and solve the riddle.

Download at WoweBook.Com

Download at WoweBook.Com

this is a new chapter 449

Having It Your Way
with Custom Objects

creating custom objects10

If it was only that easy, we’d surely have it made. JavaScript doesn’t

have a money-back guarantee, but you can definitely have it your way. Custom objects

are the JavaScript equivalent of a decaf triple shot grande extra hot no whip extra drizzle

no foam marble mocha macchiato. That is one custom cup of coffee! And with custom

JavaScript objects, you can brew up some code that does exactly what you want, while

taking advantage of the benefits of properties and methods. The end result is reusable

object-oriented code that effectively extends the JavaScript language...just for you!

Act now, skip the middle man,
there’s a money-back guarantee,
it’s only a dollar...if you order now.
You can have it your way, baby!

Download at WoweBook.Com

450 Chapter 10

Revisiting the YouCube Blog methods
When we last left Ruby, she was quite excited about having created
an object-powered blog for writing about her interest in cube puzzles.
Although Ruby did a decent job of creating the Blog object that drives
the YouCube blog, she unknowingly missed some key opportunities to
apply object-oriented principles to YouCube. More importantly, she
didn’t fully explore the different ways the Blog object can be made more
efficient, more organized, and therefore more maintainable into the future.

The last tweak Ruby made to the Blog object involved the creation of
three methods to handle several blog-specific tasks.

The YouCube blog
works but it still isn’t
a shining beacon
of object‑oriented
programming design.

"Met up with some
fellow cubers
to discuss the

prospect..."

August 29th, 2008

body

date

toString()

toHTML()

containsText()

Blog

function Blog(body, d
ate) {

 // Assign the prope
rties

 this.body = body;

 this.date = date;

 // Return a string

representation of the
 blog entry

 this.toString = fun
ction() {

 return "[" + (thi
s.date.getMonth() + 1

) + "/" + this.date.g
etDate() + "/" +

 this.date.getFu
llYear() + "] " + thi

s.body;

 };

 // Return a formatt

ed HTML representatio
n of the blog entry

 this.toHTML = funct
ion(highlight) {

 // Use a gray bac
kground as a highligh

t, if specified

 var blogHTML = ""
;

 blogHTML += highl
ight ? "<p style='bac

kground‑color:#EEEEEE
'>" : "<p>";

 // Generate the f

ormatted blog HTML co
de

 blogHTML += "<str
ong>" + (this.date.ge

tMonth() + 1) + "/" +

 this.date.getDa
te() + "/" + this.dat

e.getFullYear() + "</
strong>
" +

 this.body + "</
p>";

 return blogHTML;

 };

 // See if the blog

body contains a strin
g of text

 this.containsText =
 function(text) {

 return (this.body
.toLowerCase().indexO

f(text.toLowerCase())
 != ‑1);

 };
}

The three Blog methods
take care of several
tasks that make sense
being handled from
within a blog entry.

I happen to like
the Blog methods.

The YouCube methods look fine on the surface,
but there’s a subtle problem...

the Blog method: uh-oh!

The latest version of the files can
be downloaded at http://www.
headfirstlabs.com/books/hfjs/.

Download at WoweBook.Com

you are here 4 451

creating custom objects

Method overload
Similar to the blog properties, the methods in the Blog object are created
inside the constructor using the this keyword. This approach works but
it ends up creating a new copy of the methods for every Blog object that
is created. So if the blog contains six entries, there are six copies of the
three Blog methods.

How could you redesign the Blog object so that the method code doesn’t get duplicated in
each new object?

The Blog object inadvertently creates more methods
than it needs, which is very wasteful and inefficient.
It’s true, the Blog() constructor creates three methods every time a new
object is created, which means every Blog object has its own copy of
each method. Unlike properties, which need to store unique data for each
different object, methods should be shared between objects. It would
be a much better design if all Blog objects shared a single copy of each
method. This prevents the script from getting bloated with unnecessary
methods as lots of blog entries (objects!) are added over time.

toHTML()

containsText()

toString()

"Managed to get a

headache toiling

over the new

cube..."

August 16th, 2008

Blog

"Met up with some fellow cubers to discuss the
prospect..."

August 29th, 2008

Blog

toHTML()

containsText()

toString()

"Found a 7x7x7
cube for sale

online..."

August 21st, 2008

Blog

toHTML()

containsText()

toString()

So you’re telling me the Blog()
constructor creates three
methods for every Blog object.
Isn’t that a bit wasteful?

Every Blog object created gets its own copy of the three Blog methods.

Download at WoweBook.Com

452 Chapter 10

Classes vs. instances
The duplicate method problem touches on an extremely important
concept related to JavaScript objects: the difference between an object
class and an object instance. A class is an object description, a template
that outlines what an object is made of. An instance is an actual object that
has been created from a class. In real world terms, a class is the blueprint
for a house, while an object is the house itself. And similar to JavaScript
objects, you can build many house instances from a single class (blueprint).

"Managed to get a
headache toiling

over the new
cube..."

August 16th, 2008

Blog

Blog

"Found a 7x7x7
cube for sale

online..."

August 21st, 2008

Blog

"Met up with some
fellow cubers
to discuss the

prospect..."

August 29th, 2008

Blog

Object class

Object instances

Multiple instances
are created from
a single class.

toString()

toHTML()

containsText()

toString()

toHTML()

containsText()

toString()

toHTML()

containsText()

now class…in this instance…

Download at WoweBook.Com

you are here 4 453

creating custom objects

"Met up with some..."body

August 29th, 2008

function() { ... }

function() { ... }

function() { ... }

date

toString

toHTML

containsText

"Found a 7x7x7 cube..."
body

August 21st, 2008

function() { ... }

function() { ... }

function() { ... }

date

toString

toHTML

containsText

Instances are created from classes
A class describes the properties and methods of an object, while an
instance puts real data in the properties and brings them to life. Each
instance gets its own copies of properties, which is what allows instances to
be uniquely different from one another.

Property values often vary
from instance to instance,
so it’s important that each
instance gets its own copy.

Methods are unnecessarily
duplicated in each of
these instances.

An object class is a
template, while an
object instance is the
thing created from
the template.

Properties.

Methods.

"Managed to get a..."body

August 16th, 2008

function() { ... }

function() { ... }

function() { ... }

date

toString

toHTML

containsText

Download at WoweBook.Com

454 Chapter 10

Access an instance's properties with "this"
All the properties we’ve dealt with thus far have been instance
properties, meaning that they are owned by an instance, and more
importantly, each instance gets its own copy. You can easily identify an
instance property because it is set in the constructor using the this
keyword.

function Blog(body, date) {

 this.body = body;

 this.date = date ;

 ...

}
These are instance properties
because they are referenced
using the this keyword.

There are also instance methods, but they are a little trickier since they
can be owned by an instance or by the class. So far we’ve only created
instance methods that are set using the this keyword, which means they
are owned by each instance. This explains why the method code is
duplicated in each instance.

function Blog(body, date) {

 ...

 this.toString = function() {

 ...

 }

 this.toHTML = function() {

 ...

 }

 this.containsText = function() {

 ...

 }

}

These are instance methods because the this keyword is used to set them in the constructor.

The this
keyword is used
to set properties
and methods
that are owned
by an instance.

Every instance
of Blog gets its
own copy of these
methods.

The good news is that custom objects aren’t destined to always waste
method code by duplicating it in every new instance. The solution is to
create methods in such a way that the instances all share a common copy
of the method code.

measure twice…cut once

Download at WoweBook.Com

you are here 4 455

creating custom objects

Blog

Own once, run many: class-owned methods
There is another kind of instance method that is owned by the class itself,
which means that there is only one copy shared for all instances. This class-
owned instance method is much more efficient than storing a copy of a
method in each and every instance.

function toHTML() {

 ...

}

When a method is owned by the class, all instances of the class have
access to it, and therefore don’t have their own copies. This is much
more efficient, especially when you consider how many method copies
could end up taking up space in an application that creates lots of
object instances. In the case of YouCube, three methods (toString(),
toHTML(), and containsText()) would be unnecessarily duplicated
for every blog entry that is created.

Of course, we still need a mechanism for assigning the ownership of a
method to the class, as opposed to individual instances...

The method is owned by the Blog class, so the instances don’t need their own copies.

These instances store
their data in instance
properties but their
methods are accessed
from the Blog class.

Here the instance

method is just a

reference to the

method in the class.

Storing a method in a
class allows all instances
to share one copy.

"Managed to get a
headache toiling

over the new
cube..."

August 16th, 2008

toString()

toHTML()

Blog

containsText()

"Found a 7x7x7
cube for sale

online..."

August 21st, 2008

toString()

toHTML()

Blog

containsText()
"Met up with some

fellow cubers
to discuss the

prospect..."

August 29th, 2008

toString()

toHTML()

Blog

containsText()

Download at WoweBook.Com

456 Chapter 10

If another instance of the Blog object is created and the toHTML()
method is called on it, the same code in the class gets run. That’s the
beauty of storing a method in a class—store once, run many!

Use prototype to work at a class-level
Classes in JavaScript are made possible in JavaScript thanks to a hidden
object called prototype that exists in every object as a property. The
prototype object allows you to set properties and methods that are owned
at the class level, as opposed to within an instance. In the case of methods,
the prototype object is how you establish that a class owns a method.

Blog.prototype.toHTML = function() {

 ...

}

Class name.

The prototype object is
accessed as a property
of the class.

The name of
the function.

The body of the function, a function literal.

In this example, the toHTML() method is added to the Blog class
itself, as opposed to a specific instance of the class. No matter how many
instances of the Blog object we create, there is only one copy of the
toHTML() method.

Since the toHTML() method is now part of the Blog class, when the
method is called the code that runs is located in the class. However, the
method is technically still an instance method because it can be called
through an instance object, and it can access instance properties.

Blog

toHTML()

prototype

var blogEntry1 = new Blog("Not much going on.", ...);

blogEntry1.toHTML();

Blog

toHTML()

Calling the toHTML()
method leads to code
being run in the class.

var blogEntry2 = new Blog("Still just hanging around.", ...);

blogEntry2.toHTML(); Other instances still
share the same method
in the class.

inside every object exists…

Download at WoweBook.Com

you are here 4 457

creating custom objects

Classes, prototypes, and YouCube
Ruby is a little overwhelmed with all the talk about classes
and prototypes, but she has a pretty good sense that
YouCube could benefit from rethinking the Blog method
storage with the aid of the prototype object.

The Blog code now uses the prototype object to store the
methods so that they are owned by the class. Annotate the code
and explain what’s going on.

Wow, using the prototype
object to store blog methods
could make the YouCube code
much more efficient.

Blog
prototype

toHTML()

containsText()

toString()

function Blog(body, date) {
 // Assign the properties
 this.body = body;
 this.date = date;
}

// Return a string representation of the blog entry
Blog.prototype.toString = function() {
 return "[" + (this.date.getMonth() + 1) + "/" + this.date.getDate() + "/" +
 this.date.getFullYear() + "] " + this.body;
};

// Return a formatted HTML representation of the blog entry
Blog.prototype.toHTML = function(highlight) {
 // Use a gray background as a highlight, if specified
 var blogHTML = "";
 blogHTML += highlight ? "<p style='background‑color:#EEEEEE'>" : "<p>";

 // Generate the formatted blog HTML code
 blogHTML += "" + (this.date.getMonth() + 1) + "/" + this.date.getDate() + "/" +
 this.date.getFullYear() + "
" + this.body + "</p>";
 return blogHTML;
};

// See if the blog body contains a string of text
Blog.prototype.containsText = function(text) {
 return (this.body.toLowerCase().indexOf(text.toLowerCase()) != ‑1);
};

Download at WoweBook.Com

458 Chapter 10

A more efficient YouCube
The YouCube blog now uses class-owned methods to eliminate
wasteful code, thanks to object prototyping. No matter how many Blog
instances are created, only one copy of the methods are created since they
now reside in the class. The cool thing is that from the YouCube script’s
perspective of using the Blog object, nothing has changed.

The Blog code now uses the prototype object to store the
methods so that they are owned by the class. Annotate the code
and explain what’s going on.

Blog
toString()

toHTML()

containsText()

blog[2].toHTML();

alert(blog[0]);

blog[3].containsText("cube");

The Blog class.

Blog instances calling methods in the class.

function Blog(body, date) {
 // Assign the properties
 this.body = body;
 this.date = date;
}

// Return a string representation of the blog entry
Blog.prototype.toString = function() {
 return "[" + (this.date.getMonth() + 1) + "/" + this.date.getDate() + "/" +
 this.date.getFullYear() + "] " + this.body;
};

// Return a formatted HTML representation of the blog entry
Blog.prototype.toHTML = function(highlight) {
 // Use a gray background as a highlight, if specified
 var blogHTML = "";
 blogHTML += highlight ? "<p style='background‑color:#EEEEEE'>" : "<p>";

 // Generate the formatted blog HTML code
 blogHTML += "" + (this.date.getMonth() + 1) + "/" + this.date.getDate() + "/" +
 this.date.getFullYear() + "
" + this.body + "</p>";
 return blogHTML;
};

// See if the blog body contains a string of text
Blog.prototype.containsText = function(text) {
 return (this.body.toLowerCase().indexOf(text.toLowerCase()) != ‑1);
};

Now the constructor focuses solely on creating and
initalizing the properties.

Each method is set in the prototype object instead of using the this keyword in the Blog() constructor.

Since the methods aren't being
assigned to a particular Blog
instance, the assignment takes
place outside of the constructor.

sharpen solution

Download at WoweBook.Com

you are here 4 459

creating custom objects

Q: I’m still not quite understanding
the big picture of classes vs. instances.
What’s the deal?

A: The idea behind a class is to make
it easier to create and reuse objects. You
could create one‑off objects as object literals
all day long and never have a problem other
than wasting a lot of energy unnecessarily.
It’s wasteful because you’d be duplicating
your efforts. Kind of like an architect who
insists on redrawing the plans for the same
house every time he wants to build it again.

Why not create a template that can be used
to create as many instances as you want,
resulting in a lot less effort? That’s where
classes enter the picture—create one class,
and then use it to create as many instances
as needed.

Q: OK, so classes are about making
it easier to create objects that are similar
to each other. But what do this and
prototype have to do with that?

A: The this keyword lets you access
an instance from within one of its own
methods. Its primary usage is in accessing
instance properties. So if you want to access
a property named x from within a method,
you say this.x. If you were to just say

x, the code wouldn’t know you were trying
to access a property of the instance; it would
just think x was a variable. That’s why
constructors require you to use this when
creating and initializing properties.

prototype is a different animal
altogether. It provides the mechanism
for creating classes. Unlike some other
programming languages such as C++ and
Java, JavaScript doesn’t truly support
classes as a concrete part of the language.
Instead, JavaScript uses prototypes to
simulate classes. The end result is similar
but JavaScript requires you to create

“classes” by manipulating the prototype
object, which appears as a “hidden” property
of every JavaScript object. By storing a
property or method in the prototype
object, you effectively make it accessible as
part of a class, as opposed to just part of an
instance.

Q: How do constructors fit into the
class equation?

A: Constructors are a very important part
of establishing JavaScript classes because
they are responsible for creating object
instances. You can think of a constructor
and a prototype as representing the two
major pieces of the JavaScript class
puzzle. Constructors take care of setting up

everything for instances, while prototypes
handle everything at the class level. Both
entities working in concert give you the
ability to do some pretty cool things because
there are compelling reasons for positioning
some members at the instance level and
some at the class level. We continue
exploring this issue throughout the chapter.

Q: I’m a little confused by the naming
convention used with objects. Sometimes
an object is capitalized, sometimes it’s in
lower camel case. Is there some rule I’m
missing?

A: The only rule is that class names
are capitalized, while instance names are
in lower camel case. This is because an
instance is really just a variable, and variable
identifiers use lower camel case. The
inconsistency mainly has to do with the fact
that we’ve been using the term “object” fairly
loosely. To be accurate, however, classes
such as Blog should be capitalized,
while instances such as blogEntry or
blog[0] should be in lowerCamelCase.

This naming convention makes sense if you
think back to other standard objects that
we’ve used. You might store the current
date/time in a variable (instance) called
now, which is created from the Date
object (class).

A class is a description of an object, while an instance
is an actual object that has been created based upon
that description.

A class lays out the properties and methods of an object,
while an instance places real data in the properties,
giving the methods something to work with.

The this keyword is used to access an instance from
within its own code.

The prototype object allows methods to be stored
in a class, preventing instances from unnecessarily
duplicating code.

Download at WoweBook.Com

460 Chapter 10

Signing the blog
Ruby is digging the efficiency and organizational improvements that
object-oriented programming, or OOP, has brought to YouCube but she’s
interested in doing more than just improve the code behind the scenes...
she wants to add a new feature.

Should Ruby create the signature as an instance property? Can you think of any reason why
this might not be such a good idea?

I’d really like to create
a signature that
appears below each blog
entry...right about here!

Ruby figures that adding a signature property to the Blog class might
do the trick. Then she can just set the property in the constructor and
display it with each blog entry...problem solved!

sign here…and here…and here…

Download at WoweBook.Com

you are here 4 461

creating custom objects

08/14/2008
Got the new cube I ordered. It’s a real pearl.
by Puzzler Ruby

08/19/2008
Solved the new cube but of course, now I’m bored
and shopping for a new one.by Puzzler Ruby

08/16/2008
Managed to get a headache toiling over the new
cube.
Gotta nap.
by Puzzler Ruby

08/21/2008
Found a 7x7x7 cube for sale online. Yikes! That one

could be a beast.by Puzzler Ruby

08/29/2008
Met up with some fellow cubers to discuss the
prospect of a 7x7x7 cube. Mixed feelings.by Puzzler Ruby

Maybe one signature is enough.
Knowing that the blog signature is the same for all instances, there’s no
need for each instance to have its own signature property. What Ruby
needs is a class property, a property where there is only one copy that is
stored in the class instead of a different copy in each individual instance.

Wait a minute. Doesn’t Ruby
have just one signature? If so,
why does each instance need its
own signature property?

The signature is
the same for all
blog entries.

Blog

signatureThe signature property
should be stored in the
Blog class, not in each
blog instance.

Q: I keep seeing the term object‑
oriented. What does it mean?

A: The term object‑oriented gets used
(and abused) an awful lot in programming
circles, and it can mean different things to
different people. In general, object‑oriented
programming (OOP) involves building

software out of objects, such as how the
Date object is used in the date property
of YouCube blog entries.

Most programmers associate OOP with
using objects extensively throughout a
program. At least in theory, a truly object‑
oriented program can be broken down into a
collection of objects that interact with each

other. There are object‑oriented purists out
there who will argue that JavaScript doesn’t
qualify as an OOP language. Save yourself
the energy and try to avoid that debate.
There are valid arguments on both sides, but
at the end of the day nobody wins.

Download at WoweBook.Com

462 Chapter 10

"Met up with some
fellow cubers
to discuss the

prospect..."

August 29th, 2008

Blog

"Managed to get a
headache toiling

over the new
cube..."

August 16th, 2008

Blog

"Found a 7x7x7
cube for sale

online..."

August 21st, 2008

Blog

Class properties are shared, too
Class properties are very similar to class-owned instance methods
in that they are owned by the class with a single copy available to all
instances. In some ways this is more significant when it comes to data
because it means that the property has only one value that is shared by
all instances. This is exactly what Ruby is looking for when it comes to
the new signature property because there is only one signature for the
entire YouCube blog.

How do you think you could go about creating a class property?

Blog

signature = "Puzzler Ruby"

Even though the signature property is stored in the Blog class, it is
readily accessible to any instance that wants to access the blog author's
signature.

A class property
is stored once in a
class but accessible
to all instances.

Each instance
stores its own
instance properties.

The signature class property is stored only in the class.

If you change the
Blog.signature
property, it changes
the property for all
instances.

If you change the date
property of this blog
entry, the change only
affects this entry.

If you change the
body property of
this blog entry, it
doesn't affect any
other entries.

store once, access many

Download at WoweBook.Com

you are here 4 463

creating custom objects

Creating class properties with prototype
For all the talk about where a class property is stored and the sweeping
impact that has on life as we know it, creating a class property is
surprisingly mundane. In fact, a single line of code is all it takes:

One of the most interesting things about this code is what you can’t fully
appreciate by looking at it by itself—the code doesn’t appear inside of
a constructor like the code that creates instance properties. The reason
is because constructors are used to bring instances to life, and therefore
aren’t capable of creating class properties. Instead, class properties must
be created outside of the constructor.

Blog.prototype.signature = "Puzzler Ruby";

You probably guessed it, the
prototype object is where
class properties are stored.

Class properties don’t
have to be initialized
but in this case it makes sense because the blog
author is already known.

The Blog class is
specified first, then
the prototype object.

The class property is
accessed using object
(dot) notation.

function Blog(body, date
) {

 this.body = body;

 this.date = date;

}

Blog.prototype.signature = "Puzzler Ruby";

Instance properties

Class property

Write code to display the signature property in an alert box.
Hint: Assume the code is located inside a Blog method.

One copy of
signature for all
blog entries. Every Blog instance

gets its own copy of
body and date.

Instance properties are
created inside of an
object's constructor.

Class properties are
created outside of an object's constructor with a little help from the hidden prototype object.

Download at WoweBook.Com

464 Chapter 10

Write code to display the signature property in an alert box.
Hint: assume the code is located inside a Blog method.

alert(this.signature);

Class properties are accessed
just like instance properties,
using the this keyword!

Q: Why do you even need to store
the YouCube signature in a property?
Couldn’t it just be entered as part of the
body text for each entry?

A: It’s certainly possible to include a
signature in every blog entry as part of the
body text, but that requires unnecessary
time and effort, assuming there is only one
person posting to the blog. It would get
tiresome for Ruby to sign every blog entry
when there is such a cleaner way to handle
the signature using JavaScript. And who’s to
say she might accidentally enter a typo and
become "Puzzled Ruby"? Not a good thing!

Another option that is more viable is to
just use a string literal for the signature
when formatting a blog entry as HTML.
This approach works fine but it buries an
important piece of data, the signature,
down in the blog formatting code where it’s
difficult to find and maintain. By placing the
signature in a class property, you make it
easily accessible, and therefore much easier
for the blogger to identify and change.

Q: How would creating a blog entry
change if the signature was an instance
property?

A: Remember that each instance of an
object gets its own set of instance properties
that are initialized in the constructor. If the
signature property was an instance property,
the Blog() constructor would need to set
it in each and every instance. This wouldn’t
necessarily be all that big of a coding hassle
since the constructor could set the property
to the signature string. However, behind
the scenes, there would be as many copies
of the signature as there are instances,
and that would be extremely wasteful.
Not only that, but it would be possible to
change the signature for different instances
independently of others.

Q: So if I wanted to modify YouCube
to support multiple bloggers, would
I change the signature to an instance
property?

A: Yes, and that would be a good idea
because in a multi‑blogger scenario the
signature property has the prospect
of needing to hold different values for
each instance. The best way to handle this
would probably be to add an argument to
the Blog() constructor that allows the
signature string to be passed in. Then use
that string to initialize the signature
instance property. In other words, handle the

signature property exactly the same
as the other Blog instance properties.

Q: Class properties seem to work kind
of like global variables. How are they
different?

A: Class properties are in fact a lot like
global variables since they can be accessed
from just about anywhere. Class properties
are also created similarly to global variables,
at least in terms of where they’re created—
from the main script level outside of other
code. Where class properties differ from
global variables is in their association with
a class, and therefore with instance objects.
This means you always have to access a
class property with respect to an instance.

Q: Hang on. Class properties have to
be accessed through an instance?

Q: Even though class properties are
created using the prototype object,
which stores them in a class, they must be
accessed through instances. So a class
property is accessed just like an instance
property, using the this keyword and
object (dot) notation. The difference is
really just where the property is stored—in
the class (class property) or in a specific
instance (instance property).

sharpen solution

Download at WoweBook.Com

you are here 4 465

creating custom objects

Signed and delivered
With the signature class property created, initialized, and ready to use,
Ruby is ready to see it put in action. Looking back at the code that formats
a blog entry for display in a browser, the toHTML() method is where the
signature enters into the presentation of each blog entry.

Blog.prototype.toHTML =
function(highlight) {

 // Use a gray backgrou
nd as a highlight, if sp

ecified

 var blogHTML = "";

 blogHTML += highlight
? "<p style='background‑

color:#EEEEEE'>" : "<p>"
;

 // Generate the format
ted blog HTML code

 blogHTML += ""
 + (this.date.getMonth()

 + 1) + "/" + this.date.
getDate() + "/" +

 this.date.getFullYea
r() + "
"

+ this.body + "
" + this.signature +

 "</p>";

 return blogHTML;

};

Now there’s no
mystery about who’s
writing each blog entry.

Ruby has used OOP techniques to further extend the JavaScript language
by adding a signature class property to the Blog class. More importantly
to her, she’s managed to add a more personal touch to the YouCube blog.

The signature class property is referenced just like a
normal instance property.

The toHTML() method
now formats the signature
as part of a blog entry.

Ruby’s signature
appears as part
of each blog
entry.

Download at WoweBook.Com

466 Chapter 10

Tonight’s talk: Instance and class properties talk data
ownership and secret societies

Instance property:
So you’re the other guy I’ve been hearing about.
I have to say I don’t see why you’re here. I do an
excellent job of allowing object instances to be
unique and keep track of their own property values.

Now that’s hard believe. Go on...

So you’re saying I wouldn’t be the best way to store
a secret handshake?

I see. But what about a secret password? Can I store
that?

Awesome! So let’s get started. I’m starting a secret
club and we’re both getting our own passwords.

Good one! So what is it? Really. I’m serious...

Class property:

I’m sure you do, and that’s an admirable thing. But
did you know that sometimes instances don’t want
the hassle of keeping up with their own data?

Well, there are situations where a piece of data is
common to all instances, kinda like how a secret
club has a secret handshake. Each person in the
club knows the secret handshake but it’s a club-wide
handshake. If some gal in the club invents her own
secret handshake, it screws everything up. Then
some other girl has to top that with her handshake,
and before you know it nobody knows the secret
handshake anymore because there are lots of them.

That’s right. No offense, but in this case the club
members just need one handshake, even though all
of the people need to know about it.

Maybe. If each person has their own secret
password that is personal to them, then yes, you
would be excellent for storing secret passwords.

But you don’t know the secret handshake...gotcha!

instance property vs. class property

Download at WoweBook.Com

you are here 4 467

creating custom objects

<html>
 <head>
 <title>YouCube ‑ The

Blog for Cube Puzzlers</
title>

 <script type="text/ja

vascript">

 // Blog object cons
tructor

 function Blog(body,
 date) {

 // Assign the pro
perties

 this.body = body
|| "Nothing going on tod

ay.";

 this.date = date
|| new Date();

 }

 // Return a string

representation of the bl
og entry

 Blog.prototype.toSt
ring = function() {

 return "[" + (thi
s.date.getMonth() + 1) +

 "/" + this.date.getDate
() + "/" +

 this.date.getFu
llYear() + "] " + this.b

ody;

 };

 // Return a formatt

ed HTML representation o
f the blog entry

 Blog.prototype.toHT
ML = function(highlight)

 {

 // Use a gray bac
kground as a highlight,

if specified

 var blogHTML = ""
;

 blogHTML += highl
ight ? "<p style='backgr

ound‑color:#EEEEEE'>" :
"<p>";

 // Generate the f

ormatted blog HTML code

 blogHTML += "<str
ong>" + (this.date.getMo

nth() + 1) + "/" + this.
date.getDate() + "/" +

 this.date.getFu
llYear() + "
" + this.body + "
" + this.signature

 +

 "</p>";

 return blogHTML;

 };

 // See if the blog

body contains a string o
f text

 Blog.prototype.cont
ainsText = function(text

) {

 return (this.body
.indexOf(text) != ‑1);

 };

 // Set the blog‑wid

e signature

 Blog.prototype.sign
ature = "by Puzzler Ruby

";

Duplicate code is a no-no
Ruby is at it again. Never one to rest on her laurels, she’s
decided to look even further at improving the efficiency of
the YouCube code. She has spotted some duplicate date
formatting code that she’s convinced can be eliminated
somehow with a crafty application of OOP principles.

How could you eliminate the
duplicate date formatting
code in YouCube?

This code seems to be
duplicated unnecessarily.
How can I cut it?

This date formatting
code is identical, and
therefore a bit wasteful.

Download at WoweBook.Com

468 Chapter 10

A date formatting method
Ruby thinks a decent solution to the duplicate date formatting code is to
add a date formatting method to the Blog object. In order to reuse the
code, it must be placed in a function or method, and she might as well go
with a method since the Blog object is responsible for formatting dates as
part of formatting a blog entry. Or should she?

If formatting a date is really a behavior
of the Date object, would it make more
sense for the method to be a Date
method? Is there any way to add a method
to a standard JavaScript object?

Back to the prototype object
What could be more powerful than taking a pre-existing object and
making it even better? As it turns out, there is a way to modify a standard
object, and it turns out providing the ultimate option in terms of
extending the JavaScript language. The key to extending standard objects,
or any JavaScript object for that matter, is the prototype object. We've
already used the prototype object to extend the Blog class with class
properties and class-owned methods. There’s nothing stopping us from
doing the same kind of extending to built-in JavaScript classes.

prototype

Every object has a
prototype object that allows
you to add properties and
methods at the class level.

Any old object,
even a standard
JavaScript object.

where to format

Download at WoweBook.Com

you are here 4 469

creating custom objects

Extending standard objects
The key to extending an object lies in the prototype object, and every
object in JavaScript has one. So you can extend any object by adding
properties and methods to its prototype object, which establishes class
properties and class-owned methods. In the case of a built-in JavaScript object,
adding a property or method to its prototype object means any new
instances of the built-in object will have access to the property or method.

Write the code for a method called shortFormat() that is an
extension to the standard Date object, and whose job it is to
format a date as MM/DD/YYYY.

String.prototype.scramble = function() {

 // Return scrambled string

 ...

};

String

scramble()

prototype
String

scramble()

"Met up with some
fellow cubers
to discuss the

prospect..."

String

"Went ahead and ordered the scary 7x7x7 cube..."

String
"Puzzler Ruby"

String

Adding a method
to the prototype
of a built-in object
places the method
in the object class.

New objects created
from the class can
then use the method.

The prototype
object allows you
to extend built‑in
JavaScript objects.

alert(this.signature.scramble());

Using the new String method is just a matter of calling it on an
instance of the String object.

Create the method as
a member of String’s
prototype object.

Download at WoweBook.Com

470 Chapter 10

Custom date object = better YouCube
The customized Date object makes YouCube more efficient and extends
the features of the built-in object. YouCube also becomes easier to
maintain since the date format can now be altered in one location, yet
affect the appearance of dates throughout the blog. Granted, OOP
improvements to script code don’t always present immediate sizzle in the
form of visual changes, but they do often result in code that just seems to
work better over the long haul.

Write the code for a method called shortFormat() that is an
extension to the standard Date object, and whose job it is to
format a date as MM/DD/YYYY.

Date.prototype.shortFormat = function() {
 return (this.getMonth() + 1) + "/" + this.getDate() + "/" + this.getFullYear();
};

The method is
added to the
prototype of
the Date object.

Blog dates are now
formatted using a
custom method of
the Date object.

Date

shortFormat()

prototype

sharpen solution

Download at WoweBook.Com

you are here 4 471

creating custom objects

"Attended a rally
outside of a local toy

store... "

September 3rd, 2008

body

date

toString()

toHTML()

containsText()

Blog

A class can have its own method
The custom shortFormat() method of the Date object is a class-
owned instance method, meaning that it has access to instance properties
even though it is owned by the class. This is what allows the method to
format the date stored within a given instance. It is also possible to create
a class method, which is a method owned by a class that cannot access
instance properties. Class methods can access class properties, however, such
as the signature property in the Blog class.

Can you think of any code in YouCube that would
make sense as a class method of Blog?

Blog.showSignature = function() {

 alert("This blog created by " + Blog.prototype.signature + ".");

};

Blog.showSignature();

Creating a class method is a matter of setting the method to the class
without using the prototype object—just assign the method to the
class using the class name and object notation.

Blog

showSignature()

signature

Class methods can access
class properties just fine.

Class methods cannot
access instance properties
or methods.

Instance

Class

Since class methods have no association with an instance, you call them by
referencing only the class name. This doesn’t mean an instance can’t call a
class method, it just has to do so using the class name.

Class methods are
owned by a class,
and can only access
class properties.

Since signature is a
class property, the class
method has access to it.

The class name is the key to calling a class method.

To access a class property
from a class method, you
have to drill down to the
prototype property.

Download at WoweBook.Com

472 Chapter 10

Rethinking the blog sorter
This is an intriguing idea because the sort comparison function is
definitely playing a role that is specific to the Blog object. Currently, this
function is created as a function literal inside the showBlog() function,
which is where it is needed.

Could a class method be
used for the blog sort
comparison function?

function showBlog(numEntries) {

 // First sort the blog in reverse chronological order (most recent first)

 blog.sort(function(blog1, blog2) { return blog2.date ‑ blog1.date; });

 ...

}

One of the fundamental concepts of OOP is to encapsulate the
functionality of an object within the object itself, meaning that outside
code shouldn’t be doing work that an object can do for itself. In this case,
the comparison of blog entries for sorting purposes could be done inside
the object instead of in the showBlog() function. But, can the sort
comparison code be placed into a class method of the Blog class? In
order to answer this question, we have to figure out if the method requires
access to instance data or methods. That would be a big problem since
class methods can’t access anything in an instance.

Blog sorting is
handled inside the
showBlog() function,
which isn’t a part
of the Blog object. It might be possible to move the sort

comparison code to a class method.

09/01/2008
Went ahead and ordered the scary 7x7x7 cube.Starting a mental exercise regimen to prepare.

09/03/2008
Attended a rally outside of a local toy store that

stopped carrying cube puzzles. Power to the puzzlers!

09/05/2008
Got the new 7x7x7 cube. Could be my last blog post for a while...

back to the Blog class

Download at WoweBook.Com

you are here 4 473

creating custom objects

Rewrite the YouCube blog sort comparison function as a class
method of the Blog object that is named blogSorter().

function(blog1, blog2) {

 return blog2.date ‑ blog1.date;

}

The only way to know if this will work is to break down the function and
see what’s going on. Here’s the sort comparison function literal with the
code formatted more like a normal function: Two blog instances are passed into the function as arguments.

The sort comparison
involves a subtraction
of the two arguments.

Although the function deals directly with blog instances, they are passed
in as arguments. This is different than attempting to access a property
or method inside an instance through the this keyword, which isn’t
possible in a class method. So the sort comparison function doesn’t need
access to anything within an instance, which makes it a perfect candidate
for a class method.

In fact, the sort comparison function doesn’t even require class properties,
although it could do so if necessary because class methods do have access
to class properties.

Instance.

Got the new 7x7x7 cube. Could be my last blog post for a
while...

September 5th, 2008

Blog

date

body

toString()

toHTML()

containsText()Blog
signature

Class.

function(blog1, blog2) {

 return blog2.date - blog1.date;
}

The sort comparison function doesn’t need access to
instance or class data.

If the sort comparison function had needed access to an instance, it wouldn’t be possible to make
it a class method.

A class method can access a
class property if it needs to.

Examine the sort comparison function

Download at WoweBook.Com

474 Chapter 10

Calling a class method
The benefit of moving the blog sort comparison function to a Blog
method becomes a little easier to appreciate when you see the code that
calls the method.

Rewrite the YouCube blog sort comparison function as a class
method of the Blog object that is named blogSorter().

Blog.blogSorter = function(blog1, blog2) {
 return blog2.date - blog1.date;
};

The sort comparison method is now a class method of the Blog object named blogSorter().

function showBlog(numEntries) {

 // First sort the blog

 blog.sort(Blog.blogSorter);

 ...

}

The details of sorting the
blog are now delegated
to the blogSorter() class
method of the Blog class.

The beauty of this code is subtle but important. The showBlog()
function no longer has to concern itself with how blog entries are sorted.
Instead, the details of how blog entries are sorted is handled within the
Blog class where it logically belongs.

What’s neat is how the sorting is still initiated outside of the Blog class
in the showBlog() function, which makes sense because sorting affects
an entire collection of blog instances. But the specifics of how the sorting
is carried out with respect to individual blog entries is within the realm of
something the Blog class can handle. Good OOP design often involves a
careful orchestration of objects and their surrounding code.

Blog
blogSorter()

showBlog()

The showBlog() function uses
the blogSorter() class method

to sort the blog entries.

class method? over there!

Download at WoweBook.Com

you are here 4 475

creating custom objects

A picture is worth a thousand words
Ruby continues to be thrilled by the OOP improvements to YouCube
but she also knows that users won’t necessarily share her enthusiasm
because the OOP enhancements have yet to dramatically impact the user
experience. She has therefore decided that it’s time to add some noticeable
sizzle to the blog!

blog

How could you alter the Blog object
in YouCube to support images?

YouCube is great but sometimes I have
images I’d like to share. It would be really
cool to add an image to some blog posts.
You know, add a little sizzle to the steak!

Ruby’s idea is to allow each individual blog entry to support an
optional image that is displayed along with the date and body text.
Since not all blog entries require images, it’s important for the
image to be optional. This also prevents existing blog entries that
she has already written from breaking.

Download at WoweBook.Com

476 Chapter 10

" Wow, it took me
a couple of weeks

but..."

September 19th, 2008

"cube777.png"

Blog

Incorporating images into YouCube
Adding image support to the YouCube blog involves figuring out how to
incorporate an image into the Blog object in such a way that it doesn't
interfere with the way the object already works. This brings up two
important questions that will drive the design:

What is the best way
to store a blog image
within the Blog object?

How can the blog image
be added to YouCube but
remain entirely optional?

Regardless of how a blog image is stored, we know that it will ultimately
get fed into an HTML tag so that it can be displayed on the
YouCube web page.

This code tells us that as far as the blog is concerned, an image is really
just a string. Sure, the string ultimately references an image file stored
somewhere on a web server, but from the perspective of the Blog object,
it's just a string.

A blog image is sufficiently
described using a string filename.

body

date

toString()

toHTML()

containsText()image

The body and image
properties are both
stored in the Blog
object as strings.

cube777.png

So an image could be added to the Blog object simply as a property that
stores a string, similar to the body property.

The 7x7x7 cube image is stored in the file
named cube777.png.

As far as the Blog
object is concerned, an
image is just a string.

1 2

image is everything

Download at WoweBook.Com

you are here 4 477

creating custom objects

function Blog(body, d
ate) {

 // Assign the prope
rties

 this.body = body;

 this.date = date;

}

Rewrite the YouCube Blog()
constructor to support a new
image property for storing a
blog entry image.

So the blog image gets stored in the Blog object as a string property
named image, but the question still remains as to how this property can
be added to the blog as a purely optional feature. This question ultimately
has to lead back to the constructor, which is where the object is both
created and initialized. Surely some special code has to be placed in the
constructor to deal with the fact that the property is optional.

I'm not so sure about that. What
happens if you don't pass an
argument to a constructor? Doesn't
the property just get set to null?

Missing function arguments become null.
When an argument isn’t passed into a function, method, or constructor, it
takes on the value of null in any code that attempts to use it. And in the
case of a constructor specifically, this means the property associated with
a missing argument gets set to null, which isn’t necessarily a bad thing.
The real trick is then to make sure that the optional constructor argument
is specified at the end of the argument list so that it can be left off without
disrupting the other arguments. This technique actually works for any
function or method, but it’s particularly handy for the image argument
of the Blog() constructor.

image

?

2

An optional blog image

Download at WoweBook.Com

478 Chapter 10

" Wow, it took me
a couple of weeks

but..."

September 19th, 2008

"cube777.png"

Blog

Adding imagery to YouCube
The shiny new Blog() constructor with support for images wouldn’t be
very useful without some blog entries that use it. In order to create a blog
entry that supports images, two things have to happen:Q: Is it important that the image

argument appears last in the Blog()
constructor's argument list?

A: Yes, and the reason is because the
image is considered an optional part of a blog
entry. The real issue here is how you go about
passing arguments to functions, especially as
it pertains to optional arguments. If a function
has two arguments, you have the option of
passing both arguments, passing only the first
argument, or passing none of the arguments.
There is no way to pass only the second
argument.

So when it comes to optional arguments, think
about them in terms of being able to leave
them off the end of the argument list. Also try to
think about arguments in terms of importance,
with more important arguments appearing
first. Less important arguments that are more
likely to be considered optional should appear
near the end of the argument list. Since the
image argument to Blog() is optional, it
must appear last in the argument list where it
can be easily left off.

Rewrite the YouCube Blog() constructor to support a new
image property for storing a blog entry image.

function Blog(body, date, image) {
 // Assign the properties
 this.body = body;
 this.date = date;
 this.image = image;
}

An image argument is added as the last argument to the constructor.
The image property is
created and initialized
to the image argument.

09/19/2008
Wow, it took me a couple of weeks but the new cube is finally solved!

 Place the blog image file in the
same folder of the web server
as the YouCube web page.

11

 Create the new blog entry as a
Blog object in the YouCube
script code.

22
cube777.png

sharpen solution

Download at WoweBook.Com

you are here 4 479

creating custom objects

The Blog object's toHTML() method is missing a piece of code
that will allow optional images to be displayed. Write the piece of
missing code, and annotate what it does.

if () {

 blogHTML += "" + this.date.shortFormat() +

 "
<table><tr><td><img src='" + this.image +

 "'/></td><td style='vertical‑align:top'>" + this.body + "</td></tr></table>" +

 this.signature + "</p>";

}

else {

 blogHTML += "" + this.date.shortFormat() + "
" + this.body +

 "
" + this.signature + "</p>";

}

new Blog("Wow, it took me a couple of weeks but the new cube is finally solved!",

 new Date("09/19/2008"), "cube777.png")

Completing these steps results in the following code, which successfully
creates a new blog entry that passes an image string into the last argument
of the Blog() constructor:

The blog image is passed
into the last argument of
the Blog() constructor.

Showing the blog image
Now that a blog entry has been created with an image, there is one last
piece of business left for the image enhancement to YouCube. All this talk
of constructors and optional arguments wouldn’t mean much if the code
that displays a blog entry didn't actually factor in the new image property.

This code is located in the toHTML() method. We already know that
this method is responsible for formatting the blog as HTML code, except
now it has to take into account whether or not the image property has
a meaningful value. What’s really going on is that there are two different
ways of displaying a blog entry, one with an image and one without, and
the existence of an image is what determines which way the blog gets
displayed.

If (image exists)

 Display blog entry with image

Else

 Display blog entry without image

A blog entry should
now be displayed
according to the logic in this pseudocode.

Download at WoweBook.Com

480 Chapter 10

The Blog object's toHTML() method is missing a piece of code
that will allow optional images to be displayed. Write the piece of
missing code, and annotate what it does.

if () {

 blogHTML += "" + this.date.shortFormat() +

 "
<table><tr><td><img src='" + this.image +

 "'/></td><td style='vertical‑align:top'>" + this.body + "</td></tr></table>" +

 this.signature + "</p>";

}

else {

 blogHTML += "" + this.date.shortFormat() + "
" + this.body +

 "
" + this.signature + "</p>";

}

this.image If the image property is set to an actual
image, the if test condition evaluates to
true and the image is shown.

Otherwise, the blog entry is
shown like normal with no image.

An object-powered YouCube
Ruby is ecstatic. Her blog has grown by leaps and bounds thanks
to objects, and it now sports a slick new image feature that she just
knows her visitors will love.

A blog
entry with
an image.

I know...it’s
beautiful.

sharpen solution

Download at WoweBook.Com

you are here 4 481

creating custom objects

JavaScriptcross
You know the drill...boxes and words. Fill ’em in!

Untitled Puzzle
Header Info 1

Header Info 2

etc...

1

2 3 4

5

6

7

8

9 10

11

12

Across
2. A real live object with its own data.
4. The operator used to create object instances.
6. The signature in YouCube is one of these.
9. Software that is designed using objects.
11. A keyword that references an object from within its own
code.
12. An object that inherits properties and methods from another
object.

Down
1. The object equivalent of a function.
3. The blog sort comparison code in YouCube is one of these.
5. When a piece of data is placed in an object, it is called
a
7. Every object has one of these objects hidden within it.
8. A template used to create instances of an object.
10. Object notation uses these to access properties and
methods.

Untitled Puzzle
Header Info 1

Header Info 2

etc...

1

2 3 4

5

6

7

8

9 10

11

12

Across
2. A real live object with its own data.
4. The operator used to create object instances.
6. The signature in YouCube is one of these.
9. Software that is designed using objects.
11. A keyword that references an object from within its own
code.
12. An object that inherits properties and methods from another
object.

Down
1. The object equivalent of a function.
3. The blog sort comparison code in YouCube is one of these.
5. When a piece of data is placed in an object, it is called
a
7. Every object has one of these objects hidden within it.
8. A template used to create instances of an object.
10. Object notation uses these to access properties and
methods.

Download at WoweBook.Com

482 Chapter 10

JavaScriptcross Solution
Untitled Puzzle

Header Info 1

Header Info 2

etc...

M
1

I
2

N S T A N C
3

E N
4

E W

L T

P
5

A H

R C
6

L A S S P R O P E R T Y

P
7

O S D

R P M C
8

O
9

B J E C T O R I E N T E D
10

L

T R T O A

O T H T
11

H I S

T Y O S

Y C
12

H I L D

P

E

Across
2. A real live object with its own data. [INSTANCE]
4. The operator used to create object instances. [NEW]
6. The signature in YouCube is one of these.
[CLASSPROPERTY]
9. Software that is designed using objects.
[OBJECTORIENTED]
11. A keyword that references an object from within its own
code. [THIS]
12. An object that inherits properties and methods from another
object. [CHILD]

Down
1. The object equivalent of a function. [METHOD]
3. The blog sort comparison code in YouCube is one of these.
[CLASSMETHOD]
5. When a piece of data is placed in an object, it is called
a [PROPERTY]
7. Every object has one of these objects hidden within it.
[PROTOTYPE]
8. A template used to create instances of an object. [CLASS]
10. Object notation uses these to access properties and
methods. [DOT]

JavaScriptcross solution

Download at WoweBook.Com

you are here 4 483

creating custom objects

 Objects add so many cool things to
 scripts that it can be hard to pick
 one thing. It’s true, some objects outclass
 others and make it even tougher,
 but in the end the answer is clear.

What do objects add to most scripts?

where

who

what

when

display()

deliver()

signature

Page Bender

It’s a meeting of the minds!

Fold the page vertically
to line up the two brains
and solve the riddle.

Download at WoweBook.Com

Download at WoweBook.Com

this is a new chapter 485

kill bugs dead11

Good Scripts Gone Wrong

Even the best laid JavaScript plans sometimes fail. When this

happens, and it will, your job is not to panic. The best JavaScript developers are not

the ones who never create bugs—those people are called liars. No, the best JavaScript

developers are those who are able to successfully hunt down and eradicate the bugs

they create. More importantly, top notch JavaScript bug exterminators develop good

coding habits that minimize the sneakiest and nastiest of bugs. A little prevention can

go a long way. But bugs happen, and you’ll need an arsenal of weapons to combat them...

Even the best laid JavaScript plans sometimes fail. When this

happens, and it will, your job is not to panic. The best JavaScript developers are not

the ones who never create bugs—those people are called liars. No, the best JavaScript

developers are those who are able to successfully hunt down and eradicate the bugs

they create. More importantly, top notch JavaScript bug exterminators develop good

coding habits that minimize the sneakiest and nastiest of bugs. A little prevention can

go a long way. But bugs happen, and you’ll need an arsenal of weapons to combat them...

You never know with these things. One
day everything works great, everybody’s

happy... and the next day, bam! Stuff flying
everywhere. Bottom line—it’s good to have

a guy like me around to fix things.

Download at WoweBook.Com

486 Chapter 11

Real-world debugging
It’s a shocking fact of snack food life... a chocolate bar can contain up to
60 bug pieces. As scary as that little tidbit of information may be, there’s
no reason to fear bugs in JavaScript code. JavaScript code can be more
tightly controlled than chocolate processing equipment. There’s even a
taskforce devoted solely to the removal of JavaScript bugs.

It’s Bug Scene Investigators, or BSI, as those in the business refer to them.
Owen has recently joined BSI as a JavaScript investigator, and is eager to
prove himself and help rid the Web of JavaScript bugs.

Standing between Owen and
success are several cases that
desperately need his attention.
He’ll have to master the black art
of JavaScript debugging before he
can climb the ranks and become a
full-blown JavaScript detective.

Owen, BSI JavaScript
investigator and former
chocolate lover.

A bug-laden chocolate bar... yikes!

Geek BitsGeek Bits
According to the U.S. Food
and Drug Administration,

up to 60 insect “fragments”
are allowed in any given chocolate
bar. In contrast to the “real world,”
the folks at BSI have a zero-tolerance
policy when it comes to JavaScript
bugs, and so should you.

BSI:
BUG SCENE INVESTIGATORS

eek...a bug!

Download at WoweBook.Com

you are here 4 487

kill bugs dead

146

The case of the buggy IQ calculator
The first case across Owen’s desk is an IQ calculator script that’s part of a
page that calculates an average IQ from an array of IQs, and then groups
users together whose results are similar. So the script is given an array of
numbers, and then calculates an average and indicates the intelligence of
that average.

Owen has been informed that this script is quite buggy. Unfortunately, no
other information has been provided beyond, “it doesn’t work.”

113 97

Case 1

var iqs = [113,
97, 86, 75, 92, 1

05, 146,

 77, 64, 114, 16
5, 96, 97, 88, 10

8];

This is how the script
is supposed to work...
unfortunately it doesn’t.

An average IQ is calculated and converted into an
intelligence “classification.”

An array of IQs is fed
into the script.

You might not always
inherit well‑written
code to debug.

The files for Owen are available at
http://www.headfirstlabs.com/
books/hfjs/.

Download at WoweBook.Com

488 Chapter 11

Try different browsers
Owen figures that running the problematic
script through a few different browsers might
help shine some light on the problem. He starts
out with Internet Explorer...

Internet Explorer reports an error when the page first loads but Owen
isn’t sure he can trust it. A quick look at the code for the script shows
that the variable iqs exists, but the IE browser shows it doesn’t.
Knowing that browsers aren’t always accurate when reporting errors,
he decides to press on with the Safari browser... The iqs variable is defined in the code, so IE’s error doesn’t appear to make any sense.

Safari points out that the error is on entirely different line of code,
which doesn’t immediately appear to Owen to have anything wrong
with it. So he decides to take a stab at locating the error with Opera...

If you count down the lines of code starting at 1, Safari points to an error on a line of code that initially appears to be OK.

The line number is different but
the code in the Opera error
matches the Safari error.

Internet
Explorer

Safari

Opera

Double-clicking the yellow sign in the bottom left corner of IE opens an error window.

Browser error consoles
are a great way to
diagnose JavaScript
coding problems.

who’s your browser?

Download at WoweBook.Com

you are here 4 489

kill bugs dead

Something is strange here. Opera mentions a different line number but
it’s clearly referring to the same line of code as Safari, which is actually
good news for Owen. But he still doesn’t see anything wrong with the
code. So he decides to try one more option, Firefox...

Firefox has yet
another take on the line number of the
problematic code.Firefox is pretty helpful

in pinpointing the nature
of the bug.Firefox

<html>
 <head>
 <title>BSI Case 1: IQ Calculator</title>

 <script type="text/javascript"> var iqs = [113, 97, 86, 75, 92, 105, 146, 77, 64, 114, 165, 96, 97, 88, 108];

 function showIQClass(data) { alert("Click OK to begin IQ calculation.");
 document.getElementById("output").innerHTML = "You are dealing with " +

 calcIQClass(data) + "."; }

 function calcIQClass(data) { // Calculate the average IQ var average = 0; for (var i = 0; i < data.length; i++) {
 average += data[i]; average = Math.floor(average / data.length);

 // Return the classification of the average IQ
 if (average < 20) { return "people who should kill their tvs";
 }
 else if average < 50 { return "people who should really hit the books";
 }
 else if (average < 70) { return "people who should hit the books";
 }
 else if (averag < 81) { return "people who should consider brain exercises";
 }
 else if (average < 91) { return "people who could be considered dull";
 }
 else if (average < 111) { return "people of average intelligence";
 }
 else if (average < 121) { return "people of superior intelligence";
 }
 else if (average < 141) { return "people of very superior intelligence";
 }
 else {
 return "geniuses"; }
 }
 </script>
 </head>

 <body onload="showIQClass(iqs);">

 <div id="output">Ready to calculate the average IQ.</div>
 </body>
</html>

A ha! I think I
see the problem.

Firefox confirms
this line to be the
source of the error.

What coding error has Owen uncovered with
the help of his army of web browsers?

Download at WoweBook.Com

490 Chapter 11

Firefox to the rescue
Given how specific Firefox is in describing the bug,
Owen decides to dig a little further using Firefox.
So he clicks the link in the Firefox error console
window, and it takes him to the line just before the
suspicious line of code.

Following the link
opens the code for the
Web page, including a
highlight just before
the suspicious code.

By analyzing the Firefox error message, Owen’s figured
out that Safari is actually right about the line number (25).
Firefox highlights and mentions line 24 but correctly shows
the code on line 25. More importantly, Firefox explains
exactly what is wrong with the code, which is a simple
problem yet deceptively easy to overlook.

Firefox is widely considered the
best debugging browser around,
at least for the time being.

 else if average < 50 {

The if statement is missing parentheses around the test condition.

This is the code
causing the problem.

Don’t worry about the
second error for now—let’s
take them one at a time.

Geek BitsGeek Bits

it’s a bird, its’s a plane...it’s Firefox

Not only does Firefox have excellent built-in bug
detection capabilities, but it also has a debugger
plug-in called Firebug that takes debugging to an
entirely different level. The Firebug debugger for
Firefox can be downloaded for free at
http://www.getfirebug.com/.

Download at WoweBook.Com

you are here 4 491

kill bugs dead

 else if (average < 50) {

Adding the missing
parentheses
squashes the bug.

Debugging on easy street
Owen is pretty excited about isolating the bug in the IQ calculator script
so quickly. And with such a simple coding fix to make, he figures he’ll be
able to cruise along in this job and make BSI detective in no time.

Placing the test condition
inside parentheses solves the
bug in the IQ calculator.

Is there a chance Owen has gotten an early dose of
overconfidence? He really needs to test the newly
repaired script before taking the rest of the day off...

Q: I can’t figure out how to view the error console in my
browser. How do I open it?

A: Unfortunately, every browser is different, and some make it a
challenge to find the JavaScript error console. For example, Safari on
the Mac only allows access to the error console from the Debug menu,
which is disabled by default. You have to issue the following command
(write it on one line, with no carriage return) in the Terminal application to
change the settings and enable the Debug menu:
defaults write com.apple.Safari
IncludeDebugMenu 1

Check the documentation for your specific browser to find out how
to open the error console and view script errors. The error console in
Firefox is opened by selecting Error Console from the Tools menu.

Q: What makes Firefox so special?

A: The developers of Firefox did a great job on its error reporting
capabilities. It simply outperforms other browsers when it comes
to assessing script errors and pointing you in the right direction
for finding them. This isn’t to say some other browser may come
along and do a better job at some point in the future, but Firefox has
proven itself a very capable browser for debugging pages containing
JavaScript code.

Q: What error was Internet Explorer talking about?

A: There’s not really any way to know for sure. The reason is
because the error reported by Internet Explorer has to do with
the script code not loading property, which is the result of an error
encountered by the JavaScript interpreter. You know the code is not
loading properly because the iqs variable is being reported as

“undefined,” even though the code clearly shows the iqs variable
getting created. So the only way it can be a problem is if some other
error is somehow preventing the script from fully loading.
And that begs the question... is there some other error in the script,
and what does “undefined” really mean?

This debugging
stuff is easy. With a
little help from Firefox,
my job is a piece of
cake... with coffee.

Download at WoweBook.Com

492 Chapter 11

<html>
 <head>
 <title>BSI Case 1: IQ Calculator</title>
 <script type="text/javascript"> var iqs = [113, 97, 86, 75, 92, 105, 146, 77, 64, 114, 165, 96, 97, 88, 108];

 function showIQClass(data) { alert("Click OK to begin IQ calculation."); document.getElementById("output").innerHTML = "You are dealing with " +
 calcIQClass(data) + "."; }

 function calcIQClass(data) { // Calculate the average IQ var average = 0; for (var i = 0; i < data.length; i++) { average += data[i]; average = Math.floor(average / data.length);
 // Return the classification of the average IQ if (average < 20) { return "people who should"; }
 else if (average < 50) { return "people who should"; }
 else if (average < 70) { return "people who should"; }
 else if (averag < 81) { return "people who shouldeficient people"; }
 else if (average < 91) { return "people who could"; }
 else if (average < 111) { return "people of average intelligence"; }
 else if (average < 121) { return "people of superior intelligence"; }
 else if (average < 141) { return "people of very superior intelligence"; }
 else {
 return "geniuses"; }
 }
 </script>
 </head>

 <body onload="showIQClass(iqs);">

 <div id="output">Ready to calculate the average IQ.</div> </body>
</html>

The bug report isn’t always the bug source
Unfortunately, Owen isn’t finished with the IQ calculator case because Firefox
is still complaining, except now it’s a completely different problem. While he’s
tempted to stick with the same tactic of trusting Firefox’s assessment implicitly,
this time Owen has his doubts about the validity of the reported bug.

You can’t always trust the browser.
It’s true, the function braces are OK. As good as it may be in some cases,
it appears that Firefox is barking up the wrong tree on this bug. However,
it’s worth taking the mention of a missing curly brace as a clue to study all
of the braces in the code a bit closer.

I think your magical debugger just
screwed up. Clearly, the braces around
the function in this code are just fine.

This is the
brace Firefox
is complaining
about.

This function brace
matches up with the
brace mentioned by
Firefox, so nothing
is missing with the
function braces.

Again, one bug at a time,
so let’s continue to
ignore this one for now.

what happened here?

Download at WoweBook.Com

you are here 4 493

kill bugs dead

BE the JavaScript Interpreter
Your job is to play JavaScript interpreter
and follow the trail of curly braces in
the code to find out what has gone wrong.<html>

 <head>
 <title>BSI Case 1: IQ Calculator</title>

 <script type="text/javascript">
 var iqs = [113, 97, 86, 75, 92, 105, 146, 77, 64, 114, 165, 96, 97, 88, 108];

 function showIQClass(data) {
 alert("Click OK to begin IQ calculation.");
 document.getElementById("output").innerHTML = "You are dealing with " +
 calcIQClass(data) + ".";
 }

 function calcIQClass(data) {
 // Calculate the average IQ
 var average = 0;
 for (var i = 0; i < data.length; i++) {
 average += data[i];
 average = Math.floor(average / data.length);

 // Return the classification of the average IQ
 if (average < 20) {
 return "people who should kill their tvs";
 }
 else if (average < 50) {
 return "people who should really hit the books";
 }
 else if (average < 70) {
 return "people who should hit the books";
 }
 else if (averag < 81) {
 return "people who should consider brain exercises";
 }
 else if (average < 91) {
 return "people who could be considered dull";
 }
 else if (average < 111) {
 return "people of average intelligence";
 }
 else if (average < 121) {
 return "people of superior intelligence";
 }
 else if (average < 141) {
 return "people of very superior intelligence";
 }
 else {
 return "geniuses";
 }
 }
 </script>
 </head>

 <body onload="showIQClass(iqs);">

 <div id="output">Ready to calculate the average IQ.</div>
 </body>
</html>

Download at WoweBook.Com

494 Chapter 11

<html>
 <head>
 <title>BSI Case 1: IQ Calculator</title>

 <script type="text/javascript">
 var iqs = [113, 97, 86, 75, 92, 105, 146, 77, 64, 114, 165, 96, 97, 88, 108];

 function showIQClass(data) {
 alert("Click OK to begin IQ calculation.");
 document.getElementById("output").innerHTML = "You are dealing with " +
 calcIQClass(data) + ".";
 }

 function calcIQClass(data) {
 // Calculate the average IQ
 var average = 0;
 for (var i = 0; i < data.length; i++) {
 average += data[i];
 average = Math.floor(average / data.length);

 // Return the classification of the average IQ
 if (average < 20) {
 return "people who should kill their tvs";
 }
 else if (average < 50) {
 return "people who should really hit the books";
 }
 else if (average < 70) {
 return "people who should hit the books";
 }
 else if (averag < 81) {
 return "people who should consider brain exercises";
 }
 else if (average < 91) {
 return "people who could be considered dull";
 }
 else if (average < 111) {
 return "people of average intelligence";
 }
 else if (average < 121) {
 return "people of superior intelligence";
 }
 else if (average < 141) {
 return "people of very superior intelligence";
 }
 else {
 return "geniuses";
 }
 }
 </script>
 </head>

 <body onload="showIQClass(iqs);">

 <div id="output">Ready to calculate the average IQ.</div>
 </body>
</html>

BE the JavaScript Interpreter Solution
Your job is to play JavaScript interpreter
and follow the trail of curly braces in
the code to find out what has gone wrong.

This opening brace
is missing its
closing brace!

The missing
closing brace
should go
here, enclosing
only the
addition to
the average
variable.

You could also just kill
the opening brace after
the for loop since the
loop is only running
a single line of code,
although the braces help
make it clear what code
is running in the loop.

Adding the
missing curly
brace crushes
the bug.

Mismatched or
missing curly braces
are a common
JavaScript bug that
can be avoided with
attention to detail.

be the solution

Download at WoweBook.Com

you are here 4 495

kill bugs dead

Variables gone wild

Write down what you think “undefined” means in the context of
the latest bug in Owen’s investigation.

undefined

averag

I’m not certain, but I
thought an undefined
variable is one that
hasn’t been created.

else if (averag < 81) {

 return "people who should consider brain exercises";

}

Undefined?

?

Notice that the second error has now gone away. Sometimes fixing one bug will naturally resolve more than one error.

Owen can’t seem to catch a break as the stream of IQ calculator bugs just
keeps on flowing. Now Firefox is reporting that a variable is “not defined,”
which sounds sort of like the bogus error Internet Explorer reported early
on. Except this time the undefined variable is named averag, not iqs.

Download at WoweBook.Com

496 Chapter 11

Sometimes it’s the simple things
In this case “undefined” definitely refers to a variable that has been used
without having been created, although in this case it’s by accident. The
only reason the variable is undefined is because of a typo that results in
the JavaScript interpreter thinking it is an entirely new variable.

Write down what you think “undefined” means in the context of
the latest bug in Owen’s investigation.

“Undefined” refers to a variable that has either not been created (using
var) or that has been created but not yet assigned a value. Either way, the
problem is that the variable is being referenced even though it has no value.

 function calcIQClass(data) { // Calculate the average IQ var average = 0; for (var i = 0; i < data.length; i++) {
 average += data[i]; }
 average = Math.floor(average / data.length);

 // Return the classification of the average IQ
 if (average < 20) { return "people who should kill thier tvs";
 }
 else if (average < 50) { return "people who should really hit the books";

 }
 else if (average < 70) { return "people who should hit the books";
 }
 else if (averag < 81) { return "people who should consider brain exercises";

 }
 else if (average < 91) { return "people who could be considered dull";
 }
 else if (average < 111) { return "people of average intelligence";
 }
 else if (average < 121) { return "people of superior intelligence";
 }
 else if (average < 141) { return "people of very superior intelligence";
 }
 else { return "geniuses"; }
 }

averag
!=

average

else if (average < 81) {

 return "people who should consider
 brain exercises";

}

Fixing the mistyped variable
name resolves the undefined
variable problem.

Something as
simple as a typo
can often wreak
havoc on a script.

Diagnosing a typo
is the hard part...
repairing them is easy.

check your work

Download at WoweBook.Com

you are here 4 497

kill bugs dead

Repairing the
mistyped variable
name pummels
the bug.

Crunching the intelligence numbers
With the typo bug under control, the IQ calculator script now works properly, calculating
an average IQ from an array and then displaying the result as a text classification. Owen
can close this case and bask in the glory of a job well done... but for how long?

The IQ calculator now works as expected
thanks to Owen’s
debugging efforts.

Q: Is there a difference between
“undefined” and “not defined”?

A: No. They mean exactly the same thing,
it’s just that some browsers use one term
and some use the other. Consider the two
terms to be entirely interchangeable.

Q: OK then, so is there a difference
between “undefined” and null?

A: That one’s a little trickier. Yes, on a
very technical level there is a difference
between “undefined’ and null, but not
really enough to worry about. Unlike null,

“undefined” is not a value that you should
ever think about assigning to a variable.
There is an undefined data type that
variables automatically assume when they
have yet to be assigned a value. On the
other hand, variables are never automatically
set to null. However, it’s sometimes a
good idea to set object variables to null
as an initialization step to make sure it is
clear an object has not yet been created.

Nitty gritty technical details aside, the main
thing to know about “undefined” and null
is that they both convert to false when
placed in a boolean context, such as the test
condition of an if statement. That’s why
code such as if (someObject) is
often used to check if an object has been
created before attempting to access its
members.

Q: I still don’t quite understand how
a typo somehow turned the average
variable into undefined. How did that
happen?

A: Even though a variable named
average had already been created and
initialized, JavaScript has no ability to make
the connection between averag and
average just because they have nearly
the same name. The variable averag
could just as easily be named shazbot
or lederhosen for all JavaScript cares.
Which is to say that JavaScript interprets

it as an entirely new variable. And since
this new variable has yet to be assigned a
value, it’s a big problem trying to compare
something to it in an if statement. It’s like
trying to write a movie review before you’ve
decided what movie to watch.

Q: Are you kidding me? I make
typo mistakes all the time in my word
processor and it doesn’t break everything.
Why is JavaScript so sensitive?

A: Take a deep breath and commit these
four very important and insightful words
to memory: GET USED TO IT. We’re not
writing scripts for people, we’re writing them
for machines, and machines are anything
but forgiving regardless of what language
you’re scripting in. Even one character in the
wrong place can send a script over the edge.
There is some flexibility in the whitespace
surrounding JavaScript code, such as
spaces and newlines, but the code itself
must be very exact.

Download at WoweBook.Com

498 Chapter 11

The case of the radio call-in bugs
Owen barely had time to celebrate his first closed case before another case
lands on his desk. His new case involves a script that is intended to process
call-ins to a radio station contest, determining a winner based upon the
call number. The script is supposed to keep a count of callers and only
declare a winner after a certain number of calls, such as seven.

Although most browsers provide an error console that
provides information about JavaScript errors, they can’t
always be trusted as completely accurate.

Even though browsers often yield sketchy error
information, they do usually provide valuable clues
about where to start looking for trouble.

Curly braces around blocks of code are a common
source of bugs—be careful to always match opening
and closing braces.

Simple typographical errors are easy to make but not
necessarily easy to find—always check the naming of
identifiers.

... six calls later...

Case 2

Sorry, you’re
caller #5.

Sorry, you’re
caller #2.

call now to win

Download at WoweBook.Com

you are here 4 499

kill bugs dead

<html>
 <head>

 <title>BSI Case
 2: Winning Caller<

/title>

 <script type="t

ext/javascript">

 // Total numb
er of calls

 var callNum =
 0;

 function chec

kWinner(form, calle
r, winningNum) {

 // Incremen
t the call number

 var callNum
;

 ++callNum;

 // Check fo

r a winner

 if (callNum
 = winningNum) {

 alert(cal
ler + ", caller num

ber + callNum + ".
.. today's winner!"

);

 form.subm
it();

 }

 else {

 // Reset
the caller field fo

r the next caller

 var calle
rField = document.g

etElementById('call
er');

 callerFie
ld.value = "Next ca

ller";

 callerFie
ld.focus();

 callerFie
ld.select();

 }

 }
 </script>

 </head>

 <body>

 <form name="cal
lform" action="radi

ocall.php" method="
POST">

 <img src="rad
io.png" alt="radio"

 />

 Caller name:
<input id="caller"

name="caller" type=
"text" />

 <input type="
button" value="Call

"

 onclick="ch
eckwinner(this.form

, document.getEleme
ntById('caller').va

lue, 7)" />

 </form>

 </body>

</html>

Help Owen get a jump on the case by circling the number of
bugs you think there are in the radio call-in script code.

None
One

Two
Three

Four
Five

Opening up the investigation
Before firing up the radio call-in page in a browser, Owen thinks it’s worth
taking a quick look at the code (available at http://www.headfirstlabs.com/
books/hfjs/) and getting a feel for how it is put together. Maybe something
will jump out that is obviously wrong, or maybe he’ll at least gain some
understanding of how the code is supposed to work.

The call
counter is
initialized
to zero.

The name of the caller
and the winning call
number are passed into the checkWinner() function,
along with the form object..

Increment the
call counter.

Alert the user
and submit the
form if the call
number equals the
winning number.

Reset the caller
name field for
the next caller if
there isn’t a winner.

Server script for storing away the winning caller.

Call the checkWinner() function
when the Call button is clicked.

The focus() method sets the input
focus to an element on the page.

The select() method selects the

value stored in a text ele
ment.

Download at WoweBook.Com

500 Chapter 11

A question of syntax validation (Bug #1)
With a general idea of how the code is supposed to work in mind, it’s time
to turn to Firefox and see what actually happens when the radio call-in
script is run. Similar to other errors we’ve seen, Firefox immediately
reports a syntax error, which is a coding error that violates the rules of
the JavaScript language.

Help Owen get a jump on the case by circling the number of
bugs you think there are in the radio call-in script code.

None
One

Two
Three

Four
Five

Let’s push onward with the case
and help Owen find and solve
these four bugs...

Syntax errors are
always reported by
browsers, assuming
that error reporting
is enabled.

Syntax errors always result in a browser notification of some sort,
assuming the browser is set to report errors. This gives us a very
important jumpstart in tracking down errors.

This error points to
a line of code with a
string concatenation.

say what? syntax errors

Download at WoweBook.Com

you are here 4 501

kill bugs dead

if (callNum = winningNum)

 alert(caller + ", caller number + callNum + "... today's winner!");

Careful with those strings
Firefox pinpointed a line of code with a string concatenation, which
is a clue to analyze the line of code very carefully. The code calls the
alert() function with several string literals concatenated with the
caller and callNum variables.

Pairing up quotes is critical in JavaScript code.
Quotes must always appear in pairs, otherwise JavaScript wouldn’t be
able to tell when a string ends and another one begins. In the case of the
radio call-in code, one of the string literals in the string concatenation is
missing its trailing quote. This is definitely a syntax error since it confuses
JavaScript about where the string ends.

To fix the bug, just add the missing quote to the end of the string:

if (callNum = winningNum)

 alert(caller + ", caller number + callNum + "... today's winner!");

It’s important for
quotes to always appear
in pairs, isn’t it?

These two string literals are
concatenated with two variables.

if (callNum = winningNum)

 alert(caller + ", caller number " + callNum + "... today's winner!");

Repairing the
quotes in the string
annihilates this bug.

Download at WoweBook.Com

502 Chapter 11

Quotes, apostrophes, and consistency
Missing quotes are only half the story when it comes to tracking down
quote-related errors in strings. Since JavaScript and HTML equally
support both quotes and apostrophes for enclosing strings (JavaScript) and
attributes (HTML), it’s critical to be consistent when mixing the two.

What happens when you specifically
need a quote or an apostrophe
character in a string that is enclosed
using the same kind of character?

<input type="button" value="Call"

 onclick="checkwinner(this.form, document.getElementById('caller').value, 7)" />

<input type='button' value='Call'

 onclick='checkwinner(this.form, document.getElementById("caller").value, 7)' />

alert('It's so exciting!');

Quotes are used to
enclose all of the
HTML attributes.

Apostrophes are used to
enclose JavaScript strings
within an attribute.

This approach to using quotes for HTML attributes and apostrophes
for JavaScript strings within attributes works perfectly fine, and is a good
idea. However, it is also possible in HTML to reverse the two, as this code
reveals::

Now apostrophes are used for the
HTML attributes and quotes are
used for the JavaScript strings.

The idea here is to stick with quotes for one type of code, and apostrophes
for the other type. And since the modern version of HTML, XHTML,
requires quotes around attributes, it makes sense to stick with quotes
around attributes and apostrophes around the JavaScript strings inside
attributes.

But a problem arises when you specifically need a quote or an apostrophe
but you’ve already committed to one of them as the string-enclosing
character, or string boundary. Consider the following code:

Quotes and apostrophes
should be alternated
when using JavaScript
strings in HTML
attributes.

Does this code work?

The modern XHTML web page
standard doesn’t allow apostrophes
to be used to enclose attributes.

consistency counts

Download at WoweBook.Com

you are here 4 503

kill bugs dead

When a quote isn’t a quote, use escape characters
A common bug involves using a quote or apostrophe as a character within a string but
having it interpreted as a string boundary. So the alert code we just saw is a syntax error
because the JavaScript interpreter can’t figure out which apostrophes are boundaries
and which are real apostrophes. Fortunately, there is an easy way to declare that a
character is a “real” character. It’s called an escape character, and it involves placing
a backslash (\) in front of the character to be used literally.

Fix the quotes and apostrophes in the following code snippets, using escape characters
whenever possible.

var message = 'Hey, she's the winner!';

var response = "She said, "I can't believe I won.""

<input type="button" value="Winner" onclick="givePrize("Ruby");" />

alert('It\'s so exciting!');

alert("It's so exciting!");

alert("They said, "you've won!"");

alert("They said, \"you\'ve won!\"");

Now the apostrophe has been escaped, and JavaScript knows without
a doubt that we really want an apostrophe character in the string, as
opposed to declaring the end of the string. Of course, we could’ve dodged
the escape by changing the string boundary to quotes.

That works fine, but what about this code:

The string contains literal quotes and a literal apostrophe, so escape is the
only option available. In such a scenario, it’s usually safer to escape all of
the literal characters, even though the apostrophe could get by without it.

Escape characters are
used to specify literal
characters in strings.

Escape no
longer needed.

Escape not
needed but still
a good idea.

Download at WoweBook.Com

504 Chapter 11

Undefined isn’t just for variables (Bug #2)
One bug is taken care of but Owen knows his work is not finished. The
radio call-in script now starts up fine with no errors, but a click of the Call
button to enter a caller is all it takes to reveal another problem. And this
one seems to have something to do with the checkWinner() function.

Fix the quotes and apostrophes in the following code snippets, using escape characters
whenever possible.

var message = 'Hey, she's the winner!';

var response = "She said, "I can't believe I won.""

<input type="button" value="Winner" onclick="givePrize("Ruby");" />

var message = ‘Hey, she\’s the winner!’;

var response = “She said, \“I can\’t believe I won.\””

<input type=”button” value=”Winner” onclick=”givePrize(‘Ruby’);” />

The
apostrophe
doesn’t
have to be
escaped since
it appears
within a
string
surrounding
by quotes.

Escape characters won’t work in this case since this
is a JavaScript string inside an HTML attribute.
Mixing quotes and apostrophes solves the problem.

Clicking the Call button
results in an error
somehow involving the
checkWinner() function.

The line number isn’t helpful at all since we know the first line of HTML code in the page is not a problem.

For some reason
the function is
not defined.

exercise solution

Download at WoweBook.Com

you are here 4 505

kill bugs dead

 function chec
kWinner(form, calle

r, winningNum) {

 // Incremen
t the call number

 var callNum
;

 ++callNum;

 // Check fo

r a winner

 if (callNum
 = winningNum) {

 alert(cal
ler + ", caller num

ber " + callNum + "
... today\'s winner

!");

 form.subm
it();

 }

 else {

 // Reset
the caller field fo

r the next caller

 var calle
rField = document.g

etElementById('call
er');

 callerFie
ld.value = "Next ca

ller";

 callerFie
ld.focus();

 callerFie
ld.select();

 }

 }
 </script>

 </head>

 <body>

 <form name="cal
lform" action="radi

ocall.php" method="
POST">

 <img src="rad
io.png" alt="radio"

 />

 Caller name:
<input id="caller"

name="caller" type=
"text" />

 <input type="
button" value="Call

"

 onclick="ch
eckwinner(this.form

, document.getEleme
ntById('caller').va

lue, 7)" />

 </form>

 </body>

</html>

The usual suspects: the checklist
With some debugging experience under his belt, Owen decides to run
through his newly constructed checklist of common JavaScript errors.
Maybe this bug will match up with one of the bugs he has already
encountered.

Help Owen by checking the type of problem you think is
plaguing the radio call-in script.

* Unmatched or missing parentheses. * Unmatched or missing curly braces. * Misnamed identifier from typo. * Quote or apostrophe misuse.

The checkWinner()
function is only
referenced twice
in the code.

Owen’s bug
detection
cheat sheet.Hmmm... .

Misnamed identifier from typo.

Some entirely new kind of problem.

Unmatched or missing curly braces.
Unmatched or missing parentheses.

Quote or apostrophe misuse.

Download at WoweBook.Com

506 Chapter 11

Everyone’s a winner (Bug #3)
With the pesky “undefined” typo bug taken care of, the radio call-in script
is still triggering errors. The good news is that the browser is no longer
reporting any problems. But the bad news is that every caller is now a
winner—the script is even declaring them the correct caller number even
when they aren’t. That’s a lot of prizes to give away if Owen doesn’t come
up with a fix!

Help Owen by checking the type of problem you think is
plaguing the radio call-in script.

Misnamed identifier from typo.

Some entirely new kind of problem.

Unmatched or missing curly braces.
Unmatched or missing parentheses.

Quote or apostrophe misuse.

Correcting
the function
name typo
slays bug #2.

The checkWinner() function is called with a
lowercase w by accident - checkwinner(). The typo
causes JavaScript to think checkwinner() is an
entirely different function that hasn’t been defined.

<input type="button" value="Call"
 onclick="checkWinner(this.form, document.getElementById('caller').value, 7)" />

The fix simply requires capitalizing the W in the call to checkWinner().

Every call is being
declared a winner.

The really strange thing is that the call number is being shown as the winning number even though the caller isn’t the winning caller.

sharpen solution

Download at WoweBook.Com

you are here 4 507

kill bugs dead

Alert box debugging
We know that the test for the winning number takes place by
comparing the callNum variable to the winningNum argument to
checkWinner() function. But this code appears to be OK... we really
need a way to look a little closer at what’s going on with the callNum
variable.

Alert boxes can serve as a debug watch window.
As it turns out, alert boxes aren’t just for displaying pop-up information
to end users. They can also be useful purely on the development side of
JavaScript code as temporary watch windows for looking at variables. Not
only that, but alerts can be used to make sure a certain section of code is
getting called as expected. In this case, we need to use an alert simply for
keeping an eye on the callNum variable.

...

if (callNum = winningNum) {

...

Nothing obvious jumps out as
being wrong with this code.

It’s worth trying to track the
value of callNum to see how it is
changing leading up to this code.

Is there a way to look at
the value of a variable at
different points in a script?

callNum

7
The alert box provides a
watch on the variable’s value,
in this case the value of the
callNum variable.

Alert boxes can be
very handy for getting
a quick look at the
value of a variable.

Download at WoweBook.Com

508 Chapter 11

Watching variables with alert
A watch is a debugging term that refers to constantly watching
a variable as a program runs. An alert provides a primitive
watch that isn’t exactly a constant view of a variable but can still
be very helpful. An alert can be used as a watch anywhere in
JavaScript code where a variable is in question.

alert(callNum);

if (callNum = winningN
um) {

 alert(caller + ", ca
ller number " + callNu

m + "... today\'s

winner!");

 form.submit();

}

if (callNum = winningNum) {
 alert(callNum);
 alert(caller + ", caller number " + callNum + "... today\'s winner!");
 form.submit();
}

With the alert watch confirming that callNum is
somehow miraculously getting set to 7 within a
single line of code, what do you think is the cause
of the bug? What has Owen figured out?

Owen realizes that the radio call-in script is somehow seeing callNum
and winningNum as equal, even though callNum is showing up as NaN
just before the if statement. While it’s already confusing that callNum
is coming up as NaN, he decides to move the alert just inside the if
statement to see if anything changes.

Something isn’t right... callNum should be set to the number of the current call.

Bingo! I think I
figured it out.

The callNum variable is now
showing up set to 7 just
after the if test conditional.

alerts are tools too

Download at WoweBook.Com

you are here 4 509

kill bugs dead

Head First: I have to admit, I’ve heard mixed things
about you. People say you can be really annoying. Yet I
hear you could very well be a debugger’s best friend. Can
you enlighten us on who the real alert is?

Alert: Those first people are crazy. I’m a wonderful guy.
I’m also pretty simple—you give me some information
to display, and boom, I pop up and display it. That’s it.
Where’s the harm in that?

Head First: I guess it’s the “pop-up” part. Pop-ups have
gotten a bad rep as of late with all the ridiculous ads that
sometimes pop up everywhere.

Alert: Oh, I gotcha. Yeah, I can see where that could
get really annoying. But you can’t go around blaming a
hammer for a dimwitted carpenter who doesn’t know how
to use it. See what I mean?

Head First: So you’re saying that any bad things I’ve
heard about you have to do with you being misused?

Alert: There you go. Like I said, I just do as I’m told. You
tell me to pop up a whole bunch of times with silly ads,
I’ll do it. I’m not saying I’ll like it, but I don’t really have a
choice in the matter. Hey, I thought you were going to ask
me about my contribution to the world of debugging.

Head First: Oh, I’m sorry. Yes, I have heard some really
good things about how you help JavaScript developers
track down bugs in their code. How do you do it?

Alert: It’s pretty simple, really. Let’s say there’s a
variable that has gone haywire, getting set to some value
that makes no sense. The programmer is freaking out,
overcaffeinated, you know what I mean, and desperately
needs a way to take a peek at the variable at different
places in the script to see how it’s getting changed. So she
asks me to pop up and show the variable.

Head First: But how are you able to show the variable
change value at different points in a script? That sounds
difficult.

Alert: Not at all. All you do is call me multiple times, with
each call at a different point in the script.

Head First: I see. Have you ever run into any problems
when helping out as a debugging tool.

Alert: Well, I have to admit that I’m not so good at
popping up debugging information when there is a piece
of code getting run a bunch of times, like in a loop.

Head First: Why is that?

Alert: Well, remember that I am a pop-up window, so I
have to be clicked to go away. If I’m popping up a bunch
of times, that’s a whole lot of clicks.

Head First: That makes sense. I also hear that you can
be handy even when there isn’t data to be looked at.

Alert: Oh yes. There are plenty of situations where it isn’t
quite clear if or when a piece of code is getting called. A
quick call to me within the code will let you know if the
code is really getting called. I become somewhat of an
alarm just to let you know if code is called.

Head First: In all of these debugging scenarios, are you
telling me you are just temporary?

Alert: Oh, absolutely. And I don’t mind. It’s not like
I don’t have my permanent role as well—I just do the
debugging thing on the side as a little public service.

Head First: Well, I appreciate you taking the time to
explain your role in bug detection. I look forward to seeing
you around.

Debugging with Alert
This week’s interview:
Alert shares his disdain of bugs

Debugging with Alert
This week’s interview:
Alert shares his disdain of bugs

Download at WoweBook.Com

510 Chapter 11

Bad logic is legal but buggy
Owen has honed in on a logic error, an error that is perfectly legal
according to the rules of JavaScript but entirely wrong in terms of what
it is intended to do. In this case, = is used instead of ==, which means
winningNum is getting assigned to callNum instead of being
compared to it. Subtle? Yes. But still highly problematic.

Logic errors like to fly below the radar.
What makes logic errors such a pain to deal with is that they often don’t
reveal themselves the way that syntax errors do. Although a script error in
a browser may seem a bit deflating, it’s really a blessing in disguise because
it’s a bug that has been detected for you. Logic errors don’t violate any
JavaScript syntax rules, so they are often tougher to detect.

On the other hand, logic errors do sometimes result in a script error
while a script is running. For example, if a logic error results in a variable
not getting initialized, an “undefined” error will show up when the script
tries to reference the variable. So sometimes a logic error will spare you
the suffering of an exhausting bug hunt.

Changing
= to ==
pulverizes
bug #3.

...

if (callNum = winningNum) {

...

...

if (callNum == winningNum) {

...

The code that “looked”
OK earlier turned out to
have a subtle bug that
was difficult to spot.

So logic errors don’t
ever show up in a
browser’s error console?

The real problem with this error is that it doesn’t trip up the browser and
generate an error like the syntax errors. The JavaScript interpreter didn’t
complain because an assignment “returns” the value being assigned, in
this case winningNum, which is then automatically converted to true
(non-zero) in the if test condition. In other words, the code is perfectly
legal even though it didn’t do what we wanted it to.

is it logical?

Download at WoweBook.Com

you are here 4 511

kill bugs dead

Q: Are escape characters only used
for escaping quotes and apostrophes?

A: No, there are several escape
characters supported by JavaScript. For
example, you can use \t to insert a tab into
a string. Similarly, a newline is represented
by the \n escape character. And a literal
backslash must also be escaped with \\.
One place where escape characters can
be used effectively is in formatting the text
displayed in an alert box. You can use \t
and \n to align text using tabs and control
how it flows onto new lines.

Q: What’s the deal with the limitation
on escape characters in HTML attributes?

A: The limitation has to do with the fact
that HTML attributes aren’t subject to the
rules of JavaScript, at least not when it
comes to the characters used to bound an
attribute value. So while it’s fine to escape
a character within a JavaScript string that is
enclosed in an HTML attribute, it can’t be the
same character used to enclose the attribute.
If this is still confusing, think about it like
this. HTML sees an attribute simply as a
value that must appear between quotes or
apostrophes. Nothing more. So whichever
boundary character you use to start the

attribute, HTML assumes the next one
it encounters is its matching partner that
closes the attribute value. This happens
because HTML doesn’t process the attribute
value for JavaScript escape characters.
Escape characters do still work within an
HTML attribute, provided they don’t conflict
with the character used to enclose the
attribute. This is because the attribute value
does eventually get interpreted as JavaScript
code, assuming we’re talking about an event
handler attribute.

Q: Aren’t there fancier debuggers for
JavaScript that provide detailed control
over the debugging process?

A: Yes, there are a few out there. And
it’s not a bad idea at all to investigate them
further and consider trying one out. However,
understand that good coding habits coupled
with the debugging techniques explored
in this chapter will go a long way toward
helping you create error‑free scripts.

Q: What exactly is happening when
JavaScript code tries to reference an
undefined variable or function?

A: Remember that an undefined variable
is a variable that has either not been created
or that has been created but not set to
anything. In both cases the value stored in
the variable is unknown, or more specifically,
it is undefined. So attempting to read that
value and do something meaningful with it
makes no sense, which is why JavaScript
generates an error.

A similar situation occurs with functions
when a function is called but the JavaScript
interpreter can’t find a function by that name.
The function is undefined, which means that
calling it makes no sense—there’s nothing to
call. Again, JavaScript considers it an error
because there is no way to meaningfully
execute the code.

Q: What’s the deal with the callNum
variable turning up as NaN before the if
test condition in the radio call‑in script?

A: We still don’t know. Although it does
tell us that something is still amiss in
the script code. So it’s important to keep
sleuthing for more bugs...

Syntax errors involve code that
violates JavaScript language rules,
and are usually caught by the
JavaScript interpreter.

Strings must be carefully enclosed
within matching quotes or
apostrophes.

Quotes and apostrophes should be
mixed (but still in matching pairs)
in HTML event handler attributes
that contain JavaScript code.

Alert boxes offer a primitive
but useful option for watching
variables throughout a script.

It’s a common error to accidentally
code a test condition with = when
you really mean ==.

Download at WoweBook.Com

512 Chapter 11

Tonight’s talk: Syntax error and Logic error share their love
of poor scripting

Syntax error:
Hey, I’ve heard of you. I hear you’re pretty sneaky.
But what I’m wondering is if you enjoy a really
badly written script as much as I do?

I disagree. I like scripts that are a trainwreck right
there in plain view. That’s where I excel. You
sprinkle a few of me throughout a script, and it’s
guaranteed to make a browser squeal in pain.

I can appreciate your twisted way of seeing things,
but the problem is that you still allow a script to
run. That’s no good to me. I like to stop it dead in
its tracks.

It would, but we’re unfortunately pretty limited in
terms of how much damage we can do. Sure, it’s
fun to screw up a page and keep it from working
right, but I hate that we can’t get access to anything
else. Boy, what fun I could have with a hard drive
full of important data!

Logic error:

Oh yeah. There’s nothing better than a script that
looks fine on the surface, but just barely out of sight
are all kinds of strange problems.

But what fun is that? Everybody knows a sneak
attack is much more effective. You know, lull them
into thinking everything is OK, and then slowly
start revealing little problems here and there. If
you do a good enough job, they’ll be questioning
whether or not their browser is even working right.

You’ve got a point there. It’s a shame I haven’t
figured out a good way to reveal myself by stopping
a script like you do. Or even better, crash the whole
browser in a big puff of smoke. That would be cool!

Oh man, that would be incredible. You sure there
isn’t an angle for us to get in there?

syntax error vs. logic error

Download at WoweBook.Com

you are here 4 513

kill bugs dead

Syntax error:
Nah, the JavaScript interpreter has us locked down
pretty tight.

No, how does it work?

How do you get away with that?

I have a good one sorta like that where people
forget to end each JavaScript statement with a
semicolon. It’s great because the interpreter will let
it slide if the statements are on lines by themselves.
But eventually some cocky programmer will try to

“optimize” the code and combine the statements
onto a single line, and that’s when I show up. That
one never gets old—I always get a good laugh!

I love it because if the interpreter does notice, then
I get to spring into action and shock them with an
error. Hey, I’m starting to realize we should think
about teaming up—I think we could do more
damage that way.

I’m right behind you!

Logic error:

Well, there’s still plenty of fun to be had. Did I tell
you about my little trick with = and ==?

It’s great. The programmer means to type == to
compare two values, but they accidentally type =
and it does an assignment instead. It’s hilarious
because they’ll go hours without seeing the problem.
And the JavaScript interpreter is none the wiser
because the code is still technically legit.

Oh, I have loads of them. It’s a fine line I walk
being just inside the law but still able to stir up
trouble.

Hey, that reminds me of one more I have to share. I
love it when people decide to change the arguments
to a function after they’ve written the function.
It never fails—they’ll forget to change all of the
calls to the function, which all are supposed to be
updated to match the new arguments. If all goes
well, the interpreter won’t notice and they’ll get
unexpected results from the bad arguments.

I agree. Let’s get started.

Download at WoweBook.Com

514 Chapter 11

Everyone’s a loser! (Bug #4)
Owen is starting to realize that this debugging stuff is not as easy as he
once thought. With the if statement logic error fixed, now the script
never declares a winner. So we went from everyone being a winner to
everyone now being a loser. Some people’s self-esteem will definitely be
affected by this bug if Owen doesn’t get it fixed quickly.

This is really confusing. I guess
I’ll use some alert boxes to try
and figure out what’s still wrong
with the call number variable.

Caller 1.

Caller 7.

Caller 3.

This caller should
be a winner.

It seems that everyone has gone from winners to losers since now no one can win.

really buggy radio

Download at WoweBook.Com

you are here 4 515

kill bugs dead

Overwhelmed by annoying alerts
Owen attempts to use alerts to put a watch on the callNum variable and
try to figure out what’s going on. However, he runs into a problem in that
it gets tedious having to wade through so many alert boxes en route to the
seventh caller. He’s tried using several alerts in different parts of the code,
but he’s just getting overwhelmed with so many less than helpful pop-up
windows, and doesn’t know where to start...

Wouldn't it be dreamy if there was a
way to watch variables without having
to go through a pop-up window...

The drawback to alerts as watch windows is that they can get tedious when used in repetitive code.

As the calls roll in, the callNum variable jumps around between all kinds of weird values.

Download at WoweBook.Com

516 Chapter 11

Browser debugging consoles can help
Most browsers have a debugging console, really an error console, that is
responsible for displaying errors that occur in a script. Error consoles are
very useful for finding out when something goes wrong in a script, and
in many cases helping to diagnose exactly what went wrong. Firefox in
particular has proven to have an excellent error console.

Error consoles don’t really help at all when it
comes to watching variables.
As handy as error consoles may be, they don’t offer any means
of watching variables. But there’s good news—it’s not outside
the realm of possibility to create your own debug console
from scratch that can serve as a watch window.

We’ve already leaned heavily on the Firefox error
console to track bugs.

Browser error consoles are great for finding out about script errors, especially syntax errors.

Error consoles are great
and all, but how do they
help me watch variables?

there’s a console for this?

Download at WoweBook.Com

you are here 4 517

kill bugs dead

Build a custom console for debugging
The idea of a custom debug console might sound intimidating at first, but
all it really has to do is display text when asked. The key is that the console
must display the debug information directly on the page, not in an alert
box. A separate pop-up window could be used as long as it doesn’t require
the user to click OK, but it’s simpler and just as effective to show the
debug messages directly on the page.

Imagine a design of a JavaScript debugging console that allows Owen
to display debugging messages in a list within a dynamically created
area on the page. Draw what you think the necessary components of
this design are, and how they fit together, including a custom JavaScript
object for the debugging console.

Debug messages are displayed just below the main page in a special debug area.

Each line is
a different
debug message.

Download at WoweBook.Com

518 Chapter 11

Imagine a design of a JavaScript debugging console that allows
Owen to display debugging messages in a list within a dynamically
created area on the page. Draw what you think the necessary
components of this design are, and how they fit together, including a
custom JavaScript object for the debugging console.

displayMsg()shaded

DebugConsole

The debugging console is
designed as an object named DebugConsole that has one property and one method.

The debug console itself is
created on the page as a div.

Each call to the custom displayMsg()
method draws a debug message on a
new line of the debug console area.

The HTML elements for the
debug area on the page are
created dynamically by the
debug console, which means the
user doesn’t have to include any special HTML code to support
the debug console.

The shaded property
is a boolean that
gets toggled between
true and false for
each debug message
to alternate the
background color.

Within the debug console div,
each individual debug message
is housed in its own child div.

div

div

"callNum: 2"

div

"callNum: 3"

div

"callNum: 1"

...

sharpen solution

Download at WoweBook.Com

you are here 4 519

kill bugs dead

function DebugConsole() {

 // Create the debug console ar
ea

 var consoleElem = document.

 ();

 consoleElem.id = "debug";

 consoleElem.style.fontFamily =
 "monospace";

 consoleElem.style.color = "#33
3333";

 document.body. (

consoleElem);

 consoleElem. (do

cument. ("hr"))
;

 // Create the alternating back

ground color property

 this. = false;

}

DebugConsole.prototype.displayMs

g = function(msg) {

 // Create the message

 var msgElement = document.crea
teElement("div");

 msgElement.appendChild(documen

t. (msg));

 msgElement.style.backgroundCol

or = this.shaded ? "#EEEEEE" : "
#FFFFFF";

 var consoleElem = document.get

ElementById();

 consoleElem.appendChild(

);

 // Toggle the alternating back

ground color property

 this.shaded = this.shaded;

}

JavaScript Magnets
The code for the debugging console is missing a few pieces.
Fill in the blanks with the code magnets to finish building the
DebugConsole object.

createElement

"div"

appendChildshaded
createTextNode

"debug"
!

msgElement

Download at WoweBook.Com

520 Chapter 11

function DebugConsole() {

 // Create the debug console ar
ea

 var consoleElem = document.

 ();

 consoleElem.id = "debug";

 consoleElem.style.fontFamily =
 "monospace";

 consoleElem.style.color = "#33
3333";

 document.body. (

consoleElem);

 consoleElem. (do

cument. ("hr"))
;

 // Create the alternating back

ground color property

 this. = false;

}

DebugConsole.prototype.displayMs

g = function(msg) {

 // Create the message

 var msgElement = document.crea
teElement("div");

 msgElement.appendChild(documen

t. (msg));

 msgElement.style.backgroundCol

or = this.shaded ? "#EEEEEE" : "
#FFFFFF";

 var consoleElem = document.get

ElementById();

 consoleElem.appendChild(

);

 // Toggle the alternating back

ground color property

 this.shaded = this.shaded;

}

JavaScript Magnets Solution
The code for the debugging console is missing a few pieces.
Fill in the blanks with the code magnets to finish building the
DebugConsole object.

shaded

"debug"

createElement "div"

appendChild

appendChild

createTextNode

createElement

!

msgElement

The debug console div is appended to the document body, which means it gets added to the end of the page.

The background color starts
out false, which results in a
white background initially..

The background
color alternates
between each
message so that
the messages are
easier to read.

The first child element
in the debug console is a
horizontal rule to divide
the console messages from
the rest of the page.

A message is added
to the debug console
as a child div.

JavaScript magnets solution

Download at WoweBook.Com

you are here 4 521

kill bugs dead

Debug your debugger
Owen can’t wait to put the new debug console through its paces to find out
what’s still wrong with the radio call-in script. So he imports the debug.js
file into the page and creates the DebugConsole object in the head of the
page.

document.body.appendChild(console);

<script type="text/javascript">

 // Debug console global variable

 var console = new DebugConsole();

 ...

What could possibly be wrong with this code to cause
the document body to somehow end up empty?

I don’t understand how the
document body doesn’t have
any properties. Doesn’t it hold
all of the web page content?

It seems an
entirely new
bug has been
introduced
into the
script... ugh!

The browser is claiming that the
document body has no properties.

The line of code that generates the error is just trying to append a child
node (div) to the body of the document, which shouldn’t be a problem.

Something else is amiss, although it definitely appears to have something
to do with the new DebugConsole object.

This code creates the
DebugConsole object as a global
variable in the head of the page.

Unfortunately, things don’t go as planned. When he first attempts to use
the debug console, Owen learns that he has compounded his problems by
introducing an entirely new bug of his own into the new debug console.

Download at WoweBook.Com

522 Chapter 11

Waiting on the page
The problem with the debug console has to do with the timing of how a
page loads and when script code has access to the body of the page.

JavaScript code that executes in the head of the page
doesn’t have access to web page content.
Since the head of a page is loaded before the body, any script code that
runs directly in the head of the page must be careful not to attempt to
access any HTML elements that are in the body of the page. This may
seem like a strange restriction, but it makes sense when you consider that
not all that much code is typically run in the head of the page.

Ah, so script code that
runs in the head of the
page can’t access HTML
elements on the page.

The HTML elements that
actually reside on the page
aren’t loaded until the body
loads... after the head.

<html>
 <head>
 <title>BSI Case 2: Winning Caller</title>
 <script type="text/javascript" src="debug.js"></script>

 <script type="text/javascript"> // Debug console global variable var console = new DebugConsole();
 // Total number of calls var callNum = 0;
 function checkWinner(form, caller, winningNum) { // Increment the call number var callNum; ++callNum;

 // Check for a winner if (callNum == winningNum) { alert(caller + ", caller number " + callNum + "... today\'s winner!");
 form.submit(); }
 else {
 // Reset the caller field for the next caller
 var callerField = document.getElementById('caller');
 callerField.value = "Next caller"; callerField.focus(); callerField.select(); }
 }
 </script>
 </head>

 <body>
 <form name="callform" action="radiocall.php" method="POST">
 Caller name: <input id="caller" name="caller" type="text" />
 <input type="button" value="Call" onclick="checkWinner(this.form, document.getElementById('caller').value, 7)" />

 </form>
 </body>
</html>

The head of the page is
loaded before the body, so
none of the body content
is available at this point.

watching the time roll away

Download at WoweBook.Com

you are here 4 523

kill bugs dead

Not all code in the head of a page is executed in the
head of the page.
Placing code in a function that appears in the head of a page is not the
same as running the code in the head of the page—function code
doesn’t run until the function is called. But code that is placed outside of
a function is executed immediately when the header is loaded. This is the
code that can cause problems.

In the case of the DebugConsole object, it can’t be created directly in
the head of the page because its constructor is very much dependent on
content in the body of the page.

Write down when and where you think the DebugConsole
object should be created to make sure that it can safely access
elements on the page.

But what about functions
that appear in the head?
Aren’t they wrong too?

Download at WoweBook.Com

524 Chapter 11

The peskiest errors of all: runtime
The unloaded document body problem is an example of a runtime
error—an error that only shows its face in certain conditions while
a script is actually running. Sometimes runtime errors only surface
under very specific circumstances, such as a certain type of user input
or a certain number of loop iterations taking place. Runtime errors are
often the toughest errors of all to find because they are so difficult to
predict. Sometimes it’s a challenge just reproducing a runtime error when
someone else encounters it.

Write down when and where you think the DebugConsole
object should be created to make sure that it can safely access
elements on the page.

The browser lets us know when a page has finished loading by firing the
onload event. So the DebugConsole object should be created in response to
the onload event. However, the console variable should still be declared in
the head of the page so that the object is global - we just don’t call the
constructor to actually create the object until the onload event fires.

<body onload="console = new DebugConsole();">

The DebugConsole object is
now constructed in response
to the onload event.

Moving the creation of the DebugConsole object mutilates the debug
console bug

Runtime errors
occur only because
of specific conditions
that take place while
a script is running.

The debug console bug was
a runtime error caused by
attempting to access data
before it had been loaded,
which is an issue that is only
revealed when a script is run.

sharpen solution

Download at WoweBook.Com

you are here 4 525

kill bugs dead

<html>
 <head>
 <title>BSI Case 2: Wi

nning Caller</title>

 <script type="text/ja

vascript" src="debug.js">
</script>

 <script type="text/ja

vascript">

 // Debug console gl
obal variable

 var console = new D
ebugConsole();

 // Total number of

calls

 var callNum = 0;

 function checkWinne

r(form, caller, winningNu
m) {

 // Increment the
call number

 var callNum;

 ++callNum;

 console.displayMs

g("callNum: " + callNum);

 // Check for a wi

nner

 if (callNum = win
ningNum) {

 alert(caller +
", caller number + callN

um + "... today's winner!
");

 form.submit();

 }
 else {

The JavaScript bug trifecta
Along with runtime errors, two other errors we saw earlier round out the
JavaScript bug trifecta: syntax errors, logic errors, and runtime errors.
Any of these kinds of errors are capable of manifesting themselves in
any script, often at the same time! Understanding their differences is an
important part of being able to successfully find and eradicate them.

An error resulting from a violation of
the rules of the JavaScript language,
meaning that the code is unfit to run in
the JavaScript intepreter.

Syntax error

An error caused by bad logic, often involving code that is intended to do one thing but is accidentally coded to do something else. Some code
with logic errors performs exactly
as intended, in which case the
programmer misunderstood the task to begin with.

Logic error

An error revealed only by runtime
conditions, such as the user entering a
certain kind of data into a form that
the script can’t handle or attempting
to access an object before it has been
created or initialized.

Runtime error

Write down the type of error for each of the following error descriptions.

Missing parentheses around the test condition of an if statement.

Forgetting to initialize a counter variable to 0.

Creating a loop that loops beyond the last element in an array.

Forgetting to close a function with a closing curly brace.

Download at WoweBook.Com

526 Chapter 11

It’s not a num-bah
With the debug console finally up and running, it’s now possible to take
a look at the callNum variable as the calls come in without having to
sift through all those alerts. And as it turns out, an old problem Owen
ignored has finally come home to roost. The callNum variable is
showing up as NaN, which means it isn’t a number. But why isn’t it?

Write down the type of error for each of the following error descriptions.

Missing parentheses around the test condition of an if statement.

Forgetting to initialize a counter variable to 0.

Creating a loop that loops beyond the last element in an array.

Forgetting to close a function with a closing curly brace.

Syntax

Logic

Runtime

Syntax

The call number is showing
up as “not a number.”
That’s pretty strange...

console.displayMsg("callNum: " + callNum);

At least the debug
console is working!

A single line of code
sets up a watch on
the callNum variable.

exercise silution

Download at WoweBook.Com

you are here 4 527

kill bugs dead

When watching isn’t enough
Sometimes watching a variable creates more questions than
answers. Why is callNum not a number? Why is it not getting
incremented? What’s the point of this debug console if it only
confirms what you already know...that there’s a problem. So how
do we go about finding out specifically what it is?

Removing code is a great way to simplify
a script while hunting down bugs.
Sometimes less is more when it comes to JavaScript
debugging. In this case, removing code and watching to
see what changes is an excellent idea. But just deleting
code doesn’t sound all that appetizing since the vast
majority of it will remain as is when you’re finished
debugging. We really need a way to disable code, as
opposed to truly removing it.

It might help to try
eliminating code until the call
number changes in value.

What now?

Download at WoweBook.Com

528 Chapter 11

function checkWinner(form, caller,
 winningNum) {

 console.displayMsg("callNum: " +
 callNum);

/*
 // Increment the call number

 var callNum;

 ++callNum;

 // Check for a winner

 if (callNum == winningNum) {

 alert(caller + ", caller numbe
r " + callNum + "... today\'s

winner!");
 form.submit();

 }
 else {
 // Reset the caller field for

the next caller

 var callerField = document.get
ElementById('caller');

 callerField.value = "Next call
er";

 callerField.focus();

 callerField.select();

 }
*/
}

Comments as temporary code disablers
Hiding executable code inside comments is an extremely handy way to disable the
code while debugging. This allows code to be selectively pulled out of the execution
of a script without actually deleting the code. Think of commenting out code as a
means of subtracting lines or chunks of code as needed to help isolate a bug.

What do you think will happen if only the line of code
that increments the call number is added back?

Hey, the call number is now showing
up as 0. So something in the disabled
code is turning it into “not a number.”

Comments are
extremely useful
for temporarily
disabling code.

This multiline comment
disables everything in the function but the code that displays the debug message.

The callNum variable
is now 0, which means
something in the disabled
code is trashing it.

crippled by comments

Download at WoweBook.Com

you are here 4 529

kill bugs dead

Problem solved...sort of
By switching to single-line comments, it becomes possible to be more
selective about the code that is disabled. If the line of code that
increments the callNum variable is added back, the callNum variable
starts working as it should. So one of the remaining lines of disabled code
is causing the problem.

function checkWinner(form, caller, winningNum) { console.displayMsg("callNum: " + callNum);

 // Increment the call number
// var callNum;
 ++callNum;

 // Check for a winner
// if (callNum == winningNum) {
// alert(caller + ", caller number " + callNum + "... today\'s winner!");
// form.submit();
// }
// else {
 // Reset the caller field for the next caller // var callerField = document.getElementById('caller'); // callerField.value = "Next caller";
// callerField.focus();
// callerField.select();
// }
}

Write down what’s wrong with the callNum bug in the debug
console, along with how to fix it.

Uncommenting the increment
line of code finally gets the
callNum variable working.

The callNum variable finally
works like it’s supposed to,
incrementing with each call.

Single-line comments
are used so that
individual lines can be
enabled and disabled.

Download at WoweBook.Com

530 Chapter 11

5
callNum

Killing the line of
code that creates
the local variable
obliterates Bug #4.

Write down what’s wrong with the callNum bug in the debug
console, along with how to fix it.

Another variable named callNum is accidentally created as a local variable
using var inside the checkWinner() function. So the callNum local variable
“hides” the callNum global variable, creating a subtle problem to detect. Since
the local variable isn’t initialized, incrementing it and then comparing it to
the winning number results in “not a number.” The fix is to just remove the
line inside the function that creates the local callNum variable with var.

// Increment the call number
var callNum;
++callNum;

By removing the line of code that
accidentally creates a local variable named
callNum, the function uses the global
callNum variable, as originally intended.

The dangers of shadowy variables
The callNum bug in the radio call-in script is an example of a shadow
variable, which is a variable that accidentally hides another variable with
the same name. The problem arises when a local variable is created with
the same name as a global variable. JavaScript creates the local variable
and gives it precedence in the local block of code. So any changes made
to the local variable do not carry over to the global variable—the local
variable effectively casts a shadow over the global variable, temporarily
hiding it from the script.

callNum

A shadow variable
occurs when local
and global variables
are created with the
same name...not good!

0
Local
variable.

Global
variable.

Same name!

++callNum;

Global code

++callNum;

Local code

This code increments the local
variable, resulting in 1 - the
global variable is shadowed
and remains unchanged.

This code increments
the global variable,
resulting in 6.

sharpen solution

Download at WoweBook.Com

you are here 4 531

kill bugs dead

Case closed!
With a healthy dose of patience and some help from his new debugging
skills., Owen closes the case and bags a promotion to JavaScript Detective
at Bug Scene Investigators.

Case closed!

Detective Owen,
grizzled JavaScript
debugging sleuth

The bug free radio call-in script is complete with a working debug console.

Q: When commenting out code to track down bugs, how do I
know how much code to disable?

A: This is a judgment call that you’ll get better at as you get
more experienced with JavaScript debugging. However, it’s never
wrong to err on the side of disabling most, if not all of the code near
a problematic area of a script. And if a really nasty problem arises,
don’t hesitate to disable all of the script code on a page. And also
don’t forget to temporarily remove any import tags that pull external
code into the page.

There is another approach that can work if you’ve already isolated
a bug to a particular section of script code. This approach involves
disabling a line of code at a time until the bug goes away. So instead
of disabling everything and slowly enabling code until the bug

appears, you slowly disable the code a line at a time until the bug
disappears. The former approach works better if you’re clueless
about where a bug is located, while the latter approach works better
if you’ve isolated the bug’s location to some degree.

Q: What if I intend to create a shadow variable? Is it OK then?

A: That’s like asking if you intend to break your leg, is it OK?
And the answer is no. Just because you deliberately bring pain
and suffering onto yourself doesn’t somehow make it acceptable.
Besides, there’s plenty of hurt to go around in debugging code that is
intended to work perfectly, so you shouldn’t be gunning to up the risk
factor deliberately. So the real answer to the question is that shadow
variables introduce such confusion and sneakiness in JavaScript
code that they should be avoided in all situations.

Download at WoweBook.Com

532 Chapter 11

Make sure parentheses are always matched in pairs.

Make sure curly braces around blocks of code are always

matched in pairs - careful indentation of code helps in

matching pairs of curly braces.

Try hard to avoid typos in identifier names—both variables

and functions can cause big problems if their names aren’t

used consistently.

Be consistent with the use of quotes and apostrophes,

and carefully mix the two in HTML attributes if necessary.

Use escape characters to code characters that have

a special meaning in strings, such as a quote (\”) or an

apostrophe (\’).

Never, ever, ever use = when you mean ==. JavaScript

probably won’t see it as an error but your code will not

work as intended.

Make sure an object has been created before attempting to

access it—this primarily applies to web page elements, which

aren’t created until just before the onload event is triggered.

Don’t ever name local variables and global variables the

same thing because the local variable will shadow the

global one, resulting in some very unpredictable behavior.

Owen’s bug-squashing checklist

handy dandy checklist

Download at WoweBook.Com

you are here 4 533

kill bugs dead

JavaScriptcross
Before you turn your newfound respect of bugs into
an ant farm purchase, try your hand at this puzzle.

Untitled Puzzle
Header Info 1

Header Info 2

etc...

1 2 3

4 5 6

7

8

9

10 11

12

13

14

Across
2. Use this to quickly take a peek at a variable.
4. Use apostrophes mixed with these when placing JavaScript
strings in HTML attributes.
7. The special window browsers use to display errors.
10. An error that violates JavaScript language rules.
12. An error that gives the wrong result despite being perfectly
legal in JavaScript.
13. A variable that hasn't been assigned a value is
14. The custom object Owen created to battle bugs.

Down
1. Use these to temporarily disable code.
3. Make one of these on a variable name and there will be
problems.
5. The current Web browser of choice for JavaScript debugging.
6. Miss one of these surrounding a block of code and you'll have
trouble.
8. The number of bug fragments allowed in a chocolate bar.
9. An error that only reveals itself when a script is running.
11. Use this to code special characters in strings.

Untitled Puzzle
Header Info 1

Header Info 2

etc...

1 2 3

4 5 6

7

8

9

10 11

12

13

14

Across
2. Use this to quickly take a peek at a variable.
4. Use apostrophes mixed with these when placing JavaScript
strings in HTML attributes.
7. The special window browsers use to display errors.
10. An error that violates JavaScript language rules.
12. An error that gives the wrong result despite being perfectly
legal in JavaScript.
13. A variable that hasn't been assigned a value is
14. The custom object Owen created to battle bugs.

Down
1. Use these to temporarily disable code.
3. Make one of these on a variable name and there will be
problems.
5. The current Web browser of choice for JavaScript debugging.
6. Miss one of these surrounding a block of code and you'll have
trouble.
8. The number of bug fragments allowed in a chocolate bar.
9. An error that only reveals itself when a script is running.
11. Use this to code special characters in strings.

Download at WoweBook.Com

534 Chapter 11

JavaScriptcross SolutionUntitled Puzzle
Header Info 1

Header Info 2

etc...

C
1

A
2

L E R T
3

Q
4

U O T E S F
5

C
6

Y

M I U P

M E
7

R R O R C O N S O L E

E S
8

E L

N I F Y

T X O B R
9

S
10

Y N T A X R U E
11

Y A N S

C T L
12

O G I C

U
13

N D E F I N E D A

S M P

D
14

E B U G C O N S O L E

Across
2. Use this to quickly take a peek at a variable. [ALERT]
4. Use apostrophes mixed with these when placing JavaScript
strings in HTML attributes. [QUOTES]
7. The special window browsers use to display errors.
[ERRORCONSOLE]
10. An error that violates JavaScript language rules. [SYNTAX]
12. An error that gives the wrong result despite being perfectly
legal in JavaScript. [LOGIC]
13. A variable that hasn't been assigned a value is
[UNDEFINED]
14. The custom object Owen created to battle bugs.
[DEBUGCONSOLE]

Down
1. Use these to temporarily disable code. [COMMENTS]
3. Make one of these on a variable name and there will be
problems. [TYPO]
5. The current Web browser of choice for JavaScript debugging.
[FIREFOX]
6. Miss one of these surrounding a block of code and you'll have
trouble. [CURLYBRACES]
8. The number of bug fragments allowed in a chocolate bar.
[SIXTY]
9. An error that only reveals itself when a script is running.
[RUNTIME]
11. Use this to code special characters in strings. [ESCAPE]

JavaScriptcross solution

Download at WoweBook.Com

you are here 4 535

kill bugs dead

 Turning the other cheek is an
 erroneous approach that might overload
 your tolerance for bugs. The overall
 ickiness of bugs will cause the debilitation
 of your code, which is a problem.

What do all JavaScript bugs deserve?

Case 1CLOSED

Case 2

CLOSED

Cases closed!

Hey, it’s cool... I’m
not a bug. Honest.

Page Bender

It’s a meeting of the minds!

Fold the page vertically
to line up the two brains
and solve the riddle.

Download at WoweBook.Com

Download at WoweBook.Com

this is a new chapter 537

dynamic data12

Touchy-Feely
Web Applications

The modern Web is a very responsive place where pages
are expected to react to the user’s every whim. Or at least that’s

the dream of many web users and developers. JavaScript plays a vital role in this

dream through a programming technique known as Ajax that provides a mechanism for

dramatically changing the “feel” of web pages. With Ajax, web pages act much more like

full-blown applications since they are able to quickly load and save data dynamically

while responding to the user in real time without any page refreshes or browser trickery.

Don’t let my eyes fool you.
Behind this pretty face is raw

emotion just waiting to get out. In
fact, my dynamic personality is my

biggest asset.

Download at WoweBook.Com

538 Chapter 12

Yearning for dynamic data
Remember Ruby, cube puzzle afficionado and blogger? Ruby loves her
JavaScript-powered YouCube blog but she is frustrated with having to edit
the HTML file for the entire page just to add new entries. She’d like to
be able to somehow separate the blog entries from the HTML code that
describes the blog page, freeing her up to focus on the blog content itself.

Adding a new blog entry requires Ruby to edit the HTML file for the YouCube web page.

I’d really like to be
able to add new blog
entries without having
to edit HTML code.

Adding new blog
entries to YouCube
shouldn’t require
editing the web page.

Frustrated blogger and
cube dreamer, Ruby.

I want more...dynamic data

Download at WoweBook.Com

you are here 4 539

dynamic data

A data-driven YouCube
Ruby is onto something. A version of her blog that separates blog content
from web page structure involves dynamic data, data that is fed into a
page dynamically as the page is processed by the browser. Web pages
built out of dynamic data are known as data-driven pages because the
page really just defines a structure that gets filled out by the data. In other
words, the data is in charge of the page’s content.

<html>
 <head>

 <title>YouCube ‑
 The Blog for Cube P

uzzlers</title>

 <script type=”te

xt/javascript” src=”
ajax.js”> </script>

 <script type=”te
xt/javascript” src=”

date.js”> </script>

 <script type=”te

xt/javascript”>

 // Custom Date
 function to display

 a date in MM/DD/YYY
Y format

 Date.prototype
.shortFormat = funct

ion() {

 return (this
.getMonth() + 1) + “

/” + this.getDate()
+ “/” + this.getFull

Year();

 }

 // Blog object
 constructor

 function Blog(
body, date, image) {

 // Assign th
e properties

 this.body =
body;

 this.date =
date;

 this.image =
 image;

 }
 ...

 </script>

 </head>

 <body onload=”load
Blog();”>

 <h3>YouCube ‑ Th
e Blog for Cube Puzz

lers</h3>

 <img src=”cube.p
ng” alt=”YouCube” />

 <input type=”but
ton” id=”search” val

ue=”Search the Blog”
 disabled=”disabled”

 onclick=”searchBlog
();” />

 <input type=”tex
t” id=”searchtext” n

ame=”searchtext” val
ue=”” />

 <div id=”blog”><
/div>

 <input type=”but
ton” id=”showall” va

lue=”Show All Blog E
ntries” disabled=”di

sabled” onclick=”sho
wBlog();” />

 <input type=”but
ton” id=”viewrandom”

 value=”View a Rando
m Blog Entry” disabl

ed=”disabled” onclic
k=”randomBlog();” />

 </body>

</html>

<blog>
 <title>YouCube ‑ The Blog for Cube Puzzlers</title> <author>Puzzler Ruby</author>
 <entries>
 <entry>
 <date>08/14/2008</date>
 <body>Got the new cube I ordered. It's a real pearl.</body> </entry>
 <entry>
 <date>08/19/2008</date>
 <body>Solved the new cube but of course, now I'm bored and shopping for a new one.</body>
 </entry>
 <entry>
 <date>08/16/2008</date>
 <body>Managed to get a headache toiling over the new cube. Gotta nap.</body> </entry>
 <entry>
 <date>08/21/2008</date>
 <body>Found a 7x7x7 cube for sale online. Yikes! That one could be a beast.</body> </entry>
 <entry>
 <date>08/29/2008</date>
 <body>Met up with some fellow cubers to discuss the prospect of a 7x7x7 cube. Mixed feelings.</body>
 </entry>
 <entry>
 <date>08/27/2008</date>
 <body>Went ahead and ordered the scary 7x7x7 cube. Starting a mental exercise regimen to prepare.</body>
 </entry>
 <entry>
 <date>09/3/2008</date>
 <body>Attended a rally outside of a local toy store that stopped carrying cube puzzles. Power to the puzzlers!</body>
 </entry>
 <entry>
 <date>09/5/2008</date>
 <body>Got the new 7x7x7 cube. Could be my last blog post for a while... </body> </entry>
 <entry>
 <date>09/19/2008</date>
 <body>Wow, it took me a month but the new cube is finally solved!</body> 
 </entry>
 <entry>
 <date>09/24/2008</date>
 <body>I dreamed last night a huge cube was chasing me, and it kept yelling my name backwards... Ybur!</body>
 </entry>
 </entries>
</blog>

Blog data

Web page

JavaScript is responsible
for processing the blog
data and blending it into
a final HTML Web page.

The blog data is stored in
a physically separate file
that can be edited without
touching the web page.

The web page contains HTML
code for web page structure plus JavaScript code for incorporating dynamic blog data into the page.

With the help of JavaScript, raw blog data is dynamically merged with
HTML code to generate a final YouCube page that looks identical to the
original. But this data-driven page is assembled from separate parts: the
structural page and the blog data. With the blog data broken out into its
own file, Ruby is free to manipulate the blog content separate from the
HTML, CSS, and JavaScript code for the web page.

youcube.html

<html>
 <head>
 ...
 </head>

 <body>
 ...
 </body>
</html>

blog.xml

<blog>
 <title>...

 <author>...

 <entries>
 <entry>
 ...
 </entry>
 ...
 </entries>
</blog>

+=

Ruby only has to edit this file to update her new
data-driven blog.

The blog entries are
fed to the blog page
from a separate file.

Ruby’s files for the data-
driven pages are available at
http://www.headfirstlabs.
com/books/hfjs/.

Download at WoweBook.Com

540 Chapter 12

Dynamic data requires a little more coding effort up
front but it pays huge returns on the back end.
Although a page driven by dynamic data certainly requires some
additional planning and effort up front, it more than pays for itself
in the long run with quick and easy page updates. Besides, JavaScript
has built-in support for dynamic data thanks to a nifty programming
technique dubbed Ajax.

Dynamic data sounds
pretty complicated. I bet it
requires a bunch of messy
JavaScript code, right?

stitch in time saves nine

Download at WoweBook.Com

you are here 4 541

dynamic data

Ajax is all about communication
Ajax makes dynamic data possible by allowing for tiny

“conversations” between the client web browser and web
server. More specifically, a script is able to ask the server for
some data, like a collection of blog entries, and the server
delivers it using Ajax. The script then takes the blog data
and dynamically incorporates it into the page.

What does “XML” mean in the context of blog data?
How do you think it helps with dynamic data?

Server

Client
youcube.html

<html>
 <head>
 ...
 </head>

 <body>
 ...
 </body>
</html>

Ajax allows a web page
to dynamically receive
data from a web server.

blog.xml

<blog>
 <title>...
 <author>...
 <entries>
 <entry>
 ...
 </entry>
 ...
 </entries>
</blog>

The client web page requests
the blog data from the web
server using Ajax.

The server responds by
sending the blog data
to the client.

JavaScript serves as the intermediary, initiating the request, handling the response, and incorporating the data into the web page.

The client initiates an
Ajax request, and then
waits for a response.

The server receives
the request, and
responds with the
blog data.

Upon receiving the server’s response, the client takes the blog data and adds it to the page instantly, without a page reload.

Web browser.

Download at WoweBook.Com

542 Chapter 12

An HTML for everything: XML
The “ML” in HTML stands for markup language, and it refers to the
fact that HTML uses tags and attributes to create hypertext (the “HT”).
Just as HTML is used to create hypertext web pages, XML is another
markup language that is used to create, well, anything you want. That’s
what the “X” means—anything! The idea is that there are all kinds of
data that could benefit from being stored as tags and attributes. So why
not extend the reach of markup languages to solve other data problems?

<html>
 <head>

 <title>YouCube ‑
 The Blog for Cube P

uzzlers</title>

 <script type=”te

xt/javascript” src=”
ajax.js”> </script>

 <script type=”te
xt/javascript” src=”

date.js”> </script>

 <script type=”te

xt/javascript”>

 // Custom Date
 function to display

 a date in MM/DD/YYY
Y format

 Date.prototype
.shortFormat = funct

ion() {

 return (this
.getMonth() + 1) + “

/” + this.getDate()
+ “/” + this.getFull

Year();

 }

 // Blog object
 constructor

 function Blog(
body, date, image) {

 // Assign th
e properties

 this.body =
body;

 this.date =
date;

 this.image =
 image;

 }
 ...

 </script>

 </head>

 <body onload=”load
Blog();”>

 <h3>YouCube ‑ Th
e Blog for Cube Puzz

lers</h3>

 <img src=”cube.p
ng” alt=”YouCube” />

 <input type=”but
ton” id=”search” val

ue=”Search the Blog”
 disabled=”disabled”

 onclick=”searchBlog
();” />

 <input type=”tex
t” id=”searchtext” n

ame=”searchtext” val
ue=”” />

 <div id=”blog”><
/div>

 <input type=”but
ton” id=”showall” va

lue=”Show All Blog E
ntries” disabled=”di

sabled” onclick=”sho
wBlog();” />

 <input type=”but
ton” id=”viewrandom”

 value=”View a Rando
m Blog Entry” disabl

ed=”disabled” onclic
k=”randomBlog();” />

 </body>

</html>

HTML

<blog>
 <title>YouCube ‑ The Blog for Cube Puzzlers</title> <author>Puzzler Ruby</author>
 <entries>
 <entry>
 <date>08/14/2008</date>
 <body>Got the new cube I ordered. It's a real pearl.</body> </entry>
 <entry>
 <date>08/19/2008</date>
 <body>Solved the new cube but of course, now I'm bored and shopping for a new one.</body>
 </entry>
 <entry>
 <date>08/16/2008</date>
 <body>Managed to get a headache toiling over the new cube. Gotta nap.</body> </entry>
 <entry>
 <date>08/21/2008</date>
 <body>Found a 7x7x7 cube for sale online. Yikes! That one could be a beast.</body> </entry>
 <entry>
 <date>08/29/2008</date>
 <body>Met up with some fellow cubers to discuss the prospect of a 7x7x7 cube. Mixed feelings.</body>
 </entry>
 <entry>
 <date>08/27/2008</date>
 <body>Went ahead and ordered the scary 7x7x7 cube. Starting a mental exercise regimen to prepare.</body>
 </entry>
 <entry>
 <date>09/3/2008</date>
 <body>Attended a rally outside of a local toy store that stopped carrying cube puzzles. Power to the puzzlers!</body>
 </entry>
 <entry>
 <date>09/5/2008</date>
 <body>Got the new 7x7x7 cube. Could be my last blog post for a while... </body> </entry>
 <entry>
 <date>09/19/2008</date>
 <body>Wow, it took me a month but the new cube is finally solved!</body> 
 </entry>
 <entry>
 <date>09/24/2008</date>
 <body>I dreamed last night a huge cube was chasing me, and it kept yelling my name backwards... Ybur!</body>
 </entry>
 </entries>
</blog>

XML

Web page

Shopping transaction

Blog entries

Song list

What makes XML so powerful is its flexibility. Unlike HTML,
which has a fixed set of tags and attributes, XML doesn’t
define any tags and attributes—it just sets the rules for how tags
and attributes are created and used. It’s up to each particular
application of XML to spell out the specifics of the tags and
attributes that represent the specific data.

XML is a markup
language used to
format any kind
of data.

an html by any other name

Download at WoweBook.Com

you are here 4 543

dynamic data

XML lets you tag YOUR data YOUR way
The real beauty of XML is that it can turn anyone into a custom
tagmaker by using a little tag and attribute alchemy to cook up an entirely
custom markup language for any purpose. There are certainly lots of
existing XML languages that have already been created to solve lots of
different problems, and it’s not a bad idea to use one of those if it happens
to fit your needs. But creating a custom markup language of your very
own is a tough temptation to resist.

Match the following tags with their descriptions, and then write down next to each description if
the tag is an HTML or XML tag.

<itunes:author> Bold text in a web page.

 The title of an online news feed.

<title> An input control in a web page.

 Text that is converted to speech for a telephone caller.

<input> The artist of an iTunes podcast.

<prompt> Inline content in a web page.

<movie>

 <title>Gleaming the Cube</title>

 <releaseDate>01/13/1989</releaseDate>

 <director>Graeme Clifford</director>

 <summary>A skateboarder investigates the death of his adopted brother.</summary>

</movie>

Even though you’ve never seen this example XML markup language,
which is entirely custom, the descriptive tags make it possible to decipher
the data. Even more importantly, the tags are very specific to the data
being stored—it just makes sense to use a tag named <director> when
storing the director of a movie!

Similar to HTML code,
this XML code consists of
a hierarchy of elements.

The movie details
are contained within
the <movie> tag.

Each aspect of the
movie is stored within
its own unique tag.

Download at WoweBook.Com

544 Chapter 12

<blog>
 <title>YouCube ‑ The Blog for Cube Puzzlers</title> <author>Puzzler Ruby</author>
 <entries>
 <entry>
 <date>08/14/2008</date>
 <body>Got the new cube I ordered. It's a real pearl.</body> </entry>
 <entry>
 <date>08/19/2008</date>
 <body>Solved the new cube but of course, now I'm bored and shopping for a new one.</body>
 </entry>
 <entry>
 <date>08/16/2008</date>
 <body>Managed to get a headache toiling over the new cube. Gotta nap.</body> </entry>
 <entry>
 <date>08/21/2008</date>
 <body>Found a 7x7x7 cube for sale online. Yikes! That one could be a beast.</body> </entry>
 <entry>
 <date>08/29/2008</date>
 <body>Met up with some fellow cubers to discuss the prospect of a 7x7x7 cube. Mixed feelings.</body>
 </entry>
 <entry>
 <date>08/27/2008</date>
 <body>Went ahead and ordered the scary 7x7x7 cube. Starting a mental exercise regimen to prepare.</body>
 </entry>
 <entry>
 <date>09/3/2008</date>
 <body>Attended a rally outside of a local toy store that stopped carrying cube puzzles. Power to the puzzlers!</body>
 </entry>
 <entry>
 <date>09/5/2008</date>
 <body>Got the new 7x7x7 cube. Could be my last blog post for a while... </body> </entry>
 <entry>
 <date>09/19/2008</date>
 <body>Wow, it took me a month but the new cube is finally solved!</body> 
 </entry>
 <entry>
 <date>09/24/2008</date>
 <body>I dreamed last night a huge cube was chasing me, and it kept yelling my name backwards... Ybur!</body>
 </entry>
 </entries>
</blog>

XML

XML is just text
Similar to HTML, XML data is just text, which means it is stored in a
normal plain text file. However, XML files are named with a .xml file
extension, as opposed to the .html or .htm extensions used in HTML files.

Match the following tags with their descriptions, and then write down next to each description if
the tag is an HTML or XML tag.

<itunes:author> Bold text in a web page.

 The title of an online news feed.

<title> An input control in a web page.

 Text that is converted to speech for a telephone caller.

<input> The artist of an iTunes podcast.

<prompt> Inline content in a web page.

XML
HTML
XML

HTML
HTML
XML

So the data-driven
version of YouCube can
be updated by editing
an XML document... cool!

blog.xml

<blog>
 <title>...
 <author>...
 <entries>
 <entry>
 ...
 </entry>
 ...
 </entries>
</blog>

XML data is typically
stored in files with a
.xml file extension.

exercise solution

Download at WoweBook.Com

you are here 4 545

dynamic data

XML + HTML = XHTML
They may have different file extensions but XML and HTML have a very
important connection, and it’s called XHTML. XHTML is a modern
version of HTML that follows the stricter rules of XML. For example,
every starting tag in an XHTML web page must have a closing tag.
HTML plays fast and loose with its syntax, meaning that you can get away
without pairing up tags such as <p> and </p>. XHTML isn’t so forgiving,
and requires such tags to always appear as matched pairs.

This is a paragraph of text in HTML.<p> <p>This is a paragraph of text in XHTML.</p>

The <p> tag is often used by itself in HTML code to denote the start or end of a paragraph.

Another important difference between HTML and XHTML involves
empty tags, such as
, which must be coded with a space and then a
forward slash at the end to indicate that there is no closing tag.

A space and forward slash are required in all empty tags in XHTML.

One more important distinction between HTML and XHTML is that
XHTML requires all attribute values to be enclosed in quotes.

The attribute value isn’t
in quotes, which violates
the rules of XHTML.

XHTMLHTML

Tags containing content must always
appear as matched pairs in XHTML.

This is just a sentence.

HTML
This is just a sentence.

XHTML

The empty line break tag
is often coded in HTML
without a forward slash.

Go home

HTML
Go home

XHTML

All XHTML attribute values must
appear within quotes.

Although XHTML doesn’t directly factor into Ruby’s immediate needs in
terms of modeling blog data in XML, it does illuminate some of the most
important syntax rules of XML, which apply to all XML-based languages,
including Ruby’s custom blog data language.

XHTML is a version of
HTML that adheres to
the more rigid syntax
rules of XML.

Download at WoweBook.Com

546 Chapter 12

Tonight’s talk: HTML and XML drop the dime on web data

HTML:
You know, you’ve really made things confusing for
me. Here I am the backbone of the Web, and now
many people are confused about me thanks to you.

But you’re still no good without me because
browsers only display HTML code. They don’t even
know what to make of you.

How is that possible? Who cares about data with no
appearance?

All that stuff can be seen thanks to me—it’s all right
there on the Web.

I see. So are you suggesting that we actually work
together?

That’s a huge relief !

XML:

It’s not my fault that you have tunnel vision, always
thinking about web pages. I broadened my mind,
and in doing so I can represent any kind of data.

Hey, I’m a mysterious fella. The truth is I’m a man
without a face—all substance and no appearance. I
need you when it comes time to reveal myself.

Wow, you really don’t get out much, do you? The
rest of the world operates on data that can’t be seen
the majority of the time. Bank transactions, political
polls, weather conditions, you name it.

That’s true, but how do you think it gets stored
before it makes it to a web browser? Not as
paragraphs and tables, I can tell you that. It often
gets stored using me because I provide lots of
structure and context—I make data easy to process.

Absolutely! I have no concept of what data looks
like. Instead, I focus on what it means. As long as
people keep using web browsers, I’ll continue to
need your help displaying the data I represent.

The latest version of HTML
has been reformulated using
XML, and is called XHTML.

XHTML vs. XML

Download at WoweBook.Com

you are here 4 547

dynamic data

Invent your own XML language for storing a blog, and use the language
to code a blog entry. Items such as title, date, author, and the entry itself
should be considered.

<blog>

</blog>

XML and the YouCube blog data
XHTML is a great application of XML that is rapidly improving the
structure and reliability of web pages. With respect to the YouCube blog,
however, Ruby needs a custom XML language that models her specific blog
data. This requires assessing the different data required of the blog, and
considering how it might fit into the context of hierarchical XML tags.

<author> Blog.prototype.signature = "by Puzzler Ruby";

blog[0] = new Blog("Got the new cube I ordered. It's a real pearl.",

 new Date("08/14/2008"));<body>

<date>

<entry>

<entries>

<title>

<blog>

YouCube ‑ The Blog for Cube Puzzlers

Download at WoweBook.Com

548 Chapter 12

Q: Why not just store blog data as regular unformatted text?

A: You could but then it would put a huge burden on the script
code to sift through the data and try to break it apart into separate
blog entries with their own dates and bodies. XML adds a predictable
structure to data so that you can easily distinguish between separate
fields of data, such as unique blog entries with their own dates and
bodies, not to mention the title and author of the blog itself.

Q: Is the <entries> tag really necessary in the XML
blog data?

A: It isn’t strictly necessary but it does make the data format
more structured and easier to understand. For example, without the
<entries> tag in the previous blog data, it would be impossible
to tell that the blog format is capable of supporting multiple
<entry> tags but only one <title> and <author> tag.
The <entries> tag implies that there is a collection of multiple
blog entries, which gives the data more structure and makes it more
obvious how the data should be used.

Q: What is the connection between XML and Ajax?

A: Ajax was once taken to be an acronym for Asynchronous
JavaScript And XML, so XML was at one point directly tied to Ajax.
That acronym is now considered passé, as the role of Ajax has
widened to not always require XML as part of the equation. But the
reality is that XML still forms the basis of most Ajax applications
because it provides such a great mechanism for modeling data.
As we find out later in the chapter, there is a connection between
Ajax and XML in the way that JavaScript supports Ajax. JavaScript
doesn’t lock you into using XML as a data format for carrying out Ajax
requests and responses, but it does make them much easier when
handling all but the most trivial of data. So although Ajax purists may
claim that XML and Ajax have no real connection to one another, in
practical terms they usually go hand in hand. The old acronym still
rings true most of the time even if it has fallen out of favor. We’ll
explore the “asynchronous” part of the acronym a bit later.

Invent your own XML language for storing a blog, and use the
language to code a blog entry. Items such as title, date, author, and
the entry itself should be considered.

 <title>YouCube - The Blog for Cube Puzzlers</title>
 <author>Puzzler Ruby</author>
 <entries>
 <entry>
 <date>11/14/2007</date>
 <body>Got the new cube I ordered. It’s a real pearl.</body>
 </entry>
 </entries>

The entire blog is contained
inside the
<blog> tag. The <title> tag

houses the blog title.

Guess what tag holds
the blog author?The collection

of blog entries
is stored within
the <entries>
tag. Each blog entry is represented by the <entry> tag.

The date and body of
each blog entry have their
own respective tags.

<blog>

</blog>

sharpen solution

Download at WoweBook.Com

you are here 4 549

dynamic data

XML alone isn’t dynamic but it happens to mesh
quite well with both Ajax and the DOM.
XML is the data format most commonly used with Ajax, and
therefore is the logical candidate for representing blog data that will
be sent back and forth from server to client in the data-driven version
of YouCube. It’s the highly structured nature of XML that makes it
so ideal for shuttling data.

And XML’s similarity to HTML (XHTML) makes it possible to
use the DOM to access XML data as a tree of nodes. This means
you can write JavaScript code that traverses a tree of XML nodes,
carefully isolating desired data, and then incorporating it into a web
page dynamically. It’s all these things and more that make XML a
great data storage solution for building dynamic, data-driven pages.

I still don’t get it. How does storing data
in a special format make it dynamic?

Download at WoweBook.Com

550 Chapter 12

Injecting YouCube with Ajax
With a shiny new XML blog document in hand, Ruby is ready to
dynamically load it into the YouCube page with the help of Ajax.

How exactly does
Ajax allow XML data to
be dynamically loaded
into a web page?

youcube.html

<html>
 <head>
 ...
 </head>

 <body>
 ...
 </body>
</html>

Ajax revolves around the concept of requests
and responses as the means of carrying out
the communication of data between the client
browser and the server.

The Request

The browser sends
the request to the
server and waits
for a response.

The request is the
name of the XML
file containing the
blog data.

The server receives
the request and
gets to work
creating a response.

1

2

Prior to sending the Ajax request, the web page doesn’t have the
blog data, and therefore isn’t
able to show the blog entries.

blog.xml

Server

adding ajax

Download at WoweBook.Com

you are here 4 551

dynamic data

What kind of JavaScript code do you think is responsible
for working with Ajax requests and responses?

youcube.html

<html>
 <head>
 ...
 </head>

 <body>
 ...
 </body>
</html>

The Response

The server creates a
response for the browser
by packaging up the data
in the blog file.

3

The browser
unpackages the XML
data in the response
and carefully
incorporates it into
the web page.

4

The entire contents of the XML blog file are returned in the Ajax response.

Once the XML data is integrated into the HTML code of the web page, it can be seen in the browser.

The JavaScript code responsible
for creating the Ajax request
and handling the response is run
within the web page.

A server-side script (not JavaScript) is sometimes required to process Ajax requests and prep the response data.

blog.xml

<blog>
 <title>...
 <author>...
 <entries>
 <entry>
 ...
 </entry>
 ...
 </entries>
</blog>

Server

Download at WoweBook.Com

552 Chapter 12

JavaScript to the Ajax rescue: XMLHttpRequest
JavaScript includes a built-in object called XMLHttpRequest that is used to initiate
Ajax requests and handle Ajax responses. This object is fairly complex, containing
several different methods and properties that work together to support Ajax.

abort()

XMLHttpRequest

open()

send()

readyState

responseText

responseXML

onreadystatechange

status

A reference to the function
that is called when the state
of the request changes.

onreadystatechange

The HTTP status code of the

request, such as 404 (not found)

or 200 (OK).

status

The numeric state of the request:
0 (uninitialized), 1 (open), 2 (sent),
3 (receiving), or 4 (loaded).

readyState

The response data returned
from the server, as a string
of plain text.

responseText

The response data
returned from the server,
as an object consisting of
a tree of XML nodes.

responseXML

Cancel the request.
abort()

Prepare a request by
specifying its type and URL,
among other things.

open()

Send the request to the
server for processing.

send()

These two properties store
the data returned by the
server in the Ajax response.

These two properties
together can be used to
determine if the Ajax
request has finished
with a valid response.

This method is only used if the Ajax request needs to be cancelled.

These two methods
work together to
get an Ajax request
ready and then send
it to the server.

This property is unique in that it
holds a reference to the custom event
handler that is called when the state
of the Ajax request changes - this
event handler function is where the
response is processed.

There are a few other methods and
properties in the XMLHttpRequest
object but these are the most
important ones.

the JavaScript part of the equation

Download at WoweBook.Com

you are here 4 553

dynamic data

XMLHttpRequest is pretty complex
The XMLHttpRequest is incredibly powerful and also surprisingly flexible.
But with that power and flexibility comes complexity, meaning that even the
most basic of Ajax requests requires a fair amount of JavaScript code. This
is thanks in part to browser inconsistencies, but it also doesn’t help that the
different options available for fine-tuning the object’s behavior can be confusing
when all you really need to do is quickly move some data dynamically.

As an example, consider that the following code is necessary just to create an
XMLHttpRequest object that will work across a variety of browsers:

The XMLHttpRequest
object is powerful but
also somewhat of a
pain to use.

After the XMLHttpRequest object is created, it’s time to set the request
handler function and then open the request.

When opening a request, you must specify the type ("GET" or "POST"),
as well as the server URL and whether or not the request is asynchronous.
An asynchronous request takes place in the background without
making a script wait, so pretty much all Ajax requests are asynchronous.

var request = null;
if (window.XMLHttpRequest) {
 try {
 request = new XMLHttpRequest();
 } catch(e) {
 request = null;
 }
// Now try the ActiveX (IE) version
} else if (window.ActiveXObject) {
 try {
 request = new ActiveXObject("Msxml2.XMLHTTP");
 // Try the older ActiveX object for older versions of IE
 } catch(e) {
 try {
 request = new ActiveXObject("Microsoft.XMLHTTP");
 } catch(e) {
 request = null;
 }
 }
}

The code has to try a few
different approaches to
creating the XMLHttpRequest
object because some browsers
(IE) support it differently.

The try-catch statement is an advanced JavaScript error-handling mechanism that allows a script to gracefully deal with runtime errors.

request.onreadystatechange = handler;
request.open(type, url, true); // always asynchronous (true)

This is the custom function that is called
when the server responds to the request.

Geek Bits
The problem
with creating

an XMLHttpRequest
object is that browsers
must provide their own
implementations of the
object. The good news
is that the methods and
properties are consistent
across all browsers—it’s
the object creation that
has to factor in browser
differences.

Opening the request gets it ready to be sent, and also determines what kind of request it is (GET or POST).

Download at WoweBook.Com

554 Chapter 12

Of gets and posts
The type of an Ajax request is very important, and reflects not only what
is being sent to the server, but also the intent of the request. One type of
request, also known as a request method, is GET, which is used primarily
to retrieve data from the server without affecting anything on the server.
The other type of request, POST, typically involves sending data to the
server, after which the state of the server usually changes somehow in
response to the data that was sent.

Used for data retrieval that doesn’t

change anything on the server. Small

amounts of data can still be sent to the

server in the URL if necessary. GET is

perfect for retrieving the blog data from

an XML file on the server.

GET

Used to send data to the server that somehow causes a change in the state of the server, such as saving data to a database. Data can still be returned in a response. POST is ideal for a task such as dynamically adding a new blog entry to the blog using a web form.

POST

The two types of
requests used with Ajax
are GET and POST, the
same ones used when
submitting HTML forms.

Server

Client Client

GET Request

GET Response

POST Response

POST Request

The GET request
has no effect on the
server because it’s
purely a blog retrieval.

The POST request changes the server because the new blog entry is stored.

New blog entry
to be stored on
the server.

Name of XML
file containing
the entire blog.

Date: 09/26/2008

Body: "These drea
ms just..."

Image: cubeapart.
png

blog.xml

blog.xml

<blog>

 <title>..
.

 <author>.
..

 <entries>

 <entry>

 ...

 </entry
>

 ...

 </entries
>

</blog>

i get it

Download at WoweBook.Com

you are here 4 555

dynamic data

Get or Post? A request with XMLHttpRequest
After deciding on a request type and specifying it when opening the request, it’s
finally time to send the request to the server for processing. The specific code to
submit a request varies according to whether the request is a GET or a POST.

 Don’t stress out over all this GET and POST stuff.

If you don’t have any experience with GET and POST from
HTML, don’t worry about it. They will make more sense
as their roles in YouCube continue to get more solidified.

XML blog data is

requested from the

blog.xml file on the

server via a GET

request.

Client Server

GET Request

blog.xml

POST Request

Date: 09/26/2008

Body: "These drea
ms just..."

Image: cubeapart.
png

A new blog entry is

sent to the server in

a POST request.

request.open("POST", "addblogentry.php", true); // always asynchronous (true)

request.setRequestHeader("Content‑Type", "application/x‑www‑form‑urlencoded; charset=UTF‑8");

request.send("09/26/2008&These dreams just...&cubeapart.png");

The request involves data being sent to
the server, so the data type must be set.

The request is sent with the data passed along in the
argument to the send() method.

The POST request and server URL, in
this case a server script, are specified
when the request is opened.

The request is sent with
no data, which is why the
argument to send() is null.

request.open("GET", "blog.xml", true); // always asynchronous (true)

request.send(null);

The GET request and URL are specified when the request is opened.

Download at WoweBook.Com

556 Chapter 12

Make XMLHttpRequest less painful
Although the XMLHttpRequest object is incredibly powerful, it comes
with a fairly steep learning curve, as you no doubt already realize. Not
only that, but it requires a certain amount of “boilerplate” code that
has to go into every Ajax application that uses it. For this reason, lots
of third party libraries have been created to make it easier to use the
XMLHttpRequest object. Many of these libraries extend the features of
JavaScript, which is great but requires even more learning.

For this reason, a helpful strategy for YouCube is to create a minimal
custom object that serves as a convenient assistant to XMLHttpRequest,
allowing us to focus purely on doing things with Ajax, as opposed to
wrestling with the XMLHttpRequest object or mastering some third
party library. This custom object, AjaxRequest, takes a minimalist
approach to making the XMLHttpRequest object more usable.

AjaxRequest

getReadyState()

getResponseText()

getResponseXML()

send()

getStatus()

request

abort()

XMLHttpRequest

open()

send()

readyState

responseText

responseXML

onreadystatechange

status

The underlying XMLHttpRequest
object is stored in the request
property of the custom
AjaxRequest object.

The custom
AjaxRequest
object eases the
pain of making
Ajax requests.

Most of the methods
in AjaxRequest simply
access properties of the
XMLHttpRequest object.

The send() method is the real workhorse of AjaxRequest,
taking care of the details of opening and sending a request.

In addition to the send() method, which we delve into in a moment, the
constructor for AjaxRequest is where Ajax is dramatically simplified
as compared to using the XMLHttpRequest object alone. This is all it
takes to create an AjaxRequest object that is capable of initiating Ajax
requests in any modern browser:

var ajaxReq = new AjaxRequest();

The constructor for
AjaxRequest automatically
factors in all the intricacies
of creating the underlying
XMLHttpRequest object.

growing pains: simplifying ajax

Download at WoweBook.Com

you are here 4 557

dynamic data

AjaxRequest.prototype.send = fun
ction(type, url, handler, postDa

taType, postData) {

 if (this.request != null) {

 // Kill the previous request

 this.request.abort();

 // Tack on a dummy parameter

 to override browser caching

 url += "?dummy=" + new Date(
).getTime();

 try {

 this.request.onreadystatec

hange = ;

 this.request.open(

 , , true); // always
asynchronous (true)

 if (type.toLowerCase() ==

"get") {

 // Send a GET request; n
o data involved

 this.request.send(

);

 } else {

 // Send a POST request;
the last argument is data

 this.request.setRequestH

eader("Content‑Type",
);

 this.request.send(

);

 }
 } catch(e) {

 alert("Ajax error communic
ating with the server.\n" + "Det

ails: " + e);

 }
 }
}

JavaScript Magnets
The custom AjaxRequest object wraps up the standard XMLHttpRequest object,
providing a much simpler interface for sending Ajax requests and handling their responses.
Problem is, the send() method of the AjaxRequest object is missing a few key pieces of
code. Use the magnets to finish the code for the method.

postDataType postData

null
url

type

handler

Download at WoweBook.Com

558 Chapter 12

JavaScript Magnets Solution
The custom AjaxRequest object wraps up the standard XMLHttpRequest object,
providing a much simpler interface for sending Ajax requests and handling their responses.
Problem is, the send() method of the AjaxRequest object is missing a few key pieces of
code. Use the magnets to finish the code for the method.

The send() method sends an
Ajax request with details
spelled out in its arguments.

ajax.js

This code is stored in the ajax.js
external JavaScript file along with the constructor and other AjaxRequest
methods.

AjaxRequest.prototype.send = fun
ction(type, url, handler, postDa

taType, postData) {

 if (this.request != null) {

 // Kill the previous request

 this.request.abort();

 // Tack on a dummy parameter

 to override browser caching

 url += "?dummy=" + new Date(
).getTime();

 try {

 this.request.onreadystatec

hange = ;

 this.request.open(

 , , true); // always
asynchronous (true)

 if (type.toLowerCase() ==

"get") {

 // Send a GET request; n
o data involved

 this.request.send(

);

 } else {

 // Send a POST request;
the last argument is data

 this.request.setRequestH

eader("Content‑Type",
);

 this.request.send(

);

 }
 } catch(e) {

 alert("Ajax error communic
ating with the server.\n" + "Det

ails: " + e);

 }
 }
}

handler

null

type

postDataType

postData

The type argument to send()
determines whether the
request is a GET or a POST.

The custom handler
function will get called
to handle the server’s
response to the request.

Data is only
sent to the
server when
the request
is a POST
request.

url

JavaScript magnets solution

Download at WoweBook.Com

you are here 4 559

dynamic data

AjaxRequest

getReadyState()

getResponseText()

getResponseXML()

send()

getStatus()

request

Making sense of an Ajax request
The custom AjaxRequest object consists of a constructor and several
methods, one of which is particularly useful. The send() method is used
to prepare and issue an Ajax request to a server in a single call. All Ajax
requests issued using send() are either GET or POST requests, which
correspond to HTML form submission requests. The difference is that an
Ajax request doesn’t require a complete reload of a page.

send(type, url, handler, postDataType, postData)

All Ajax requests involve these same pieces of information, although GET
requests skip the last two arguments, which are optional. So the first three
arguments to send() are the most important, and are sufficient for most
simple Ajax requests. As an example, the following call to send() uses
the first three arguments to request (GET) XML data from a file named
movies.xml on the server:

The type of the request, GET or POST.

type

The callback function used
to handle the response.

handler

The data to be sent (only for POSTs, not

required for GETs). POST data can be
submitted in several different formats.

postData

The URL of the server (blog.xml in

the case of YouCube). Data can be

packaged into this URL if necessary.

url

The type of data being sent (only for
POSTs, not required for GETs).

postDataType

ajaxReq.send("GET", "movies.xml", handleRequest);

This code assumes
we’ve already created
an AjaxRequest object
and stored it in the
ajaxReq variable.

The custom function that
will be called to handle the
response to the request.

The URL of the
requested data file.The type

of request.

 Don’t panic
over the
handling of
requests.

We’ll get to the ins and outs of
how Ajax requests are handled
in custom JavaScript code
soon enough. For now, just
understand that a custom
request handler function
must be set for a request, and
that the function is called when
a request is completed.

Download at WoweBook.Com

560 Chapter 12

The XMLHttpRequest object is the standard
object for carrying out Ajax requests but it can be
somewhat messy to use.

The custom AjaxRequest object serves as a
convenient way to use Ajax without having to deal

directly with XMLHttpRequest.

Ajax requests always fall into one of two types, GET or
POST, which is determined by the data being sent to
the server, as well as how the data affects the server.

The send() method of the AjaxRequest object

When the send() method is called on an AjaxRequest object, an
Ajax request is sent to the server, and the web page is left to go about
its business while the server processes the request. This is where the
asynchronous part of Ajax really shines. If the request was synchronous,
the page would be frozen, unable to do anything until the server returns
with a response. But since the request takes place asynchronously, the
page isn’t halted and the user experience isn’t stalled.

youcube.html

<html>
 <head>
 ...
 </head>

 <body>
 ...
 </body>
</html>

Server

blog.xm
l

While the server

processes the request,

the page is allowed to go

about its own business

without being stalled.

Just because the page isn’t frozen while a request is being processed
doesn’t necessarily mean the user can actually do anything productive.
It all depends on the specific page. In the case of YouCube,
successfully viewing the blog is entirely dependent on getting the blog
data back from the server in an Ajax response. So in this case the user
experience is tied to the Ajax response.

An asynchronous Ajax
request takes place
without freezing a page
while it waits for the
request to be processed
by a server.

request
The enters the server’s courtball

may I make a request?

Download at WoweBook.Com

you are here 4 561

dynamic data

Retrieves data without changing
anything on the server.

XMLHttpRequest

Match each Ajax-related piece of code to what it does.

Submits an Ajax request to the server,
resulting in a response.

GET

Sends data to the server, somehow
resulting in a change on the server.

send()

The standard JavaScript object that
makes Ajax possible.

AjaxRequest

The custom object used to simplify
Ajax requests and responses.

POST

Q: Is the AjaxRequest object
necessary for carrying out Ajax requests?

A: No. It’s perfectly fine to use the
XMLHttpRequest object directly
to issue Ajax requests and handle their
responses. But why would you when
there is a much easier way thanks to
the AjaxRequest object? The
AjaxRequest object doesn’t do
anything earth‑shattering—it’s just a
convenience object that helps simplify the
task of using Ajax by taking care of the “busy
work” involved in assembling Ajax requests.

Q: How is an Ajax request/response
any different than an HTTP request/
response?

A: HTTP requests and responses are
used by web browsers to retrieve HTML web
pages from web servers. Ajax requests and
responses are very similar to HTTP requests
and responses except for a couple of key
differences: the Ajax versions can

occur at any time and don’t necessarily
involve the delivery of HTML data. In fact,
one of the huge benefits of Ajax is that it can
be used to request any kind of data.
It’s a big deal that Ajax can handle any kind
of data, but it’s also the size of the data
that matters as much as anything. Ajax
isn’t limited to handling an entire page or
document of data at a time. In fact, it’s
really geared toward the delivery of little
bite‑sized pieces of data. In doing so, Ajax
allows a page to dynamically modify itself
by requesting little chunks of data and then
incorporating it into the page. And all of this
happens without the page ever having to be
reloaded.

Q: So Ajax makes it possible to
dynamically assemble a web page in
pieces?

A: Yes! That’s the main idea behind Ajax.
But it’s more than just assembling a page
from pieces. It’s also about the timing of
when this assembly occurs. Ajax requests

and responses take place in real time, often
without interrupting the usability of a page. In
other words, users aren’t stuck waiting for an
entire page to reload when all that needs to
be updated is one small section of the page.
That section of the page can be loading in
the “background” while someone continues
to read and interact with other parts of the
page.

Q: What do GET and POST have to
do with all this?

A: GET and POST determine the
specifics of how an Ajax request is handled
by the server. However, they aren’t
any different in terms of being able to
dynamically request data of any type at any
time—all of the Ajax benefits apply to both
request types. The main distinction between
GET and POST has to do with whether
or not the server undergoes a change in
state based upon the data, such as storing
it in a database. If so, a POST is in order.
Otherwise, go with GET.

Download at WoweBook.Com

562 Chapter 12

Retrieves data without changing
anything on the server.

XMLHttpRequest

Match each Ajax-related piece of code to what it does.

Submits an Ajax request to the server,
resulting in a response.

GET

Sends data to the server, somehow
resulting in a change on the server.

send()

The standard JavaScript object that
makes Ajax possible.

AjaxRequest

The custom object used to simplify
Ajax requests and responses.

POST

XMLHttpRequest

AjaxRequest

send()

Server

The custom AjaxRequest

object serves as a “wrapper”

around the standard

XMLHttpRequest, making it

easier to work with Ajax.

The send() method issues an Ajax request that is either a GET or a POST.

GET

POST

blog.xml

Date: 09/26/2008

Body: "These drea
ms just... "

Image: cubeapart.
png

what’s my purpose solution

Download at WoweBook.Com

you are here 4 563

dynamic data

Interactive pages start with a request object
Regardless of how Ajax is being used or what kind of data it is attempting to
access, any Ajax communication of data begins with a request. So Ruby’s first task
in turning YouCube into a data-driven application is to issue an Ajax request for
the XML file containing the blog data.

Write code to create an AjaxRequest object, and then use it
to submit a request for XML blog data.

It sounds as if I need to create an
AjaxRequest object and then use it to
send a request for the blog data.

 Create an AjaxRequest object.11

 Issue a GET request to retrieve
the blog.xml file from the server.

22

 Handle the request... ?33

Ruby still isn’t sure about
step 3, but she can focus on
the first two steps for now.

Download at WoweBook.Com

564 Chapter 12

function handleRequest()
{

 if (ajaxReq.getReadySta
te() == 4 && ajaxReq.getS

tatus() == 200) {

 // Store the XML resp
onse data

 var xmlData = ajaxReq
.getResponseXML().getElem

entsByTagName("blog")[0];

 // Set the blog‑wide

signature

 Blog.prototype.signat
ure = "by " + getText(xml

Data.getElementsByTagName
("author")[0]);

 // Create the array o

f Blog entry objects

 var entries = xmlData
.getElementsByTagName("en

try");

 for (var i = 0; i < e
ntries.length; i++) {

 if (entries[i].getE
lementsByTagName("image")

[0]) {

 // Create the blo
g entry as an ImageBlog o

bject

 blog.push(new Ima
geBlog(new Date(getText(e

ntries[i].getElementsByTa
gName("date")[0])),

 getText(entries
[i].getElementsByTagName(

"body")[0]),

 getText(entries
[i].getElementsByTagName(

"image")[0])));

 } else {

 // Create the blo
g entry as a Blog object

 blog.push(new Blo
g(new Date(getText(entrie

s[i].getElementsByTagName
("date")[0])),

 getText(entries
[i].getElementsByTagName(

"body")[0])));

 }
 }

 // Enable the blog bu
ttons

 document.getElementBy
Id("search").disabled = f

alse;

 document.getElementBy
Id("showall").disabled =

false;

 document.getElementBy
Id("viewrandom").disabled

 = false;

 // Show the blog

 showBlog(5);

 }
}

Call me when you’re done
Once an Ajax request is sent, the browser’s role changes—it’s not waiting
for a response from the server. But because Ajax requests are typically
carried out asynchronously, the user can continue interacting with the
page while the browser waits for the response behind the scenes. In other
words, the Ajax request doesn’t halt the page while the request is being
processed on the server. Once the request is finished being processed
on the server, its response is handled in JavaScript code using a callback
function, the request handler.

Write code to create an AjaxRequest object, and then use it
to submit a request for XML blog data.

var ajaxReq = new AjaxRequest();
ajaxReq.send(“GET”, “blog.xml”, handleRequest);The Ajax request is a

GET request since all
we’re doing is retrieving
data from the server.

The XML file is specified
as the URL of the request.

None of this means much until
we handle the response in the
custom handleRequest() function.

2

1

Server

Client

handleRequest();

The client script
handles the response
to an Ajax request
using a custom
callback function.

The response is sent from the
server to the browser, which
then relies on a custom callback
function to handle the request.

Web browser.

The handleRequest()
callback function is
entirely custom, and must be supplied by the script.

blog.xml

<blog>

 <title>..
.

 <author>.
..

 <entries>

 <entry>

 ...

 </entry
>

 ...

 </entries
>

</blog>

 Create an AjaxRequest object.11

 Issue a GET request to retrieve
the blog.xml file from the server.

22

 Handle the request.33

sharpen solution

Download at WoweBook.Com

you are here 4 565

dynamic data

AjaxRequest

Knowing that XML code is structured a lot like HTML code, how
could you access the XML blog data in the request handler?

Methods of the AjaxRequest object have access
to the Ajax response data.
The request handler function provides access to the data passed back
in an Ajax response through two methods of the AjaxRequest
object, getResponseText() and getResponseXML().

I get that the request handler is called
to take care of the Ajax response, but how
does it access the response data?

getReadyState()

send()

getStatus()

request

Only one of these methods has access to viable data for any given
response, meaning that the format of the data determines which
method should be used. So getResponseXML() should be used
if the response data is XML, in which case getResponseText()
won’t return meaningful data. The same is true in the reverse if the
data is raw text, as opposed to structured XML code.

Get the data in an Ajax
response as raw text.

getResponseText()

Get the data in an Ajax response

as structured XML code.

getResponseXML()

getResponseText()

getResponseXML()

Handling a response...seamlessly
The custom request handler callback function, handleRequest() in
this case, is called once an Ajax request finishes. In addition to signaling
that a request has completed successfully, this function’s job is to take
action based upon the response data returned by the server.

Download at WoweBook.Com

566 Chapter 12

The DOM to the rescue
Ruby’s puzzling skills are certainly paying off because she’s dead-on with
her idea of using the DOM to process XML response data. The DOM
is all about manipulating HTML data as a tree of nodes. But there is
nothing HTML-specific about the DOM, which means that it can also be
used to work with XML as a tree of nodes. Ruby just has to think about
her YouCube XML blog data in terms of nodes.

"Puzzler Ruby"

author

strong

body

"it mean?""... What"

"does"

If XML is just a bunch of tags,
then can the DOM be used to
process the XML response data?

<blog>
 <title>YouCube ‑ The Blog

 for Cube Puzzlers</title>

 <author>Puzzler Ruby</aut
hor>

 <entries>

 <entry>

 <date>08/14/2008</dat
e>

 <body>Got the new cub
e I ordered. It's a real pe

arl.</body>

 </entry>

 ...
 <entry>

 <date>09/26/2008</dat
e>

 <body>These dreams ju
st keep getting weirder...

now I'm seeing

 a cube take itself ap
art. What does</str

ong> it

 mean?</body>

 
 </entry>
 <entry>
 <date>09/24/2008</date>
 <body>I dreamed last night a huge cube was chasing me, and it kept yelling my name backwards... Ybur!</body>
 </entry>
 <entry>
 <date>09/26/2008</date>
 <body>These dreams just keep getting weirder... now I'm seeing a cube take itself apart. What does it mean?</body>
  </entry>
 </entries>
</blog>

function loadBlog() {

 ajaxReq.send("GET", "blog.xml", handleRequest);

}

YouCube is driven by its data
Ruby is thrilled with the Ajax makeover of YouCube (it’s saving her a ton
of time) but she does have a nagging usability concern related to what
happens on the page while the blog data is loading.

Write the missing line of code in the loadBlog() function that displays
a “wait” image named wait.gif while the blog data is being loaded.

Hint: Use the main blog div, with an ID of "blog".

The blog really works great with the
data separated out into XML code, but is
there a way to let the user know the blog
is busy loading? Just something to let
them know that the page is working.

The blog is now driven by XML data...
...But some users are confused
by the blank page that appears
while the data is loading.

The latest versions of the YouCube files are
available at http://www.headfirstlabs.com/
books/hfjs/.

Download at WoweBook.Com

572 Chapter 12

Write the missing line of code in the loadBlog() function that displays
a “wait” image named wait.gif while the blog data is being loaded.

Hint: Use the main blog div, with an ID of "blog".

function loadBlog() {

 ajaxReq.send("GET", "blog.xml", handleRequest);

}

document.getElementById(“blog”).innerHTML = “”;

innerHTML is easier to use than the
DOM in this case since we’re adding an
image tag with a couple of attributes.

The “wait” image completely replaces the blog content while the blog data is loading.

wait.gif

The animated wait.gif image
is used in place of the blog
entries to let the user know
the blog data is loading.

Q: The last YouCube blog entry contained an HTML
 tag. How is that possible in XML code?

A: Remember that XML code can be used to represent any
kind of data. In this case, knowing that the body of a blog entry is
getting injected into a web page, it is technically possible to include
HTML tags that affect how the body appears on the page. In other
words, the body content of a particular blog entry can contain HTML
tags that are passed along as special formatting nodes in the XML
code. This is a fairly tricky prospect, however, since we’d have to
reconstruct the HTML formatting nodes in the HTML code for the
page when injecting the XML data into the page. Instead of going
down that path, the YouCube code elects to just pull the text content
out of any HTML tags, leaving the formatting behind. Ruby is still free
to add HTML formatting tags to blog content, possibly for a future
version of YouCube, but they are ignored for formatting purposes.
Their text does remain, which is a good thing.

Q: How does the ready state and status of an Ajax response
work?

A: These two properties ultimately come from the
XMLHttpRequest object, and their job is to keep track of
the state of the request, such as (0) uninitialized or (4) loaded, as
well as the status of the request, such as 404 (not found) or 200
(OK). It’s certainly possible to track these properties closely but
it’s not necessary. All you need to know is that an Ajax request has
completed successfully if the state is 4 (loaded) and the status is 200
(OK). That’s why the handleRequest() function only leaps
into action if both of these conditions have been met.

sharpen solution

Download at WoweBook.Com

you are here 4 573

dynamic data

Dysfunctional buttons
Although the Ajax overhaul of YouCube has primarily taken place behind
the scenes, out of the view of YouCube users, there is apparently a user
interface issue that has come to light. More specifically, it seems the
buttons on the page aren’t quite working as they should.

Why aren’t the blog buttons working? When in
the process of the page loading do you think the
problem is occurring?

Users are reporting that sometimes the
buttons don’t work. They click and nothing
happens. Not only that, but the blog isn’t

visible when the buttons are acting up.
What’s going on?

For some reason, the
buttons aren’t working all
of the time, and the blog
isn’t visible when it happens.

Ruby is calm but she
really needs to get to the
bottom of this problem.

Unhappy users=Broken buttons

Download at WoweBook.Com

574 Chapter 12

The buttons need data
The problem with the YouCube buttons is that they are only applicable
when blog data is available. And since the blog data is now loaded from an
external XML file, there will be a period of time, usually very brief, where
the page has no data. During this period, the buttons make no sense at all
and are only confusing users.

Disabling the buttons is an excellent solution.
Disabling the buttons while the blog data is loading is a simple
and elegant way to solve the button problem. Since the Ajax
request to load the blog data is issued when the page first loads,
the buttons can start out disabled and can be enabled in the
handleRequest() function, which is when we know the
Ajax request has finished.

To actually carry out the disabling, we need to use the
disabled attribute of the <input> tag. This tag must be
set to "disabled" in HTML code to disable a button.
Conversely, it must be set to false in JavaScript code to
enable a button element.

Can the buttons just
be disabled until blog
data is available?

buttonElem.disabled = false;

<input type="button" value="Search the Blog"

 disabled="disabled" />

when can I use it?

Download at WoweBook.Com

you are here 4 575

dynamic data

JavaScript Magnets
Use the magnets to finish the code in the YouCube page so that the blog buttons are disabled
until the blog data finishes loading. You’ll need to use some of these magnets more than once.

true

"disabled"

"search"

"showall"

falsedisabled"viewrandom"

<html>
 <head>
 <title>YouCube ‑ The Blog fo

r Cube Puzzlers</title>

 <script type="text/javascrip

t" src="ajax.js"> </script>

 <script type="text/javascrip
t" src="date.js"> </script>

 <script type="text/javascrip

t">

 ...
 function handleRequest() {

 if (ajaxReq.getReadyStat
e() == 4 && ajaxReq.getStatus()

== 200) {

 ...

 // Enable the blog but
tons

 document.getElementByI

d().
 = ;

 document.getElementByI

d().
 = ;

 document.getElementByI

d().
 = ;

 ...

 }
 }
 ...
 </script>

 </head>

 <body onload="loadBlog();">

 <h3>YouCube ‑ The Blog for C
ube Puzzlers</h3>

 <img src="cube.png" alt="You
Cube" />

 <input type="button" id="sea
rch" value="Search the Blog"

 =

 onclick="searchBlog();
" />

 <input type="text" id="searc

htext" name="searchtext" value="
" />

 <div id="blog"></div>

 <input type="button" id="sho
wall" value="Show All Blog Entri

es"

 =

 onclick="showBlog();"
/>

 <input type="button" id="vie

wrandom" value="View a Random Bl
og Entry"

 =

 onclick="randomBlog();
" />

 </body>
</html>

Download at WoweBook.Com

576 Chapter 12

<html>
 <head>
 <title>YouCube ‑ The Blog fo

r Cube Puzzlers</title>

 <script type="text/javascrip

t" src="ajax.js"> </script>

 <script type="text/javascrip
t" src="date.js"> </script>

 <script type="text/javascrip

t">

 ...
 function handleRequest() {

 if (ajaxReq.getReadyStat
e() == 4 && ajaxReq.getStatus()

== 200) {

 ...

 // Enable the blog but
tons

 document.getElementByI

d().
 = ;

 document.getElementByI

d().
 = ;

 document.getElementByI

d().
 = ;

 ...

 }
 }
 ...
 </script>

 </head>

 <body onload="loadBlog();">

 <h3>YouCube ‑ The Blog for C
ube Puzzlers</h3>

 <img src="cube.png" alt="You
Cube" />

 <input type="button" id="sea
rch" value="Search the Blog"

 =

 onclick="searchBlog();
" />

 <input type="text" id="searc

htext" name="searchtext" value="
" />

 <div id="blog"></div>

 <input type="button" id="sho
wall" value="Show All Blog Entri

es"

 =

 onclick="showBlog();"
/>

 <input type="button" id="vie

wrandom" value="View a Random Bl
og Entry"

 =

 onclick="randomBlog();
" />

 </body>
</html>

JavaScript Magnets Solution
Use the magnets to finish the code in the YouCube page so that the blog buttons are disabled
until the blog data finishes loading. You’ll need to use some of these magnets more than once.

falsedisabled"viewrandom"

"search"

"showall"
falsedisabled

falsedisabled

disabled "disabled"

disabled "disabled"

disabled "disabled"

JavaScript magnets solution

Download at WoweBook.Com

you are here 4 577

dynamic data

Time-saving web-based blog additions
YouCube is now driven by dynamic data but Ruby has yet to fully
reap the reward. The true benefit of dynamic data in YouCube won’t
come home to her until she has the ability to use a web-based
interface for adding blog entries. Instead of editing an XML file to
add to the blog, she wants to be able to just enter a new entry on a
Web page and have it saved to the server.

How could Ajax be used to add XML blog entries
through a web page user interface?

No fun!+ =Upload filesEdit code
Ruby envisions a web page just for her that allows her to post a new blog
entry by simply filling out a form. She could always be a click away from
updating her blog, and all she’d need is a browser. No text editors, no FTP
clients, just her cube puzzling enthusiasm.

The new add blog page uses form fields for the three
pieces of blog entry data.

Adding a new blog entry is as easy as filling
out the fields and clicking a button!

I’m sick of editing files and then
FTPing them to the server just to update
my blog. I’d like to update YouCube from

the comfort of my own browser!

Download at WoweBook.Com

578 Chapter 12

Writing blog data
When thinking of a blog addition in terms of Ajax, it’s possible to imagine
an Ajax POST request that sends along the new blog entry data to the
server, after which the server writes the data to the blog.xml file as a
new blog entry. The Ajax response doesn’t really need to do anything in
this case since there is nothing to return.

JavaScript isn’t the answer for writing to a
file on the server.
JavaScript isn’t an option for writing to the blog.xml
file on the server. In fact, you can’t even run JavaScript
code on the server. This is because JavaScript is a
client technology designed to be run solely in web
browsers. In this particular case JavaScript doesn’t help
us because we need to write a file on the server. This is
not an uncommon problem, which is why server-side
technologies are often used in conjunction with JavaScript.

What we need is a technology similar to JavaScript but
purely for doing things on the server. There are several
options out there but one comes to mind that isn’t too
complicated and works surprisingly well with XML data...

Hang on! How exactly does the new blog entry
get written to the blog.xml file on the server?
I thought JavaScript couldn’t write files. And
isn’t JavaScript a client technology?

clients and servers...again

Download at WoweBook.Com

you are here 4 579

dynamic data

PHP to the rescue...this time
A scripting language called PHP offers everything we need to write blog
data to an XML file on the server. The real task involved is to read the
XML file, then add the new blog entry to the existing entries, and then
write all of the blog entries back out to the original file. But it all goes back
to receiving the new blog entry data on the server as an Ajax request from
the client browser.

Client

Date: 10/04/2008
Body: "I'm really looking..."
Image:

Date: 10/04/2008
Body: "I'm really looking..."
Image:

Date: 10/04/2008
Body: "I'm really looking..."
Image:

...

blog.xml

<blog>
 <title>...
 <author>...
 <entries>
 <entry>
 ...
 </entry>
 ...
 </entries>
</blog>

Server

Date: 10/04/2008 Body: "I'm really looking..." Image:

The new blog entry is sent to
the server as the data in an
Ajax POST request.

The PHP script on the server
takes the blog entry and
writes it to the blog.xml file.

Date: 10/04/2008

Body: "I'm really looki
ng..."

Image:

PHP plays a similar
role as JavaScript,
but on the server
instead of the client.

You can think of PHP as sort of a server equivalent of
JavaScript in a sense that it runs on the server and is
capable of carrying out custom tasks... such as writing a
blog entry to a file as XML data!

PHP is a scripting
technology that can
carry out tasks on
the server.

Download at WoweBook.Com

580 Chapter 12

Ready Bake
PHP

On the server side of YouCube, a PHP script handles the details of adding a
new blog entry to the XML blog data that is stored in the file blog.xml.

Q: Do I have to use PHP to write files
on the server?

A: No, not at all. There are all kinds of
technologies out there for writing server
scripts. You have Perl (CGI) and Java
servlets to name a few, and they can do all
of the same things that PHP can do. So if
you’re more comfortable with one of these
other technologies, by all means use it to
create the server‑side component of your
Ajax applications.

Q: Can I get away with using Ajax
without having to use a program on the
server at all?

A: In some cases yes but in most cases
no. Keep in mind that all but the most
simple Ajax requests involve the server
receiving data from the client and then
doing something with it, such as looking
up something in a database or writing
something to a file or database. The main
YouCube blog page is a good example of an
Ajax request that is simple enough to

not require any server scripting. Most Ajax
applications aren’t so lucky, so in most cases
you will need to do some degree of coding
on the server. The real issue is whether
or not the server can just send back an
entire file, as is the case with blog.xml, or
if it has to somehow process data and do
something with it on the server, such as
write it. The good news is that the kinds of
scripts required on the server for many Ajax
applications are quite simple, and can often
be figured out without a mastery of a server
scripting technology.

<?php
$filename = "blog.xml";

if (file_exists($filename)) {

 // Load the blog entries from
the XML file

 $rawBlog = file_get_contents($
filename);

}
else {
 // Create an empty XML documen

t

 $rawBlog = "<?xml version=\"1.
0\" encoding=\"utf‑8\" ?>";

 $rawBlog .= "<blog><title>YouC
ube ‑ The Blog for Cube Puzzlers

</

title>";
 $rawBlog .= "<author>Puzzler R

uby</author><entries></entries><
/blog>";

}
$xml = new SimpleXmlElement($raw

Blog);

// Add the new blog entry as a c

hild node

$entry = $xml‑>entries‑>addChild
("entry");

$entry‑>addChild("date", $_REQUE
ST["date"]);

$entry‑>addChild("body", stripsl
ashes($_REQUEST["body"]));

if ($_REQUEST["image"] != "")

 $entry‑>addChild("image", $_RE
QUEST["image"]);

// Write the entire blog to the

file

$file = fopen($filename, 'w');

fwrite($file, $xml‑>asXML());

fclose($file);

?>

Check to see if
the blog file exists.

Load the raw XML data
into the $rawBlog variable.

If the blog file doesn’t
exist, create an empty
XML blog document.

Convert the raw blog
data into an XML
data structure, which
is a lot like a DOM
tree in JavaScript.

Add the new blog entry as a child node within the XML data structure.

Overwrite the blog file
with the new blog data.

addblogentry.php

This PHP script is stored in
the file addblogentry.php.

server side goodness

Download at WoweBook.Com

you are here 4 581

dynamic data

PHP has needs, too
Unlike JavaScript, which is inherently supported in modern browsers,
PHP support isn’t always a foregone conclusion on the server. So before
you go posting PHP files to your Web server, it’s probably worth checking
with your system administrator or Web hosting service to see if PHP
is supported. If it isn’t, you’ll need to do all you can to get it added, or
possibly find a different Web server. The PHP script for YouCube simply
won’t work unless PHP is supported on the server.

Support for PHP on your web server is the first hurdle. The second hurdle
is figuring out where to place PHP files on the server. In many cases it’s
OK to place PHP files in the same folder as your HTML web pages and
external JavaScript files. However, some PHP installations are pickier
and require PHP scripts to be stored in a special folder. Again, this is a
question that can be answered by a system administrator.

Server

PHP
Make sure your Web
server supports PHP.

Server

Even if it doesn’t, you may be able to install it yourself or coax an administrator
into installing it. You’ll
definitely need it for Ajax!

www

ajax.jsyoucube.html

<html>
 <head>
 ...
 </head>

 <body>
 ...
 </body>
</html>

blog.xml

<blog>
 <title>...
 <author>...
 <entries>
 <entry>
 ...
 </entry>
 ...
 </entries>
</blog>

addblogentry.php

Once you’ve figured out where the PHP file
should be placed on your web server, you’re
ready to copy it there and continue building
the YouCube blog addition web page.

Running a PHP
script may require
some tweaks to
your Web server.

In many cases you can
store PHP scripts in the
same folder where your
Web pages are stored.

Download at WoweBook.Com

582 Chapter 12

Feeding data to the PHP script
With PHP working on the server and the PHP script file in place, we can
more closely examine what the PHP script needs in order to write data to
an XML file on the server. This will help us arrive at a design for the Ajax
request that provides the server exactly what it needs to carry out the task.

The PHP script is expecting the data for a new blog entry, which we know
consists of at least two pieces of information, and potentially three.

The date of the blog entry.
Date

The body text of the blog entry.

Body

An optional image for the blog entry.
Image

This information must somehow get packaged up and sent to the server as
an Ajax request, where it is processed and saved to the blog.xml file.

Date: 10/04/2008

Body: "I'm really looki
ng..."

Image:

<entry>
 <date>10/04/2008</date>
 <body>I'm really looking...</body>
 
</entry>

Server

The challenge is then to come up with a design for the blog addition web
page that first presents a user interface for entering a new blog entry, and
then gathers that information and shuttles it to the server in an Ajax
request. The good news it that we don’t really need to do anything in
response to the request other than maybe confirming that the new blog
entry has been saved successfully.

The PHP script takes care
of converting the blog
entry to XML and saving
it to the blog.xml file.

The server’s job is
to receive the Ajax
request and feed its
data into the PHP
script for processing.

The client JavaScript code must package the data
into a format that can be sent to the server as part of an Ajax request.

blog.xml

<blog>
 <title>...

 <author>...

 <entries>
 <entry>
 ...
 </entry>
 ...
 </entries>
</blog>

Data is fed to the
PHP script through
an Ajax request.

At this point the new
blog entry has been added
to the blog.xml file, and
appears on the YouCube
blog automatically the
next time the blog page is
loaded or refreshed.

the php part of the equation

Download at WoweBook.Com

you are here 4 583

dynamic data

Sketch out the design for the YouCube blog entry addition web
page, making sure to show exactly how the Ajax request and
response factor into the flow of data.

Download at WoweBook.Com

584 Chapter 12

Sketch out the design for the YouCube blog entry addition web
page, making sure to show exactly how the Ajax request and
response factor into the flow of data.

The Ajax request is a POST request consisting of
the following pieces of data:

* Blog date
* Blog body
* Blog image (content optional)

The blog data is sent
to the server as data
in the POST request.

blog.xml

<blog>
 <title>...

 <author>...

 <entries>
 <entry>
 ...
 </entry>
 ...
 </entries>
</blog>

Date: 10/04/2008 Body: "I'm really looking..." Image:

The server writes the new
blog entry as XML data
to the blog.xml file.

The Ajax response doesn’t
return any data because
the client doesn’t need
anything in return.

The blog addition Web page has form fields for entering new blog entry data.

Server

Clicking the Add
button causes the
blog addition Ajax
request to be sent.

onclick!

The client notifies the user that the new blog entry has been successfully added.

sharpen solution

Download at WoweBook.Com

you are here 4 585

dynamic data

Getting it up: Posting blog data to
the server
An Ajax POST request is a little more involved than a GET
request because it requires sending data to the server. Although
the POST request supports different ways of packaging up data
for the server, the trusted technique of UrL encoding the
data fields works just fine. This technique is the same one that
browsers use to pass fields of data to a server in the URL of a
web page, and is distinguished by the ampersand characters (&)
that are used to separate each piece of data.

"date=10/04/2008&body=I'm really looking forward... &image="

"application/x‑www‑form‑urlencoded; charset=UTF‑8"

Date: 10/04/2008
Body: "I'm really looking... " Image:

This data format requires each piece of data to have its name and
value separated by an equal sign (=), and then each name/value pair is
separated from other data by an ampersand (&). The format is called
URL encoded, and has its own data type that gets set as the data type
of the Ajax POST request.

This is the official data
type of URL encoded data,
and must be specified as
part of the POST request.

An individual piece of data consists of a name/value pair.
Each piece of data is separated
from others by an ampersand.

With the blog entry data formatted into the URL-encoded format and
the data type of the POST request, we’re ready to put together the
request code and send the data to the server so that it can be saved to
the blog.xml file.

Package the following pieces of data into the URL‑encoded format, suitable for a POST request.

title: Gleaming the Cube

releaseDate: 01/13/1989

director: Graeme Clifford

Download at WoweBook.Com

586 Chapter 12

Q: If the YouCube blog addition script
doesn’t require any data from the server
in the Ajax request, why bother handling
the request at all?

A: The reason is because knowing that a
request has completed is still very important.
So even though we don’t need the server to
return any data in response to the request,
we still very much need to know if and when
the request has successfully completed.
That’s what allows the script to know when to
display the alert that confirms the new blog
entry addition.

Q: Could a GET request also be used
in the blog addition script?

A: Yes, technically it could. It’s still
possible to send data along to the server in
a GET request, but you have to specify it
directly in the URL of the request. That’s not
really the problem—the problem is that GET
isn’t intended to be used in situations where
the state of the server is changing. And in
this case the state of the server is definitely
changing due to it writing a new blog entry
to the blog.xml file. So a POST request is
the right approach if for no other reason than
because it clearly indicates the intent of the
communication to the server.

Q: Since it takes time for the server
to process the Ajax request and save
the blog entry, is there a problem if the
Add button gets clicked again before the
request finishes?

A: Yes, it is a problem. Each click of the
Add button cancels the current Ajax request
and issues a new one. Although that may
very well be the goal of someone clicking
it twice, the user interface would be much
clearer if the option to click the button is
simply removed while the request is being
processed. So the code to add a new blog
entry should disable the Add button while the
Ajax request is taking place, and then enable
it again once the request has finished. Small
touches like this to the user interface of a
JavaScript application can go a long way
toward making it more intuitive and easier to
use, resulting in happier users.

Q: What happens to the spaces in
the blog data that gets formatted into
a URL encoded string? That seems to
sometimes be a problem with URLs.

A: The spaces don’t present a problem
in this case because Ajax automatically
handles processing the data and making
sure it gets to the server in a suitable format.

Q: Since the image is optional in the
blog, does it always have to be passed
along to the server when adding a new
blog entry?

A: No, it doesn’t have to be. But keep in
mind that there’s nothing wrong with sending
an empty piece of data where there is no
value following the equal sign in the URL
encoded string, like this:

"date=...&body=...&image="

In this example, the image data field is still
sent to the server even though it doesn’t
actually contain any data. This is where the
PHP script on the server shines, because it
is smart enough to know that the image field
is empty, and therefore the new blog entry
doesn’t have an image.

Package the following pieces of data into the URL‑encoded format, suitable for a POST request.

“title=Gleaming the Cube&releaseDate=01/13/1989&director=Graeme Clifford”

title: Gleaming the Cube

releaseDate: 01/13/1989

director: Graeme Clifford

satisfy your curiousity

Download at WoweBook.Com

you are here 4 587

dynamic data

Write the missing lines of code to finish the addBlogEntry() and
handleRequest() functions in the YouCube blog addition script.

function addBlogEntry() {

 // Disable the Add button and set the status to busy

 // Send the new blog entry data as an Ajax request

 ajaxReq.send("POST", "addblogentry.php", handleRequest,

 "application/x‑www‑form‑urlencoded; charset=UTF‑8",

);

}

function handleRequest() {

 if (ajaxReq.getReadyState() == 4 && ajaxReq.getStatus() == 200) {

 // Enable the Add button and clear the status

 // Confirm the addition of the blog entry

 alert("The new blog entry was successfully added.");

 }

}

Download at WoweBook.Com

588 Chapter 12

Write the missing lines of code to finish the addBlogEntry() and
handleRequest() functions in the YouCube blog addition script.

function addBlogEntry() {

 // Disable the Add button and set the status to busy

 // Send the new blog entry data as an Ajax request

 ajaxReq.send("POST", "addblogentry.php", handleRequest,

 "application/x‑www‑form‑urlencoded; charset=UTF‑8",

);

}

function handleRequest() {

 if (ajaxReq.getReadyState() == 4 && ajaxReq.getStatus() == 200) {

 // Enable the Add button and clear the status

 // Confirm the addition of the blog entry

 alert("The new blog entry was successfully added.");

 }

}

“date=” + document.getElementById(“date”).value +
“&body=” + document.getElementById(“body”).value +
“&image=” + document.getElementById(“image”).value

document.getElementById(“add”).disabled = true;
document.getElementById(“status”).innerHTML = “Adding... ”;

document.getElementById(“add”).disabled = false;
document.getElementById(“status”).innerHTML = “”;

The Add button is disabled while a
blog entry is being saved to the server. The status area of

the page displays a
“busy” message so the
user knows they are
waiting on something.

Assemble the request POST data from
the date, body, and image form fields.

Enable the Add button and clear
the status area now that the
blog entry has finished saving.

Check to make
sure the blog
save request
finished
successfully.

This is
a POST
request.

A server PHP script
is used to process
the blog entry and
save it to the blog
file on the server.

sharpen solution

Download at WoweBook.Com

you are here 4 589

dynamic data

Blogging made easy
Ruby can’t believe how much of a difference it makes being able to update
her blog without having to open a file, edit code, and upload the file to the
server. Not only is her blog now truly data-driven, she is feeling a lot more
inspired to write some new blog data!

Dynamic blog
data is awesome!Ruby enters the new

blog entry in the blog
add web page.

The page confirms that
the blog entry was
successfully added.

The new blog entry
now appears on the
YouCube blog.

The page lets the
user know the
new blog entry is
being added.

Download at WoweBook.Com

590 Chapter 12

Making YouCube more, uh, usable
You don’t become a third-degree cube puzzle black belt without a serious
attention to detail. So it’s not terribly surprising that Ruby wants to make
the blog addition page absolutely perfect. And Ruby has learned that
Ajax applications are known for their attention to detail when it comes to
usability. So she wants to make some improvements to the usability of her
new page so that it’s on par with modern Web pages.

I want to maximize my
blog entry efficiency so
that I can post faster, and
hopefully more often.

Maximizing YouCube blog data entry
Since the vast majority of blog entries are made in the present,
Ruby figures it will save her some precious keystrokes if the
date field of the blog form is automatically filled with today’s
date. And since she is going to use the current date for most blog
entries, she’d like to place the input focus on the body field of
the form. That way she can start typing away on a blog entry
the moment the page opens. Sure, none of these changes are
absolutely critical to the blog working, and they aren’t directly
related to Ajax, but they dramatically improve the “feel” of the
page, which is very much in the spirit of Ajax. Besides, it will help
ensure that Ruby keeps the blog up to date by posting regularly.

Auto-fill this field with
the current date.

Set the input focus here so that Ruby can immediately start entering blog text.

usability trumps all

Download at WoweBook.Com

you are here 4 591

dynamic data

Auto-fill fields for your users
If you recall, the format of YouCube blog dates is MM/DD/YYYY,
which means we need to make sure to format the current date in the
auto-filled date form field to the same format. So we need some code
to format the current date as MM/DD/YYYY.

How would you share the shortFormat() code
across both YouCube pages?

Sharing common code is always a good idea to
prevent duplication.
We certainly don’t want any duplicate code floating around in
YouCube that we have to maintain in two different places, so
sharing the date-formatting code between the two pages is a great
idea. And there is definitely a way to store the code in one place
and then share it in any page that needs it.

You already created a Date method
that does this but it’s stored in the main
YouCube blog page. Is there a way to
share it with the blog addition page?

Download at WoweBook.Com

592 Chapter 12

Repetitive task? How about a function?
Sharing JavaScript code across multiple web pages involves breaking the code
out into its own file, or module, and then importing this file into each of the
pages. We’ve seen this done already with the AjaxRequest object, which is
stored in the file ajax.js, and then imported with the following line of code:

Date.prototype.shortFormat = fun
ction() {

 return (this.getMonth() + 1) +
 "/" + this.getDate() + "/" + th

is.getFullYear();

}

date.js

var x;
var y;

function doX() {
 ...
}

function doY() {
 ...
}

<script type="text/javascript" src="date.js"> </script>

The familiar
<script> tag is
used to import
JavaScript code
that is stored in
external files.

The name of the JavaScript
file is set to the src attribute
of the <script> tag.

The shortFormat() method of the Date object can accomplish a
similar goal by being placed into a file named date.js, and then imported
into each of the YouCube web pages.

A similar <script> tag that was used for the Ajax code can then be used
in each of the YouCube pages to import the script code stored in date.js.

The same JavaScript code is shared in two places thanks to storing the code in an external file.

It’s almost never a bad idea to break reusable JavaScript code into its own
file that can be shared in more than one place.

The entire contents of the
date.js file are imported with
this single <script> tag.

<script type="text/javascript" src="ajax.js"> </script>

import export

Download at WoweBook.Com

you are here 4 593

dynamic data

Write the code for a function named initForm() that is called
in the onload event handler of the YouCube addition script. The
function must initialize the date field with the current date, and
then set the input focus to the body field.

<div id="blog"></div>

<input type="text" id="date" nam

e="date" value="" size="10" />

The shortFormat() method
formats blog entries in the
main YouCube page...

...and it also formats the current date in the date field of the blog addition page.

Download at WoweBook.Com

594 Chapter 12

Blog productivity soars
Ruby has finally reached utter satisfaction with the YouCube blog. Her
blog is both data-driven and user-friendly thanks to Ajax and a ruthless
commitment to detail that only a master puzzler could muster.

Write the code for a function named initForm() that is called
in the onload event handler of the YouCube addition script. The
function must initialize the date field with the current date, and
then set the input focus to the body field.

function initForm() {
 document.getElementById(“date”).value = (new Date()).shortFormat();
 document.getElementById(“body”).focus();
}

The date field is set
to the current date.

Set the input focus
to the body field.

The date is automatically
set to the current date
when the page opens.

The input focus is set
to the body when the
page first loads.

I really, really
love my blog!

sharpen solution

Download at WoweBook.Com

you are here 4 595

dynamic data

JavaScriptcross
Are you feeling dynamic? How about some data to
go with that perky attitude? Crossword data, that is.
Get to it!

Untitled Puzzle
Header Info 1

Header Info 2

etc...

1 2

3 4 5 6

7 8

9

10 11

12

Across
2. A server scripting technology that complements

JavaScript in Ajax applications.

3. The server's answer to an Ajax request.

5. This kind of function gets called when an Ajax

request is finished.

8. This technology can be used to Web pages much

more responsive.

9. This kind of data makes Web pages much more

interesting.

10. The standard JavaScript object used to support

Ajax functionality.

12. A request type that usually just requests data

from the server.

Down
1. The ML in HTML stands for language.

2. A request type that usually involves a state

change on the server.

4. The method of the AjaxRequest object used to

issue a request.

6. The custom object created to simplify the use of

Ajax.

7. The X in XML stands for this.

10. This makes <blog>, <author>, and <entry>

possible.

11. When an Ajax application asks the server for

data.

Untitled Puzzle
Header Info 1

Header Info 2

etc...

1 2

3 4 5 6

7 8

9

10 11

12

Across
2. A server scripting technology that complements

JavaScript in Ajax applications.

3. The server's answer to an Ajax request.

5. This kind of function gets called when an Ajax

request is finished.

8. This technology can be used to Web pages much

more responsive.

9. This kind of data makes Web pages much more

interesting.

10. The standard JavaScript object used to support

Ajax functionality.

12. A request type that usually just requests data

from the server.

Down
1. The ML in HTML stands for language.

2. A request type that usually involves a state

change on the server.

4. The method of the AjaxRequest object used to

issue a request.

6. The custom object created to simplify the use of

Ajax.

7. The X in XML stands for this.

10. This makes <blog>, <author>, and <entry>

possible.

11. When an Ajax application asks the server for

data.

Download at WoweBook.Com

596 Chapter 12

JavaScriptcross Solution
Untitled Puzzle

Header Info 1

Header Info 2

etc...

M
1

P
2

H P

A O

R
3

E S
4

P O N S E C
5

A
6

L L B A C K

K E T J

U N A
7

A
8

J A X

P D
9

Y N A M I C X

Y R

T E

X
10

M L H T T P R
11

E Q U E S T

M I E U

L N Q E

G
12

E T U S

E T

S

T

Across
2. A server scripting technology that complements

JavaScript in Ajax applications. [PHP]

3. The server's answer to an Ajax request.

[RESPONSE]

5. This kind of function gets called when an Ajax

request is finished. [CALLBACK]

8. This technology can be used to Web pages much

more responsive. [AJAX]

9. This kind of data makes Web pages much more

interesting. [DYNAMIC]

10. The standard JavaScript object used to support

Ajax functionality. [XMLHTTPREQUEST]

12. A request type that usually just requests data

from the server. [GET]

Down
1. The ML in HTML stands for language.

[MARKUP]

2. A request type that usually involves a state

change on the server. [POST]

4. The method of the AjaxRequest object used to

issue a request. [SEND]

6. The custom object created to simplify the use of

Ajax. [AJAXREQUEST]

7. The X in XML stands for this. [ANYTHING]

10. This makes <blog>, <author>, and <entry>

possible. [XML]

11. When an Ajax application asks the server for

data. [REQUEST]

JavaScript cross solution

Download at WoweBook.Com

you are here 4 597

dynamic data

 Ajax has given Ruby so much, it’s
 a hard thing to nail down. There’s dynamic
 data for one thing, which has made
 cube blogging a lot easier. Ruby can now talk
 about her cube puzzles with ease.

What has Ajax given Ruby?

AjaxRequest

I am falling apart,
 one piece at a time!

Let’s get you
back into one piece.

Page Bender

It’s a meeting of the minds!

Fold the page vertically
to line up the two brains
and solve the riddle.

Download at WoweBook.Com

598 Chapter 12

Where do you go from here?
Well you’ve made it through Head First JavaScript, and are ready to
continue on your journey of creating interactive user experiences with
JavaScript and beyond...but where should you go next? Here are a few
things we think you might be interested in as you take your next steps
building and creating applications for the wild world wide web.

TRY the Head First JavaScript Forum
Exasperated over expressions? Overwhelmed by operators? Or are you
just curious to share your latest JavaScript creation with the Head First
community? Stop in for a spell at the Head First JavaScript forum at
Head First Labs (http://www.headfirstlabs.com) and join in one of
the discussions...or start a new one!

READ another book
You’ve got the essentials down, so get
ready to dig deeper into the ins and
outs of more advanced JavaScript.

JavaScript the Definitive Guide

JavaScript & DHTML Cookbook

LEARN more from other sites
Quirksmode www.quirksmode.org

Unfortunately, different browsers sometimes have their own way of
doing things with JavaScript. Get the scoop on JavaScript browser
inconsistencies at Quirksmode.

Mozilla JavaScript reference
http://developer.mozilla.org/en/docs/JavaScript

It won’t be long at all until you’re venturing off the beaten bath and
need to find out more about built-in JavaScript objects. Explore every
nook and cranny of JavaScript with Mozilla’s online reference.

Prototype JavaScript Framework
http://www.prototypejs.org

Tempted to try a third-party library of reusable code to take JavaScript to
a whole new level? Prototype is one of the best, and it’s completely free!

Left or right? Time for
an if/else statement.

continuing your journey

Download at WoweBook.Com

this is the index 599

Index

Symbols
! (negation operator) 164, 165, 218

!= (inequality operator) 163

&& (AND operator) 217

++ (increment operator) 202

-- (decrement operator) 202

< (less than operator) 164

<= (less than or equal to operator) 164

== (equality operator) 163
versus = 164

= versus == 510, 532

> (greater than operator) 164

>= (greater than or equal to operator) 164

|| (OR operator) 218

A
action 6–7

Ajax 541
asynchronous Ajax request 560
connection between XML and Ajax 548
custom callback function 564
GET request 554–555
handleRequest() 565
Handling Ajax Responses 568
PHP 579–584

running scripts 581–582
POST request 554–555, 585
ready state and status of an Ajax response 572
request/response 561

YouCube project 563–564
URL encoding 585
XML 549
YouCube project 550–551

AjaxRequest object 556–561
getResponseText() method 565
getResponseXML() method 565
handler 559
handleRequest() function 569–570
making sense out of 559
postData 559
postDataType 559
send() method 560
type 559
url 559

alert() function 19, 297

alert boxes 297, 314
debugging 507–509
empty 162

resolving 163
problems debugging with 515
problems with 345
validation 309

anonymous functions 279

apostrophes 21
debugging 502, 532
escape characters 511

appendChild() method 361

arguments 252
altering 260
limits 260

Array.sort() method 423

arrays 198
Arrays Exposed 200
as objects 420
data stored in 201
form array 293
indexed 199, 201, 202
mapping array to seat images 204
mining data 199

Download at WoweBook.Com

600 index

the index

arrays (continued)
searchable objects 424–432
sorting 418–423

compare() function 421
function literals 422

two-dimensional 231–234
2-D Mandango Up Close 236–237
accessing data 233

Arrays Exposed 200

asynchronous Ajax request 560

attributes in forms 293

B
Bannerocity project 290–292

data validation 302
dates 315–316
email addresses 334–337
phone numbers 333
ZIP codes 310

eliminating three-digit years 330–331
non-empty validation 300–303
placeOrder() function 313–314
validating length of data 305–306

Blog object 404, 406, 408, 412–413
actions 441
adding images 476–479
adding methods 439–441
containsText() method 441–442, 450
extending objects 467–470
method overload 451
signature property 460–465
sorting 472–473
this keyword 451
toHTML() method 450, 456, 479
toString() method 450
updated 443–444

blogSorter() class 473–474

boolean data type 35

boolean operator logic 218

boolean operators
difference between normal and logic operator 219
parentheses 219

break statements 178, 179, 212

Browser Exposed 98

browsers 89
clearing variables 111
client-server interactions 86
closing browser before timer expires 97
const keyword 46
cookies 88
cookies and browser security 124
difference between Web client, browser, client window,

and browser window 101
error console 491
history 88
JavaScript code 13
metrics 88
page loading issues 522–523
resizing browser windows 106–107
resizing iRock 102–103
running JavaScript code 88
syntax errors 500
trusting debugging messages 492
wrong-sized graphics 99–101

bugs (see debugging)

built-in functions 21

Bullet Points
AjaxRequest object 560
arrays 202
break statements 224
callback functions 282
capitalization 69
classes 459
className node property 379
client window 104
comments 173
compound statements 150
createElement() method 385
CSS style class 379

Download at WoweBook.Com

you are here 4 601

the index

data types 49
Date object 414
debugging in browser error console 498
DOM 364
events 21
form fields 307
function literals 282
function references 282
functions 21, 259
global versus local variables 173
if statements 150
initializing data 69
innerHTML property 364
loops 202, 224
NaN (Not a Number) 69
objects 399
prototypes 459
quotes and apostrophes 511
regular expressions 330
return statement 269
sorting 432
syntax errors 511
this keyword 459
timers 104
two-dimensional arrays 235
XMLHttpRequest object 560

buttons, disabling 574–576

C
callback functions 277, 281, 282

onload event handler 283
versus normal functions 276

callNum variable
putting watch on 515
showing up as NaN 526–527

CamelCase 52, 62

capitalization 52, 62, 69
keywords 46
objects 459

changeScene() function 157, 162, 367

character classes 336

checkWinner() function 504–505

child nodes 353, 363

class-owned instance methods 471

classes
class properties versus global variables 464
class properties versus instance properties 464, 466
properties 462–463
storing methods 455
versus instances 452–453, 459

class methods 471
calling 474

className node property 379

clearInterval() function 97

client-server interactions 86

clients 86, 89
Browser Exposed 98
controlling 89
difference between Web client, browser, client window,

and browser window 101
persistence 116

client window 99–101
percentage of size 103
resizing iRock 102–103
width and height 104

code separation 270–271, 274, 283

Code Up Close (Mandango project) 215

comments 166, 167
code inside 173
disabling code 527–529, 531
semicolon 173

compare() function 421

comparison operators 164

compound statements 148, 149, 150
inside for loops 201
variables inside 173

concatenating strings 64, 69, 76

Download at WoweBook.Com

602 index

the index

constants 40, 46–47
explicitly setting 49
uninitialized 60–61
versus variables 43
when to use 49

const keyword 46

constructors 402–403, 405, 459

content, separating functionality, content, and
presentation 270–271

context 169

continue statements 212

converting text to number 65, 69

cookieEnabled property 126

cookies 88, 112–115
browser detection 129
browser security 124
greeting users with 120–121
messages 129
names 125
permanent 125
shared across browsers 125
touchRock() function 122–123
versus storing data on server 125
where stored 125

createElement() method 383, 385

createTextNode() method 361, 371

CSS 6–7
interactivity 8
separating HTML, JavaScript, and CSS code

270–271
using DOM to tweak CSS styles 372–373

CSS style classes 375
manipulating individual styles 379
versus JavaScript classes 372, 374

curly braces
debugging 532
missing 493–494
switch/case statement 178

custom objects 450–484

D
data

accessing form data 293
bad form data 298–299
dynamic (see dynamic data)
entering into forms 295
non-empty validation 300–301
protecting integrity of 75
tagging custom data with XML 543
validation 294–296, 302

alert boxes 297
dates 315–316, 329
email addresses 334–337
length 305–306
phone numbers 333
ZIP codes 310–312
(see also regular expressions)

data types 35, 45
explicitly setting 49
objects 398

data visibility 169

Date object 97, 410–411, 414
accessing parts of a date 417
converting objects to text 415–417
getDate() method 417
getFullYear() method 417
getMonth() method 417
shortFormat() method 592
sort comparison 423
toString() method 416

dates, validating 315–316, 329

debuggers 511

debugging 486–536
= versus == 510, 532
alert boxes 507–509

problems debugging with 515
apostrophes 502, 532
browsers 492
cheat sheet 505
checklist 532

Download at WoweBook.Com

you are here 4 603

the index

curly braces 532
custom debugging console 517–520

debugging 521–523
disabling code 527–529
error console in browser 491
escape characters 503, 532

limitation 511
Firefox 489–491
Internet Explorer 488, 491
logic errors (see logic errors)
missing curly braces 493–494
Opera 488
page loading issues 522–523
parentheses 532
poor scripting 512–513
quotes 501–502, 532
runtime errors 524–525
Safari 488
shadow variables 530–532
syntax errors (see syntax errors)
trying to references undefined variable or

function 511
typos 496, 497, 532
undefined variable error 495
watch 508, 515
watching variables (see watching variables)

Debugging with Alert 509

decisions 146
complex 218
tiered 154

decision tree 152–153
path 161
pseudocoding 158

devices, wrong-sized text and graphics 99–101

disabling code 527–529, 531

div element versus span element 371

<div> tag 346, 362

document.body.clientHeight 100

document.body.clientWidth 100

Document Object Model (DOM) 352–392
appendChild() method 361
changing node text 360–361
child nodes 353, 363
classifying DOM data 354
createElement() method 383
createTextNode() method 361
DOM Building Blocks 362
DOM tree 357
element attribute 354
ELEMENT node 354, 362
hierarchical tree of nodes 353
manipulating individual styles 379
nodes 353

properties 357
style property 377
types 354
visibility style property 377

properties 359
removeChild() method 361
replacing node text with a function 368–369
TEXT node 354, 362
top node 354
using DOM to tweak CSS styles 372–373
Web standards 365

DOM
extracting content from nodes of XML data 566
XML 549

DOM Building Blocks 362

dot operator 396–397

Duncan’s Donuts project 55–84
calculation problems 58–59
fetching data from Web pages 71
intuitive user input 77
parseDonuts() function 79
processing orders 56–57
searching user input 78
string concatenation versus numeric addition 64

duplicate code, eliminating 254–256

dynamically resizing images 108–109

Download at WoweBook.Com

604 index

the index

dynamic data 538–598
Ajax (see Ajax)
HTTP request/response 561
PHP 579–584
URL encoding 585–586
XHTML 545

dynamic text decisions 370

E
ELEMENT node 354, 362

elements
IDs 71
versus its value 76

email address validation 334

empty alert box 162
resolving 163

empty strings 72

encapsulation 472–473

error consoles 491
watching variables 516

errors
logic (see logic errors)
runtime 524–525
syntax (see syntax errors)
(see also debugging)

escape characters 503, 511, 532
limitation 511

event handlers 278

events 18
functions 272
onload 20, 105
onresize 107–109
where they come from 21
wiring through function literals 279–280
without connected code 21
(see also callback functions)

F
findSeat() function 206, 211, 258

Firefox, debugging 489–491

Fireside Chats
bad form data 298–299
class properties versus instance properties 466
for loops and while loops 226–227
local versus global variables 172
normal functions versus callback functions 276
persistent data storage 114
poor scripting 512–513
variables versus constants 43
XHTML 546

floor() method 436, 437

for loops 192–193, 226–228
code not being called 227
infinitely looping 201
Mandango 197

forms 13, 292
accessing form data 293
alert boxes (see alert boxes)
arrays 293
attributes 293
bad form data 298–299
data validation 294–296, 302

alert boxes 297
dates 315–316
ZIP codes 310–312
(see also regular expressions)

entering data 295
fields 294

accessing form object 294
size 309

generating events 296
help message, clearing 309
help text element 309
HTML size attribute 309
non-empty validation 300–301
onblur event 295–297

Download at WoweBook.Com

you are here 4 605

the index

onchange event 295
onfocus event 295
validating length of data 305–306

functionality, separating functionality, content, and
presentation 270–271

function literals 279, 281, 282
event wiring through 279–280
onload event handler 283

function references 278, 282

functions 19, 243–288, 398
alert() 19, 297
arguments 252

limits 260
as problem solvers 246
built-in 21
callback (see callback functions)
calling 273
changeScene() 162
clearInterval() 97
custom

changeScene() 157, 367
checkWinner() 504–505
createTextNode() 371
findSeat() 206, 211
findSeats() 258
getSeatStatus() 267–268
getTemp() 262
greetUser() 121
heat() 251, 263
initSeats () 205
parseDonuts() 79
replaceNodeText() 369
setSeat() 257–258
showSeatStatus() 268–269, 272–273, 279
touchRock() 24, 122–123
validateDate() 329
validateLength() 306
validateNonEmpty() 300–303, 329

eliminating duplicate code 254–256
events 272
knowing when to use 249
location in code 260
missing arguments 477

naming conventions 249
normal functions versus callback functions 276
nuts and bolts of 247
parseFloat() 65
parseInt() 65

decimal numbers 76
passing information 252
placeOrder() 313–314
purpose of 249, 260
referencing 273–275
replacing node text with a function 368–369
returning information 261–263
setInterval() 95, 97, 104
setTimeout() 94, 104
trying to references undefined variable or

function 511
turning into methods 441–442
validateRegEx() 326–327
versus compound statements 149
versus variables 274

G
getElementById() method 71, 76, 101, 102, 347, 352,

358, 375

getElementsByTagName() method 358

GET request 554–555, 561

getSeatStatus() function 267–268

getTemp() function 262

getText() Function Up Close 567

global scope 171

global variables 169–173
script level 173
versus class properties 464

greetUser() function 121

H
Handling Ajax Responses 568

head of page, accessing code from 522–523

heat() function 251, 263

Download at WoweBook.Com

606 index

the index

help message, clearing 309

help text element 309

hierarchical tree of nodes 353

HTML 6–7
accessing elements 347–348, 522
callback functions 277
interactivity 8
separating HTML, JavaScript, and CSS code 270–

271
size attribute 309
versus XML 542
XHTML 545

HTTP request/response 561

I
id attribute of <div> tag 346

identifiers 50
capitalization 52
unique 62

IDs of elements 71

if/else statements 150
choosing between two things 141
false condition 143
formatting 143
limitations 147
mulitple decisions 142
multiple 154
multiple else 143
nested 175

if statements 138, 150
nested 155, 158
semicolon 143

 tag 204

importing external scripts 119

indexed arrays 199, 201, 202

infinite loops 201, 223
Mandango project 210

initializing data 69
constants 60–61
variables 45

initializing loops 191

initSeats() function 205, 248

innerHTML property 348, 350, 352, 364, 408
setting content 349

<input> tag, disabled attribute 574

instances
class properties versus instance properties 464, 466
properties and methods 454–455, 463
this keyword 454
versus classes 452–453, 459

interactivity
HTML and CSS 8
without JavaScript 13

Internet Explorer, debugging 488, 491

interpreter 86, 89, 493–494

interval timers 93, 95, 97
stopping 97

IQ calculator script 487–497
missing curly braces 493–494
typos, debugging 496
undefined variable error 495–496

iRock project
100 in the iRock image size calculation 105
alert() function 19
cookie messages 129
cookies not available 126
cookie writing 122–123
dynamically resizing iRock 108–109
emotional behavior 90–91
events 18
greeting, specifying text for 23
greeting users with cookies 120–121
instant replay 27
resizing 101–103
resizing browser windows 106–107
storing data 34

Download at WoweBook.Com

you are here 4 607

the index

J
JavaScript

classes versus CSS style classes 372
interpreter (see interpreter)
separating HTML, JavaScript, and CSS code

270–271
writing files to server 578

JavaScript code
browsers 13
comments inside 173
constants (see constants)
data types 35
downside to storing JavaScript code in external

file 125
duplicate, eliminating 254–256
events 18
identifiers 50
importing from external files 592–593
missing curly braces 493–494
running 88
servers 89
single-line comment at end 173
starting 13
trying to references undefined variable or

function 511
variables (see variables)

K
keywords 44

capitalization 46

L
length property of a string 306–307

local variables 169–173

logic errors 510–511, 525
poor scripting 512–513

loops 189–242
action 191
break statements 212, 213, 224

condition testing false 201
continue statements 212
for (see for loops)
infinite loops 201, 223
initializing 191
loop counter 213
nested loops 227
testing conditions 191
updates 191
while (see while loop)

lowerCamelCase 52, 62, 249

M
Mandango project 194–220

2-D Mandango Up Close 236–237
better way to handle the three-seat check 217
break statements 212
Code Up Close 215
continue statements 212
findSeat() function 206, 211
findSeats() function 258
from JavaScript to HTML 203–206
getSeatStatus() function 267–268
infinite loops 210
initSeats() function 205, 248
mapping array to seat images 204
onload event handler 283
seat images 204
seat initialization 205
selSeat variable 206, 211
setSeat() function 257–258
showSeatStatus() function 268–269, 272–273, 279
solo seat searching version 209
two-dimensional arrays 231–234

accessing data 233
markup language 542

Master of Patterns 325

Math object 434, 437

Math Object Exposed 435

metacharacters 320–321, 324

Download at WoweBook.Com

608 index

the index

methods
getElementById() 71, 76, 101, 102
knowing what script code can be put into 441
reload() 97
storing in classes 455
turning functions into 441–442

milliseconds 95, 104

mobile devices, wrong-sized graphics 99–101

N
NaN (Not a Number) 62, 69

navigator object 126

nested if/else statements 175

nested if statements 155, 158

nested loops 227

new operator 405, 413

nodes 353
changing node text 360–361
multiple children 360
properties

childNodes 357
firstChild 357
lastChild 357
nodeType 357
nodeValue 357

replacing node text with a function 368–369
style property 377
types 354, 362
visibility style property 377

No Dumb Questions
! (negation operator) 165
100 in the iRock image size calculation 105
addition versus concatenation 76
Ajax 580

request/response 561
AjaxRequest object 561
alert boxes 314

validation 309
arguments

altering 260
limit on number of 260

Array.sort() method 423
arrays 234

additional data in 234
data stored in 201
indexed 201
two-dimensional 234

Blog() constructor’s argument list 478
blog data 548
Blog object 441
boolean operators, parentheses 219
break statements 213
browsers 89
callback functions 281

onload event handler 283
callNum variable 511
camel case and lower camel case 62
charAt() method versus indexOf() method 432
child nodes 363
classes versus instances 459
class properties

versus global variables 464
versus instance properties 464

clearInterval() function 97
clients 89

controlling 89
client window 101
closing browser before timer expires 97
code separation 274
comments inside code 173
compound statements 149

inside for loops 201
connection between XML and Ajax 548
constants, when to use 49
constructors 459
cookies

names 125
shared across browsers 125
where stored 125

createTextNode() function 371
CSS style classes 375

versus JavaScript classes 374
data types 49
Date object 414

sort comparison 423
debuggers 511

Download at WoweBook.Com

you are here 4 609

the index

debugging
Firefox 491
IE 491

difference between a normal boolean operator and a
boolean logic operator 219

difference between Web client, browser, client window,
and browser window 101

disabling code 531
div element versus span element 371
downside to storing JavaScript code in external

file 125
element versus its value 76
error console in browser 491
escape characters 511

limitation 511
events

where they come from 21
without connected code 21

explicitly setting variables and constants 49
floor() method versus round() method 437
form object 294
forms 13

fields 294
generating events 296
onblur event 296

form field size attribute 309
function literals 281
functions 398

built-in 21
knowing when to use 249
location in code 260
naming conventions 249
purpose of 249, 260
referencing 274
versus compound statements 149
versus variables 274

GET and POST requests 561
getElementById() method 76, 352, 358, 375
getElementsByTagName() method 358
global variables

script level 173
versus local variables 171

help message, clearing 309
help text element 309
HTML tag in XML 572

HTML size attribute 309
identifiers, unique 62
if/else statement

false condition 143
multiple else 143

infinite loops 201
interactivity without JavaScript 13
interpreter 89
interval timers 97

stopping 97
JavaScript code

browsers and 13
servers 89
single-line comment at end 173
starting 13

knowing what script code can be put into methods
441

loop counter 213
loops

code not being called 227
condition testing false 201

Math object 437
NaN (Not a Number) 62
nested if statements 158
nested loops 227
NOT operator 219
null 165
object-oriented 461
objects

constructors 405
data types 398
dot operator 398
new operator 405
properties and methods 398

onload event 105
onload event handler 283
onmouseout event 375
onmouseover event 375
parseInt() function and decimal numbers 76
permanent cookies 125
PHP 580
placeOrder() function 314
prototype objects 459
pseudocoding 158
quotes and apostrophes 21

Download at WoweBook.Com

610 index

the index

No Dumb Questions (continued)
ready state and status of an Ajax response 572
regular expressions 324

empty data 329
metacharacters 324

resizing iRock 101
<script> tag 13
searching for more than one substring 432
security 13
semicolon in comments 173
semicolon in if statement 143
setInterval() function 97
shadow variables 531
Stick Figure Adventure, variables 149
storing data on server versus cookies 125
strings as objects 432
switch/case statement 179
this keyword 309, 405, 459
timers 97
toLowerCase() in searchBlog() function 432
toString() method 423
trying to add strings to numbers 76
trying to references undefined variable or

function 511
typos, debugging 497
undefined versus not defined 497
undefined versus null 497
URL encoding 586
variables

inside compound statements 173
uninitialized 49
when to use 49

while loops 227
width and height CSS style properties 105
YouCube blog addition script 586
YouCube project

Add button 586
adding a new blog entry 586
Blog object 408
innerHTML 408
Show All Blog Entries button 408
storing signature in property 464

non-empty validation 300–303

NOT operator 219

null 165
missing function arguments 477
versus undefined 497

number data type 35

numbers
converting text to number 65
trying to add strings to 76

numeric addition 64, 69, 76

O
object-oriented 461

object-oriented design (OOP) 460, 461, 465, 467,
470–475

object-oriented script 399

object literals 413

objects 395
arrays as 420
Blog object 404, 406, 408, 412–413
capitalization 459
constructors 402–403, 405
converting to text 415–417
custom 400–401
custom (see custom objects)
data types 398
Date object (see Date object)
dot operator 396–397
extending 467–470
Math object 434
new operator 405, 413
properties and methods 396, 398
prototype 456–457
searchable 426–427
String object (see String object)
strings as 432
toString() method 416
within objects 413

onblur event 295–297
bad form data 298–299
validateNonEmpty() function 301

Download at WoweBook.Com

you are here 4 611

the index

onchange event 295
bad form data 298–299

one-shot timers 93

onfocus event 295

onload event 20, 105, 278

onload event handler 280, 283

onmouseout event 375

onmouseover event 375

onresize event 107–109

Opera, debugging 488

organizational object 434

P
page loading issues 522–523

parentheses
boolean operators 219
debugging 532

parseDonuts() function 79

parseFloat() function 65

parseInt() function 65, 77
decimal numbers 76

PDAs, wrong-sized graphics 99–101

persistence 112–115
clients versus servers 116

phone number validation 333

PHP 579–584
running scripts 581–582

placeOrder() function 313–314

placeOrder() function Up Close 314

POST request 554–555, 561

presentation, separating functionality, content, and
presentation 270–271

problems, breaking down 244–245

prototype objects 456–457, 459, 468–469

pseudocoding 158

Q
quantifiers 322–323

quotes 21
debugging 501–502, 532
escape characters 503, 511

R
radio call-in script 498–499

alert boxes 507–508
callNum variable 507–508, 511
checkWinner() function 504–505
debugging quotes 501–502
how the code is supposed to work 499

random() method 436

random numbers 434–437
learning more 437

Ready Bake JavaScript
parseDonuts() function 79
touchRock() function 24

regular expressions 318–337
$ 320
() 322
* 322
+ 322
. (dot) 320
? 322
\d 320
\s 320
\w 320
^ 320
{min,max} 329
{n} 322
character classes 336
email address validation 334–337
empty data 329
escaping special characters 336
forward slashes (//) 320
metacharacters 320–321, 324
phone number validation 333

Download at WoweBook.Com

612 index

the index

regular expressions (continued)
quantifiers 322–323
validating data with 326–327
ZIP codes 319

reload() method 97

reloading pages, clearing variables 111

repetition (see loops)

replaceNodeText() function 369

request methods 554

resizing images 99–109
dynamically 108–109

Return Exposed 264

return statement 262–264, 269

reusable tasks 254–256

round() method 437

runtime errors 524–525

S
Safari, debugging 488

scope 169, 170
global 171

scripting 244

script level, global variables 173

scripts, importing external 119

<script> tag 13, 119, 592

searchable objects 424–432

security 13

semicolon
comments 173
if statement 143

servers
JavaScript code 89
persistence 116
storing data on versus cookies 125

setInterval() function 95, 97, 104

setSeat() function 257–258

setTimeout() function 94, 104

shadow variables 530–532

showSeatStatus() function 268–269, 272–273, 279

sort() method 420–421

sorting 418–423
compare() function 421
function literals 422

span element, versus div element 371

 tag 302, 362

Stick Figure Adventure Code Up Close 351

Stick Figure Adventure project 144–171
beginning 151
changeScene() function 157, 162, 367
comments 166, 167
compound statements 148
createTextNode() function 371
CSS style classes versus JavaScript classes 374
curScene variable 146
decision tree 152–153, 382–383, 387

path 161
pseudocoding 158

decision variable 146
div element versus span element 371
DOM (see Document Object Model)
dynamic text decisions 370
empty alert box 162

resolving 163
empty options 376
id attribute of <div> tag 346
if/else statements 154
if statements 155
innerHTML property 348–350
interactive options 371
manipulating individual styles 379
manufacturing HTML code 384
replacing node text with a function 368–369
tiered decisions 154
unfolding the story 380–381
user decisions 146
variables 149

revisiting 170

Download at WoweBook.Com

you are here 4 613

the index

storing data
constants (see constants)
data types 35
variables (see variables)

string boundary 502

String object 413
charAt() method 426

versus indexOf() method 432
indexOf() method 426–427
length 426
searching within 427
toLowerCase() method 426
toUpperCase() method 426

strings
as objects 432
concatenating 64, 69, 76
debugging quotes 501–502
empty 72
escape characters 503
length property 306–307
searching for more than one substring 432
trying to add to numbers 76
within strings 426

structure 6–7

style 6–7

style class 302

style object 102–104

substrings 426

switch/case statements 143, 177–180
break statements 178, 179
curly braces 178
default branch 178
Switch Exposed 180

Switch Exposed 180

syntax 51

syntax errors 500, 525
poor scripting 512–513

T
tabular data 233

tasks, reusable 254–256

text, converting to number 65

text data type 35

TEXT node 354, 362

this keyword 300, 309, 375, 403, 405, 459
Blog object 451
instances 454

tiered decisions 154

timers 88
closing browser before timer expires 97
delay 94–96

milliseconds 95
interval 93, 95, 97
one-shot 93
setting 94
time of day 97
understanding 92

toString() method 416, 423

touchRock() function 24
cookie writing 122–123

2-D Mandango Up Close 236–237

two-dimensional arrays 231–234
2-D Mandango Up Close 236–237
accessing data 233

typos, debugging 496, 497, 532

U
unary operator 219

undefined
versus not defined 497
versus null 497

undefined variable error 495–496

unique identifiers 62

Download at WoweBook.Com

614 index

the index

URL encoding 585
spaces 586

user decisions 146
decision tree 152–153

path 161
pseudocoding 158

tiered decisions 154

user input 4–5
intuitive 77
searching 78
trusting 83

V
validateDate() function 329

validateLength() function 306

validateNonEmpty() function 300–303, 329

validateRegEx() function 326–327

validation, data (see data, validation)

variables 40
clearing 111
creating blank 44
data types 45
explicitly setting 49
global 169–173
inside compound statements 173
local 169–173
local and global variables with same name 530–531
location in code 168
NaN (Not a Number) 62
scope (see scope)
shadow 530–532
Stick Figure Adventure, revisiting 170
trying to references undefined variable or

function 511
undefined variable error 495–496
uninitialized 49
versus constants 43
versus fucntions 274
when to use 49

var keyword 44

viruses 124

W
watching variables 508, 515

error consoles 516
when it’s not enough 526–527

Watch it!
= versus == 164
break statements 179
concatenating strings 64
const keyword 46
cookies 124
CSS style classes versus JavaScript classes 372
Date methods 417
id attribute 346
regular expressions, escaping special characters 336
resizing images 109
timer delay 95
validating dates 329
while loops 223
ZIP codes 312

Web client (see clients)

Web pages
element versus its value 76
fetching data from 71
interactions 86–87
reloading 111

Web scripting 244

Web standards 365

while loops 222–229
code not being called 227

width and height CSS style properties 105

worms 124

X
XHTML 545–546

XML
Ajax 549
blog data 547
connection between XML and Ajax 548
DOM 549

Download at WoweBook.Com

you are here 4 615

the index

extracting content from nodes of XML data 566
HTML tag 572
tagging custom data 543
versus HTML 542
XHTML 545

.xml file extension 544

XMLHttpRequest object 552–556, 560
abort() 552
complexity 553
GET or POST request 555
making less painful 556
onreadystatechange 552
open() 552
readyState 552
responseText 552
responseXML 552
send() 552
status 552

Y
YouCube project 399–448

Add button 586
adding images 476–479
adding new blog entry 585

images 586
adding signature property to Blog class 460–465
Ajax 541–571
Ajax request 563–564
auto-filling blog data 590–591
blog addition script 586
blog data 547–548

XML 547
Blog object (see Blog object)
blog sorting 418–423
buttons 573–576

disabling 574–576

calling class methods 474
class-owned methods 455–458
converting objects to text 415–417
Data object, shortFormat() method 592
Date object 410–411

accessing parts of a date 417
dynamic data 538–539
extending objects 467–470
extracting content from nodes of XML data 566
handleRequest() function 569–570
HTML tag in XML 572
importing JavaScript code from external files 592–593
injecting with Ajax 550–551
innerHTML 408
modular date formatter 592
objects

constructors 402–403
custom 400–401
within objects 413

order of blog entries 408–410
PHP 579–584

running scripts 581–582
random blogs 433–438
search feature 424–432
Show All Blog Entries button 408
sorting 472–473
turning functions into methods 441–442
updating blog from browser 577–584
URL encoding 585

spaces 586
YouCube Up Close 407

Z
ZIP code validation 310–311

regular expressions 319

Download at WoweBook.Com

Download at WoweBook.Com

	Table of Contents
	Intro
	Chapter 1. the interactive web
	Chapter 2. storing data
	Chapter 3. exploring the client
	Chapter 4. decision making
	Chapter 5. looping
	Chapter 6. functions
	Chapter 7. forms and validation
	Chapter 8. wrangling the page
	Chapter 9. bringing data to life
	Chapter 10. creating custom objects
	Chapter 11. kill bugs dead
	Chapter 12. dynamic data
	Index

