O'REILLY"

Head First

Ruby

A BraigEriendly Guide

O

Do heavy liting
easily with blocks

Get mora
& done with
GOseEcaN B less code

Avoid |
embarrassing | =
00 mistakas

Serve your

IE' bl
web app p‘i-"zﬂ ¥y
to the world .;-IE-:

Jay McGavren

http://www.it-ebooks.info/

www.it-ebooks.info

Head First
Ruby

Jay McGavren

OREILLY"

Beying » Cambridge * Kiln * Sebastopol * Tokyo

http://www.it-ebooks.info/

Head First Ruby
by Jay McGavren

Copyright © 2015 Jay McGavren. All rights reserved.
Printed in the United States of America.
Published by O’Reilly Media, Inc., 1005 Gravenstein Highway North, Sebastopol, CA 95472.

O’Reilly Media books may be purchased for educational, business, or sales promotional use. Online editions
are also available for most titles (Attp://safaribooksonline.com). For more information, contact our corporate/
institutional sales department: (800) 998-9938 or corporate@oretlly.com.

Editors: Meghan Blanchette, Courtney Nash
Cover Designer: Randy Comer

Production Editor:

Indexer:

Proofreader:

Page Viewer:

Printing History:
April 2015: First Edition.

Nutshell Handbook, the Nutshell Handbook logo, and the O’Reilly logo are registered trademarks of O’Reilly
Media, Inc. The Head First series designations, Head First Ruby, and related trade dress are trademarks of O’Reilly
Media, Inc.

Many of the designations used by manufacturers and sellers to distinguish their products are claimed as
trademarks. Where those designations appear in this book, and O’Reilly Media, Inc., was aware of a trademark
claim, the designations have been printed in caps or initial caps.

While every precaution has been taken in the preparation of this book, the publisher and the authors assume no
responsibility for errors or omissions, or for damages resulting from the use of the information contained herein.

ISBN: 978-1-449-37265-1
[LST]

www.it-ebooks.info

http://www.it-ebooks.info/

1 more With less

Code the Way You Want

Come see how awesome Ruby is!
We'll learn about variables, strings,
conditionals, and loops. Best of all,
you'll have a working game by the
end of the chapter!

By the way, welcome to the early
release! If you have ANY questions
or feedback, e-mail us at:
feedback@headfirstruby.com!

You’re wondering what this crazy Ruby language is all about,
and if it's right for you. Let us ask you this: Do you like being productive? Do you feel
like all those extra compilers and libraries and class files and keystrokes in your other
language bring you closer to a finished product, admiring co-workers, and happy
customers? Would you like a language that takes care of the details for you? If you
sometimes wish you could stop maintaining boilerplate code and get to work on your

problem, then Ruby is for you. Ruby lets you get more done with less code.

this is a new chapter

www.it-ebooks.info

http://www.it-ebooks.info/

page goal header

No, really, we mean ANY feedback! If you're
confused, other readers will be, too. We want to work
this stuff out before printing! E-mail us at:
feedback@headfirstruby.com
And thanks!

The Ruby Philosophy

Back in the 1990's in Japan, a programmer named Yukihiro Matsumoto
("Matz" for short) was dreaming about his ideal programming language. He
wanted something that:

* Was easy to learn and use

* Was flexible enough to handle any programming task

e Let the programmer concentrate on the problem they were trying to solve
* Gave the programmer less stress

* Was object-oriented

He looked at the languages that were available, but felt that none of them was
exactly what he wanted. So, he set out to make his own. He called it Ruby.

After tinkering around with Ruby for his own work for a while, Matz released
it to the public in 1995. Since then, the Ruby community has done some
amazing things:

e Built out a vast collection of Ruby libraries that can help you do anything

from reading CSV files to controlling objects over a network

* Written alternate interpreters that can run your Ruby code faster or
integrate it with other languages

. Created Ruby on Rails, a hugely popular framework for web applications

This explosion of creativity and productivity was enabled by
the Ruby language itself. Flexibility and ease of use are core
principles of the language, meaning you can use Ruby to
accomplish any programming task, in fewer lines of code than

other languages. Flexil»ility and ease of use are

Once you've got the basics down, you'll agree: Ruby is a joy to
use!

core Principles of Ru]ay.

2 Chapter #

www.it-ebooks.info

http://www.it-ebooks.info/

chapter title here

Get Ruby

First things first: you can write Ruby code all day, but it won’t do you

much good if you can’t run it. Let’s make sure you have a working Ruby
interpreter installed. We want version 2.0 or later. Open up a command-
line prompt and type:

ruby -v

Addlha “-—-V”
makes Ruby
show the

version number-.

“vuby” by itself File Ed Window Felp

launthes a Ruby $ ruby -v » -
interpreter ruby 2.0.0p0 (2013-02-24 revision 39474) [x86_ 64-darwinll.4.2]
intery! . s ruby

~Cruby: Interrupt

Press Ctel-C
+o exit the $
interpreter
and vetuen
{0 your 0S
yrom\?{:-

When you type ruby -v at a prompt, if you see a response like this, you're 9‘6
in business:

_) '
ruby 2.0.0p0 (2013-02-24 revision 39474) [x86 64-darwinll.4.2] r Do this]

We don't tave about the other
stubf in this output, as long as
it says “vuby 2.0" or later.

If you don’t have
Ruby 2.0 or later, visit
www.ruby-lang.org
and download a copy
for your favorite OS.

you are here » 3

www.it-ebooks.info

http://www.it-ebooks.info/

page goal header

Use Ruby

To run a Ruby script, you simply save your Ruby code in a file, and
run that file with the Ruby interpreter. Ruby source files that you can
execute are referred to as scripts, but they're really just plain text files.

You may be used to other languages (like C++, C#, or Java) where you have to
manually compile your code to a binary format that a CPU or virtual machine can
understand. In these languages, your code can't be executed before you compile it.

The Compute
Other languages:

Sourte tode Compiled tode

e R A
ool ¥ e i
illolo:

[IR}
' [
— -_ colol -_— Pt
— olol Vo
[, y
MyProgram.java Compiler MyProgram.class Virtual Machine

With Ruby, you skip that step. Ruby instantly and automatically compiles the source
code 1n your script. This means less time between writing your code and trying it out!

The Ruby way:

Souvte tode The Computey
= l 3 exeCutes youy.
5 —— e Program

my_program.rb The Ruby Interpreter

File Edit Window Help

puts "hello world" $ ruby hello.rb
hello world Theve's
\/ow
ou{:?u‘l:,l

Type your source code.

Run your source code with the
Save as: hello.xb Ruby interpreter.

4 Chapter #

www.it-ebooks.info

http://www.it-ebooks.info/

Use Ruby - interactively

There's another big benefit to using a language like Ruby. Not only do you
not have to run a compiler each time you want to try out your code, you
don't even have to put it in a script first.

Ruby comes with a separate program, called irb (for Interactive Ruby). The
irb shell lets you type any Ruby expression, which it will then immediately
evaluate and show you the results. It's a great way to learn the language,
because you get immediate feedback. But even Ruby professionals use i rb to
try out new ideas.

Throughout the book, we'll be writing lots of scripts to be run via the Ruby
interpreter. But anytime you're testing out a new concept, it's a great idea to
launch irb and experiment a bit.

So what are we waiting for? Let's get into irb now and play around with
some Ruby expressions.

Using the irb shell

Open a terminal window, and type irb. This will launch the interactive
Ruby interpreter. (You'll know it's running because the prompt will change,
although it may not match exactly what you see here.)

From there, you can type any expression you want, followed by the Return
key. Ruby will instantly evaluate it and show you the result.

When you're done with irb, type exit at the prompt, and you'll be
returned to your OS's system prompt.

Type "irb” at the system prompt,
and press the Return key.

irb will launth, File Edit Window Help
and show the $ irb
L L A] irb (main):001:0> 1 + 2

=> 3
/ irb(main) :002:0> "Hello".upcase
ivb evaluates the => "HELLO"

expression, and irb(main) :003:0> exit

shows You the vesult
(mavked with "=>").

www.it-ebooks.info

chapter title here

Now You tan {:\/Pc any

uby expression you
want, and press the
Return key.

When \/oulrc \read\/ to

exit ivb, type "exit”
and press Retuen.

you are here » 5

http://www.it-ebooks.info/

page goal header

Your first Ruby expressions

Now that we know how to launch irb, let's try a few
expressions out and see what results we get!

Type the following at the prompt, then press Return: 1+ 2

You'll be shown the result:

Math operations and comparisons

Ruby's basic math operators work just like they

do in most other languages. The + symbol is for I£ You {2\/\761 "ivb” dis?la\/si
addtion, - for subtraction, * for multiplication, /
for division, and ** for exponentiation. 5.4 - 2.2 => 3.2

=> 12

w
*
N

7/ 3.5 => 2.0
2 ** 3 => 8

You can use < and > to compare two values and
see if one is less than or greater than another.
You can also use == (that's fwo equals signs) to

see if two values are equal. 4 < 6 => true

=> false

2 + 2 =25 => false

i
\2
[e)]

Strings

A string is a series of text characters. You can use them to hold names, e-mail addresses, phone
numbers, and a million other things. Ruby's strings are special because even very large strings are
highly efficient to work with (this isn't true in many other languages).

The easiest way to specify a string is to surround

1t either with double quotes ("), or single quotes

("). The two types of quotes work a little

differently; we'll explain that later in the chapter. "Hello" => "Hello"

'world' => "world"

6 Chapter #

www.it-ebooks.info

http://www.it-ebooks.info/

Variables

Ruby lets us create variables - names that refer to values.

You don't have to declare variables in Ruby; assigning to them creates

them. You assign to a variable with the = symbol (that's a single equals sign).

£ you {:\/YC: "iwb” disyla\/st

small = 8

medium = 12 => 12

| l
\%
Im

A variable name starts with a lower-case letter, and can contain letters,
numbers, and underscores.

Once you've assigned to variables, you can access their values whenever
you need, in any context where you might use the original value.

small + medium

Variables don't have types in Ruby; they can hold any value you
want. You can assign a string to a variable, then immediately assign a
floating-point number to the same variable, and it's perfectly legal.

pie = 3.14 => 3.14

The += operator lets you add on to the existing value of a
variable.

chapter title here

% Oonventmnal *
\XFS om _*

! Use all lower case letters in variable

: names. Avoid numbers; they're rarely
. used. Separate words with

. underscores.

my rank = 1

number = 3

number += 1

number

string = "ab" => "ab"
string += "cd" => "abcd"
string "abed"

www.it-ebooks.info

. This style is sometimes called "snake
. case" , because the underscores make
the name look like it's crawling on the
. ground.

you are here »

http://www.it-ebooks.info/

page goal header

Everything is an object!

Ruby is an object-oriented language. That means your data has useful
methods (fragments of code that you can execute on demand)
attached directly to it.

In modern languages, it's pretty common for something like a string
to be a full-fledged object, so of course strings have methods to call:

£ You ‘{:\/YCZ "wb” disyla\/s:

"Hello".upcase => HELLO

"Hello".reverse => olleH

What's cool about Ruby, though, is that everything 1s an object. Even
something as simple as a number is an object. That means they have
useful methods, too.

42 .even? => true

-32.abs => 32

Calling a method on an object

Dot
operators

Reteivers Method hames

When you make a call like this, the object you're
calling the method on is known as the method
receiver. It's whatever is to the left of the dot
operator. You can think of calling a method on an
object like passing it a message. Like a note saying, 1] 1]
"Hey, can you send me back an upper case version of hello

upcase
-32|lJabs

filel/read

yourself?" or "Can I have your absolute value?".

8 Chapter #

www.it-ebooks.info

http://www.it-ebooks.info/

chapter title here

Open a new terminal or command prompt, type "irb" and hit the Enter/Return key. For each of the
Ruby expressions below, write your guess for what the result will be on the line below it. Then try
typing the expression into irb, and hit Enter. See if your guess matches what i rb returns!

42 / 6 5> 4

name_nzaphOd" number__32
nam e upcase num ber abs
HzaphOd"upcase _32abs
namereverse number +:lo
name upcase reverse .. rand (2 5)
nam e Cl ass num ber Clas S
name . * 3 ..

you are here » 9

www.it-ebooks.info

http://www.it-ebooks.info/

page goal header

Open a new terminal or command prompt, type "irb" and hit the Enter/Return key. For each of the

e Ruby expressions below, write your guess for what the result will be on the line below it. Then try
ExeRC|§Q typing the expression into irb, and hit Enter. See if your guess matches what i rb returns!
oLution
42 / 6 5> 4
e teve .
Prssigning to a

vaviable vetuens name = "Zaphod"
w\,\a{xvcr VG\\AC

is ass\gnCd-\//, "Za‘?hod" -32

You tan call

name.upcase &——— methods on an _% number.abs
». » O\J:)cch SbYCd "
ZAP HOD a vaviable--

)
"Zaphod" . upcase‘(—\.\,\gu‘h you don L———) -32.abs

even have to This adds 10 to

"ZAPH'OD" stC itinad | 32_ {',hc value n Jchc

................................... Var‘ab\c ‘C’IVS{Z.\;éi’;ab\c, ‘H\CY\
assigns the vesul

name.reverse number += 10€ 77— | ;i to the

can tall 3 o
\f:{”h‘,d on the "d°“\’32" -22 vaviable
va\uc e {',\AY'V\ ed e
Qvom a me hod-

eall, we \')us{: don't

uname .upcase.reverse rand (25) e—_s"cuﬁ\/ 3 veceiver.
) » ” . ’
"DOMPAZ” .. o G vealy s> A vandom numbey Mo bort S zeen
Yahdom) F “
/—§ name.class number.class ﬁ k,‘::;w:‘é
bieet's . .
ﬁa:s Yerdes Steimg . Foonam = inteoe”
ob \):L’C i is- name * 3 skringgs!

10 Chapter #

www.it-ebooks.info

http://www.it-ebooks.info/

Le‘r's build a GaMe chapter title here

In this first
chapter, we' .
dauntin, , we're going to buil .
g, don't worry; it' uild a simple
y; 1t's easy when , ple game. If that so
you're using Ruby! unds
!

Let's look at what we'll need to d
o:

“S-rI ve put together this
of 8 requirements for
you. Can you handle i+?

D Generate 2 random number from 1 to 100, and
store itasa target number for the player to guess.

D Keep track of how many guesses the player has
made. Before cach guess, let (hem know how

many guesses (out of 10) they have left.

Prompt the player to make a guess a5 to what the

target number 18-

If the player's guess 1S less than the target

number, say nQops. Your guess Was LOW." If
the player‘s guess 15 greater than the target
number, say nQops. Your guess was HIGH."

tell them "Good jobs [name]‘. You guessed my
number in [number of guesses] guesses‘."

Gary Richardott
Game Designer

If the player runs out of turns without guessing
Al

correctly, say 'Sorry. You didn't get my number.

My number was [target] "

0

0

D If the player's uess is equal to the target pumber,
0

O

Keep allowing the player to guess until they get it
right, or they run out of turns.

yOU are here N

11

www.it-ebooks.info

http://www.it-ebooks.info/

page goal header

Input, storage, and output

Our first requirement is to greet the user by name. To accomplish that,
we'll need to write a script that gets input from the user, stores that input,
and then uses that stored value to create some output.

We can do all this in just a few lines of Ruby code:

Commth‘{',s

Ht Get My Number Game////
A call o the # Written by: vou!
"puts” method

puts||"Welcome to 'Get My Number!'"

A eall £o the
"yrin{:" method

Strings

print| "'What's your name? "

A call to the "gets” method

input] = [gets

Assignment 1o a
new vaviable, "input” Intevpolating a value

into a s{;\ring

puts "Welcome, [#{input}"

We'll go into detail on each of the components of this
script over the next few pages. But first, let's give it a try!

12 Chapter #

www.it-ebooks.info

http://www.it-ebooks.info/

chapter title here

Running seripts

We've written a simple script that fulfills our first requirement: to
greet the player by name. Now, we'll show you how to execute the
script, so you can see what you've created.

Step One: *

Open a new document in your favorite text editor,
and type in the following code.

Get My Number Game
Written by: you!

puts "Welcome to 'Get My Number!'"
print "What's your name? "

input = gets

puts "Welcome, #{input}"
o —

V)

get_number.rb

Step Two:

Save the file as "get_number.rb".

Step Three:

Open up a command-line prompt, and change into the
directory where you saved your program.

Step Four:

File Edit Window Help

Run the program by typing "ruby get number.rb". fqeizlg%egig—?gﬁe;:}rg er!

What's your name? Jay
Step Five: Welcome, Jay

You'll see a greeting, and a prompt. Type your name and hit
the Enter/Return key. You'll then see a message that welcomes
you by name.

you are here » 13

www.it-ebooks.info

http://www.it-ebooks.info/

page goal

Let's take a few pages to look at each part of this code in more detail.
Comwents

Our source file starts out with a couple comments. Ruby ignores everything

Commcn{:s

from a hash mark (#) up until the end of the line, so that you can leave
instructions or notes for yourself and your fellow developers. # Get My Number Game
#t Written by: vyou!

If you place a pound sign (#) in your code, then everything from that point
until the end of the line will be treated as a comment, and ignored by Ruby.
This works just like the double-slash ("//") marker in Java or JavaScript.

i am = "executed" # I'm not.
Me neither.

n n n s n A eall to the
puts” and “print" D 00

The actual code starts with a call to

the puts method ("puts" is short

for "put string"), which displays A call to the

text on standard output (usually the ” Fy‘.,\{;" method

terminal). We pass puts a string . Strinas
containing the text to display. print ["What's your name? " y

puts||"Welcome to 'Get My Number!'"

We pass another string to the print method on the following line, to ask the user their
name. The print method works just like puts, except that puts adds a newline character
at the end of the string (if it doesn't already have one) to skip to the following line, whereas
print doesn't. For cosmetic reasons, we end the string that we pass to print with a space,
so that our text doesn't run up against the space where the user types their name.

Wait, you said print and puts
are methods... Don't you have to use
the dot operator to specify which

object you're calling them on?

Sometimes you don't have to specify a receiver
for method calls.

The puts and print methods are so important, and so commonly used, that they're among
a select few methods that have been included in Ruby's top-level execution environment.
Methods defined in the top-level environment are available to call anywhere in your Ruby code,
without specifying a receiver. We'll show how to define methods like this at the start of chapter 2.

14

www.it-ebooks.info

http://www.it-ebooks.info/

Method arguments

The puts method takes a string and prints it to standard output (your
terminal window).

puts "first line"

The string passed to the puts method is known as the method
argument.

The puts method can take more than one argument; just separate the
arguments with commas. Each argument gets printed on its own line.

puts "second line", "third line", "fourth line"

“gefs“

The gets method (short for "get string")
reads a line from standard input (characters

chapter title here

What it looks like in

Your terminal.

/

File Edit Window Help
first line
second line
third line
fourth line

A call to the "gets” method.

typed in the terminal window). When you

input

gets

call it, it causes the program to halt until
the user types their name and presses the

Enter key. It returns the user's text to the Assfﬁ""‘",‘,{f to d new
program as another string. variable, “input”.

Like puts and print, the gets method can be called from
anywhere in your code without specifying a receiver.

Parenthesis are optional on method
calls

Method arguments can be surrounded with parenthesis in Ruby:
puts ("one", "two")

But the parenthesis are optional, and in the case of puts, most
Rubyists prefer to leave them off.

puts "one", "two"

The gets method reads a line from standard input (characters typed
in the terminal window). It doesn't (usually) need any arguments:

gets

Rubyists are adamant that parenthesis not be used if a method takes no
arguments. So please, don't do this, even though it's valid code:

gets () &E—— No!

www.it-ebooks.info

* Convenijona] *
T Wisdom *

. Leave parenthesis off of a

. method call if there are no

. arguments. You can leave

. them off for method calls

. where there are arguments

: as well, but this can make :
. some code more difficult to :
: read. When in doubt, use

: parenthesis!

you are here » 15

http://www.it-ebooks.info/

page goal header

String interpolation Inkerpolating 3 value

The last thing our script does is to call puts with into a string
one more string. This one is special because we
interpolate (substitute) the value in the name
variable into the string. Whenever you include the

#{ ...} notation wside a string, Ruby uses the value Ou{:\?u{: >
in the curly braces to "fill in the blank". The #{. ..}

markers can occur anywhere in the string: the
beginning, end, or somewhere in the middle.

puts "Welcome, [#{input}|"

You're not limited to using variables within the # { } marker - you can
use any Ruby expression.

puts "The answer is #{6 * 7}." [] The answer is 42.

Note that Ruby only applies interpolation in double-quoted strings. If you
include a # { } marker in a single-quoted string, it will be taken literally.

puts 'Welcome, #{input}' 0“{3?“{3‘\——5 Welcome, #{input}

therejare no
Dumb Questions

Q,: Where are the semicolons? Q,: My other language would require me to put this scriptin a
class with a "main" method. Doesn't Ruby?
A: In Ruby, you can use semicolons to separate statements, but
you generally shouldn't. (It's harder to read.) A: No! That's one of the great things about Ruby - it doesn't
require a bunch of ceremony for simple programs. Just write a few
puts "Hello" s — No,’ statements, and you're done!

puts "World";

Ruby treats separate lines as separate statements, making
semicolons unnecessary.

Rul)y doesn’t rec[uire a bunch of

puts "Hello"

puts "World" ceremony {or simple Programs.

16 Chapter #

www.it-ebooks.info

http://www.it-ebooks.info/

chapter title here

What's in that string?

File Edit Window Help

$ ruby get number.rb
Welcome to 'Get My Number!'
What's your name? Jay

What kind of welcome
is that? Let's show our users
a little enthusiasm! At least put
an exclamation point at the
end of that greeting!

Welcome, Jay

Well, that's easy enough to add. Let's throw an exclamation point on
the end of the greeting string, after the interpolated value.

puts "Welcome to 'Get My Number!'" !
print "What's your name? " |

input = gets

puts "Welcome, #{input}!"

/L Just this one little
tharatter added!

But if we try running the program again, we'll see that rather than
appearing immediately after the user's name, the exclamation point
jumps down to the next line!

File Edit Window Help
$ ruby get number.rb

Welcome to 'Get My Number!'
What's your name? Jay

Welcome, Jay
Uh, oh! Why's —>
it down heve?

Why is this happening? Maybe there's something going on within that
input variable...

Printing it via the puts method doesn't reveal anything special about
it, though:

puts input Jay

you are here » 17

www.it-ebooks.info

http://www.it-ebooks.info/

page goal header

Inspecting objects with the "inspect” and "p" methods

Now, let's try again, using a method meant especially for
troubleshooting Ruby programs. The inspect method is available
on any Ruby object. It converts the object to a string representation
that's suitable for debugging. That is, it will reveal aspects of the object
that don't normally show up in program output.

Here's the result of calling inspect on our string:

puts input.inspect 6’_AH—HN

What's that \n at the end of the string? We'll solve that mystery on the
next page...

Printing the result of inspect is done so often that Ruby offers
another shortcut: the p method. It works just like puts, except that it
calls inspect on each argument before printing it.

This call to p is effectively identical to the previous code:

Remember the p method; we'll be using it in later chapters to help
debug Ruby code!

18 Chapter #

www.it-ebooks.info

http://www.it-ebooks.info/

chapter title here

Escape sequences in strings

Our use of the p method has revealed some unexpected data at the
end of the user's input:

These two characters, the backsllash character (\) and.the n that commonly_used

follows it, actually represent a single character, a newline character.

(The newline character is named thus because it makes terminal escape sequences

output jump down to a new line.) There's a newline at the end of the

user input because when the user hits the Return key to indicate their It You intlude

entry is done, that gets recorded as an extra character. That newline is this in a ~you SCJC

then included in the return value of the gets method. double-quoted this
string... character-..

The backslash character (\) and the n that follows it are an escape -

sequence - a portion of a string that represents characters that can't \n newline

normally be represented in source code. \t tab

The most commonly-used escape sequences are \n (newline, as we've \ double-quotes

seen), and \t (a tab character, for indentation). \' single-quote

AR backslash

puts "First line\nSecond line\nThird line"
puts "\tIndented line"

First line
Second line

Third line
Indented line

Normally, when you try to include a double-quotation mark (") in a double-quoted string, it gets
treated as the end of the string, leading to errors:

puts ""It's okay," he said." Brrors —

syntax error, unexpected
tCONSTANT

If you escape the double-quotation marks by placing a backslash before each, you can place
them in the middle of a double-quoted string;

puts "\"It's okay,\" he said." "It's okay," he said.

Lastly, because \ marks the start of an escape sequence, we also need a way to represent a
backlash character that isn't part of an escape sequence. Using \ \ will give us a literal backslash.

puts "One backslash: \\" One backslash: \

Bear in mind that most of these escape sequences apply only in double-quoted strings. In single-
quoted strings, most escape sequences are treated literally.

puts '"\n\t\"' \n\t\"

you are here » 19

www.it-ebooks.info

http://www.it-ebooks.info/

page goal header

Calling "chomp” on the string object

File Edit Window Help
$ ruby get number.rb
Welcome to 'Get My Number!'

Okay, so the output is messed up
because the user input string has a
newline character at the end of it.
What can we do about that?

What's your name? Jay

Welcome, Jay
!

We can use the chomp method to
remove the newline character.

If the last character of a string is a newline, the chomp method will
remove it. It's great for things like cleaning up strings returned from gets.

The chomp method is more specialized than print, puts, and gets,
so it's available only on individual string objects. That means we need to
specify that the string referenced by the input variable is the receiwer of
the chomp method. We need to use the dot operator on input.

Get My Number Game
Written by: you!

puts "Welcome to 'Get My Number!'"
print "What's your name? "

We'll store the veturn
value of "thomp” ina inpur = gets

new variable, “name”. Calling the ”thomp” method.
\} name = input.chomp <//

The string in "input” — A N—"Thedot operator.

is the veceiver of the puts "Welcome, #{name}!"

"chom\?" method. We'll use "name” in the

greeting, instead of “input”.

The chomp method returns the same string, but without the newline
character at the end. We store this in a new variable, name, which we
then print as part of our welcome message.

If we try running the program again, Fle EdT Window Fielp

we'll see that our new, emphatic $ ruby get number.rb
greeting is working properly now! Welcome to 'Get My Number!'

What's your name? Jay
Welcome, Jay!

20 Chapter #

www.it-ebooks.info

http://www.it-ebooks.info/

What wmethods are available on an object?

chapter title here

You can't call just any method on just any object. If you try something like this, you'll get an error:

puts 42.upcase Eycor undefined method ‘upcase' for 42:Fixnum (NoMethodError)

Which, if you think about it, isn't so wrong. After all, it doesn't make a
lot of sense to capitalize a number, does it?

But, then, what methods can you call on a number? That

question can be answered with a method called methods: puts 42.methods

If you call methods on a string,

you'll get a different list: puts "hello".methods to i
length

upcase

Why the difference? It has to do with the object's class. A class is a
blueprint for making new objects, and it decides, among other things,
what methods you can call on the object.

There's another method that lets objects tell us what their class is. It's
called, sensibly enough, class. Let's try it out on a few objects.

puts 42.class Fixnum
puts "hello".class String
puts true.class TrueClass

We'll be talking more about classes in the next chapter, so stay tuned!

e. Use their

[z Prompt the player to enter their nam

name to print a greeting

www.it-ebooks.info

Plus 400
many more
S to list heve!

Plus {:oo man\/

“———move 1o list here/

That's all the code for
our first reo[uirement.

You can check it off
the list!

you are here » 21

http://www.it-ebooks.info/

page goal header

Generating a random number

Our player greeting is done. Let's
look at our next requirement.

i their
¢ the player to enter their name. Use

‘,] Promp .
name to print a greeting.

mbe
¢ a random nu
by ¢ number for the playe

¢ from 1 to 100, and
T to guess.

Gene
store it as a targe

O

The rand method will generate a random number within a given
range. It should be able to create a target number for us.

We need to pass an argument to rand with the number that will be at
the upper end of our range (100). Let's try it out a couple times:

puts rand(100) 67
puts rand(100) 25

Looks good, but there's one problem: rand generates numbers
between zero and just below the maximum value you specify. That
means we'll be getting random numbers in the range 0-99, not 1-100
like we need.

That's easy to fix, though, we'll just # Get My Number Game

add 1 to whatever value we get # Written by: you!

back from rand. That will put us

back in the range of 1-100! puts "Welcome to 'Get My Number!'"

rand (100) + 1 # Get the player's name, and greet them.
print "What's your name? "
input = gets
name = input.chomp
puts "Welcome, #{name}!"

We'll store the result in a new

variable, named target # Store a random number for the player to guess.
, .

puts "I've got a random number between 1 and 100."
Our ',“w puts "Can you guess it?"
tode: target = rand(100) + 1

22 Chapter #

www.it-ebooks.info

http://www.it-ebooks.info/

Converting to strings

That's another requirement down! Let's look at the next one...

1 to 1005 and

number from

EZ e Zrt?r]g:tﬁrllumber for the player to guess:
S

store it & "
the player ha
£ how many guesses
D Ke?eng(e:?o?e cach guess, let them k{lcf):v how
rr[:xj\m; guesses (out of 10) they have 1eit-

"Keep track of how many guesses the player has made..." Looks like we'll
need a variable for the number of guesses. Obviously, when the player
first starts, they haven't made any guesses, so we'll create a variable named
num_guesses that's set to 0 initially.

num guesses = 0

Now, the first thing you might attempt to do in order to display the number
of guesses remaining is to concatenate (join) the strings together using the +
sign, as many other languages do. Something like this won't work, however:

remaining guesses = 10 - num guesses

. |
. vor
puts remaining guesses + " guesses left." &— éuvcs an ervor.

The + operator 1s used to add numbers as well as to concatenale strings, and
since remaining guesses contains a number, this plus sign looks like
an attempt to add numbers.

What's the solution? You need to convert the number to a string. Almost all

Ruby objects have a to s method you can call to do this conversion; let's
try that now.

remaining guesses = 10 - num guesses

puts remaining guesses.to s + " guesses left."

That works! Converting the number to a string first makes it clear to Ruby
you're doing concatenation, not addition.

Ruby provides an easier way to handle this, though. Read on...

www.it-ebooks.info

chapter title here

10 guesses left.

you are here » 23

http://www.it-ebooks.info/

page goal header

Ruby makes working with strings easy

Instead of calling to_s, we could save ourselves the effort of explicitly
converting a number to a string by using string interpolation. As you saw in
our code to greet the user, when you include # { } in a double-quoted string,
code within the curly brackets is evaluated, converted to a string if necessary,
and interpolated (substituted) into the longer string

The automatic string conversion means we can get rid of the to_s call.

remaining guesses = 10 - num guesses
puts "#{remaining guesses} guesses left." 10 guesses left.

Ruby lets us do operations directly within the curly brackets, so we can also
Y p y y s
get rid of the remaining guesses variable.

puts "#{10 - num guesses} guesses left." 10 guesses left.

The #{} can occur anywhere within the string, so it's easy to make the
output a little more user-friendly, too.

puts "You've got #{10 - num guesses} guesses left." INCIIREWNe MM e PEY-T-1-Y-RNE-S 20

Now the player will know how many guesses they have left. We can
check another requirement off our list!

Get My Number Game
Written by: you!

puts "Welcome to 'Get My Number!'"

Get the player's name, and greet them.
print "What's your name? "

input = gets

name = input.chomp

puts "Welcome, #{name}!"

Store a random number for the player to guess.
puts "I've got a random number between 1 and 100."
puts "Can you guess 1it?"

target rand (100) + 1

Track how many guesses the player has made.

num guesses = 0
Our new —

|
e
code: puts "You've got #{10 - num guesses} guesses left."

24 Chapter #

www.it-ebooks.info

http://www.it-ebooks.info/

Converting strings to numbers

[Z’ Keep track of b

de. Before eac
25 (out of 10)

er to make a guess @

many guCSSCS

D Prompt the play

target number 18.

Our next requirement is to prompt the player to guess the target number. So,
we need to print a prompt, then record the user's input as their guess. The
gets method, as you may recall, retrieves input from the user. (We already
used it to get the player's name.) Unfortunately, we can't just use gets

by itself to get a number from the user, because it returns a string. The
problem will arise later, when we try to compare the player's guess with the
target number using the > and < operators.

print "Make a guess: "

guess = gets .
guess < target € Either of these will

guess > target é—/ vesult in an crrov!

We need to convert the string returned from the gets method to a number
so that we can compare the guess to our target number. No problem! Strings
have a to_1i method to do the conversion for us.

This code will call to_ 1 on the string returned from gets. We don't even
need to put the string in a variable first; we'll just use the dot operator to call
the method directly on the return value.

guess = gets.to i

If we want to test our changes,
we can print out the result of a
comparison.

puts guess < target

Much better - we have a guess that
we can compare to the target. That's

ow many guess
h guess, let th
g thCY haVe 1€ft

s to what the

chapter title here

es the player has
em know how

Common conversions

| You
eall this ~-You gc{:
method this kind
on an o‘c ob\)cd‘,
ob\)cd‘,,.. back.

to s string

to i integer
to f floating-point

number

Store a random number for the player

to guess.

another requirement done! puts "I've got a random number between 1 and 100."

puts "Can you guess it?"

target = rand(100)

Track how many guesses the player has made.

num guesses = 0
Our new

COdd puts "You've got #{10 - num guesses} guesses left."

kf? print "Make a guess:

guess = gets.to i

www.it-ebooks.info

you are here » 25

http://www.it-ebooks.info/

page goal header

Conditionals

Two more requirements for our game down,

four to go! Let's look at the next batch.

o make a guess as to what the

M Prompt the player ¢

target number 1.

5 Yy p . as LOW.
IluIIlbeI sa’ ()() S Your gu(:SSW If

the [)1ay(:r S guCSS 18 greater than dl(: target
n Inbet Say OOPS. Y()UI gu(:SS was }11(;’}1.
u]

‘ ‘ “ dl(: playfr S gllf:SS 18 equal to ﬁle target IlunlbeI,
;?“ them : ::l.] I [.] g Y

‘"
number in [number of guesses) guesses: .

1 n
he player runs out of turns without gue;i;) egr.
D p tric%yiay "Sorry. You didn't get my W

g 6 "
(l:\/ly number was [target]-

Start of the Boolean

Now, we need to compare the player's guess with the target. If1it's too ¢tonditional expression
high, we print a message saying so. Otherwise, if it's too low, we print a
message to that effect, and so on... Looks like we need the ability to :
execute portions of our code only under certain conditions.
" w
Like most languages, Ruby has conditional statements: statements IPUt S It's true! I
that cause code to be executed only if a condition is met. An \
expression is evaluated, and if its result is true, the code in the Conditional body

conditional body 1s executed. If not, it's skipped.
End of the conditional

As with most other languages, Ruby if score == 100
supports multiple branches in the Note that Lhere's puts "Perfect!"
condition. These statements take the o "¢" in Lhe elsiissfigi >ZSZ?"
form if/elsif/else. middle of "elsif”! elze pass:
puts "Summer school time!"
end
Conditionals rely on a boolean
expression (one with a true or false
value) to decide whether the code they if true if false
contain should be executed. Ruby has iuts "I'1l be printed:” }:{uts "I won'ti"
en en

constants representing the two boolean
values, true and false.

26 Chapter #

www.it-ebooks.info

http://www.it-ebooks.info/

Conditionals (cont.)

Ruby also has all the comparison
operators you're used to.

It has the boolean negation
operator, !, which lets you take
a true value and make it false, or
a false value and make it true.

It also has the more-readable
keyword not, which does
basically the same thing.

If you need to ensure that two
conditions are both true, you
can use the && operator. If you
need to ensure that either of two
conditions are true, you can use
the | | operator.

if 1 ==
puts "I'll be printed!"
end

if 1 >2
puts "I won't!"
end

if 1 <2
puts "I'll be printed!"
end

if ! true
puts "I won't be printed!"
end

if ! false
puts "I will!"™
end

if true && true
puts "I'll be printed!"
end

if true && false
puts "I won't!"
end

T notice that you're indenting
the code between the if and
the end. Is that required?

chapter title here

if 1 >= 2
puts "I won't!"
end
if 2 <=2
puts "I'll be printed!"
end Said aloud as

» »
not equal to'-
if 2 1= 2&—

puts "I won't!"
end

if not true
puts "I won't be printed!"
end

if not false
puts "I will!"™
end

if false || true
puts "I'll be printed!"
end

if false || false
puts "I won't!"
end

if true

Indented ——— puts "I'11 be printed!"
L spaces!

end

Ruby doesn't treat indentation as significant to the meaning of
the program, no. (Unlike some other languages, such as Python.)

But indenting code within 1 f statements, loops, methods, classes,
and the like is just good coding style. It helps make the structure of
your code clear to your fellow developers (and even to yourself).

www.it-ebooks.info

you are here » 27

http://www.it-ebooks.info/

page goal header

We need to compare the player's guess to the random target number. Let's use everything
we've learned about conditionals to implement this batch of requirements.

Get My Number Game
Written by: you!

uts "Welcome to 'Get My Number!'"
P . get_number.rb

We add this | 4 Get the player's name, and greet them.

vaviable print "What's your name? "

to track input = gets

whether name = input.chomp

we should puts "Welcome, #{name}!"

print the

"‘/O'A lost” # Store a random number for the player to guess.
message. puts "I've got a random number between 1 and 100."
We'll also puts "Can you guess it?"

use it later target = rand(100) + 1

o halt the

9ame on # Track how many guesses the player has made.

a torvett num guesses = 0

SUCSS.
\ # Track whether the player has guessed correctly.
Nguessed_it = false

puts "You've got #{10 - num guesses} guesses left."

Heve ave print "Make a guess: "
our "if” guess = gets.to i
statements!/

Compare the guess to the target.
Print the appropriate message.
b if guess < target

puts "Oops. Your guess was LOW."
elsif guess > target

puts "Oops. Your guess was HIGH."

elsif guess == target
We'll see a puts "Good job, #{name}!"
tleaner way puts "You guessed my number in #{num guesses} guesses!"
to write guessed it = true
this in a end

momCh'l‘,.
l\ # If player ran out of turns, tell them what the number was.

>if not guessed it

puts "Sorry. You didn't get my number. (It was #{target}.)"

end

28 Chapter #

www.it-ebooks.info

http://www.it-ebooks.info/

The opposite of "if" is "unless"

This statement works, but it's a little awkward to read:

if not guessed it
puts "Sorry. You didn't get my number.
end

(It was #{target}.)"

In most respects, Ruby's conditional statements are just like most other
languages. Ruby has an additional keyword, though: unless.

Code within an i f statement executes only if a condition is true, but
code within an unless statement executes only if the condition is_false.

unless false
puts "I will!"
end

unless true
puts "I won't be printed!"
end

The unless keyword is an example of how Ruby works hard to make
your code a little easier to read. You can use unless in situations
where a negation operator would be awkward. So instead of this:

if ! light == "red"
puts "Go!"
end

You can write this:

unless light == "red"
puts "Go!"
end

We can use unless to clean up that last conditional.

unless guessed it
puts "Sorry. You didn't get my number.
end

chapter title here

- T Wisdom * :
. It's valid to use else

. and elsif together with
¢ unless in Ruby:

: unless light == "red"
: puts "Go!"

else &——Cow(:using.’

: puts "Stop!"

§ end

. Butit's very hard to read.
. If you need an else clause,
. use if for the main clause

. instead!

Dif light == "red"

: puts "Stop!"

i else <%§\\\

. " " MOVCd
: puts "Go!

: end up heve.

(It was #{target}.)"

File Edit Window Help
$ ruby get number.rb

Much more legible! And our conditional
statements are working great!

What's your name? Jay
Welcome, Jay!

\{ou'“ see
Somc{’)’\'mﬁ like
this if Yyou vun
35{: nwnbcv‘-\’b

Can you guess it?

—

50

Make a guess:

Nnow-

Oops.
As it stands right now, though, the player

only gets one guess - they're supposed to
get 10. We'll fix that next...

www.it-ebooks.info

Welcome to 'Get My Number!'

I've got a random number between 1 and 100.
You've got 10 guesses left.

Your guess was HIGH.
Sorry. You didn't get my number.

(It was 34.)

you are here » 29

http://www.it-ebooks.info/

page goal header

Loops

Great work so far! We
have just one more
requirement to go for
our guessing game!

1 than the target
Javer's guess is 1€ss e
" thEeF; sZ\y nQops. Your guess was LOr -
nklxm;la;er's guess 1 greater than the targ
the

GH."
mber, say "Oops- Your guess Was HI)
‘ a i ’ mber,
1 | to the target nu
layer's guess 1S €qua o
Ifﬁﬁlfms"‘(}ood job, [namel! You gue:ﬁ' y
5 mber in [number of guesses] guesses:
nu .
ithout guessing
‘ a runs out of turns Wi |
. chc}t)ll;l ysery "Sorry. You didn't get my number.
orrectly, ¢
i\/ly number was [target]-

player to guess until they get 1t

ing the
Keep allowing t
righ}z or they run out of turns.

Currently, the player gets one guess. Since there's 100 Start of the
possible target numbers, those don't seem like very fair odds.

loop Condition
We need to keep asking them 10 times, or until they get the
right answer, whichever comes first.

. . while| number < 5]
The code to prompt for a guess is already in place, we just

" 3 1 "
need to run it more than once. We can use a loop to execute Iput S still lOOpll’lg |
a segment of code repeatedly. You've probably encountered

\
loops in other languages. When you need one or more Loop bod\/
statements to be executed over and over, you place them

inside a loop. End of the loop

A while loop consists of the word while, a boolean Just as unless is the counterpart to if, Ruby offers
expression (just like in 1 f or unless statements), the an until loop as a counterpart to while. Anuntil
code you want to repeat, and the word end. The code

loop repeats unti/ the condition is true (that is, it loops
within the loop body repeats while the condition is true. while it's false).

Here's a simple example that uses a loop for counting.

Here's a similar example, using until.
number = 1

while number <= 5
puts number
number += 1

end

number = 1

until number > 5
puts number
number += 1

end

uabdwNhE
uabdwdNhE

30 Chapter #

www.it-ebooks.info

http://www.it-ebooks.info/

chapter title here

Here's our conditional code again, updated to run within a while loop:

The loop will 5{'9?, # Track how many guesses the player has made.
after the players num guesses = 0

tenth guess, or

when {:hcy guess # Track whether the player has guessed correctly.

CWVCCH‘/' whichever guessed it = false
tomes Liest.
\while num guesses < 10 && guessed it == false
This tode is
c%&(‘;U\/ the puts "You've got #{10 - num guesses} guesses left."
same, wc’vcjust print "Make a guess: "
nested it inside guess = gets.to i
the loop.
num guesses += 1
We need to add — 7 -
| to the guess
tount eath |°°\>, # Compare the guess to the target.
so we don't # Print the appropriate message.
loop Lorever. if guess < target
puts "Oops. Your guess was LOW."
elsif guess > target
No cha.ngcs puts "Oops. Your guess was HIGH."
heve, either.

elsif guess == target
puts "Good job, #{name}!"

puts "You guessed my number in #{num guesses} guesses!"
guessed it = true
end

This mavks the
end of the end
tode that WH

|oo\7~ unless guessed it
puts "Sorry. You didn't get my number. (It was #{target}.)"
end

There's one more readability improvement we can make. As with the 1 £
statement that we replaced with an unless, we can make this while
loop read more clearly by replacing it with an until.

while num guesses < 10 && guessed it == false
Befove: .

end

until num guesses == 10 || guessed it
After: .

end

you are here » 31

www.it-ebooks.info

http://www.it-ebooks.info/

page goal header

Reve's our # Get My Number Game
compk{z # Written by: you!
tode listing,

puts "Welcome to 'Get My Number!'"
get_number.rb

Get the player's name, and greet them.

print "What's your name? "

input = gets

name = input.chomp

puts "Welcome, #{name}!"

Store a random number for the player to guess.
puts "I've got a random number between 1 and 100."
puts "Can you guess it?"

target = rand(100) + 1

Track how many guesses the player has made.
num _guesses = 0

Track whether the player has guessed correctly.
guessed it = false

until num guesses == 10 || guessed it

puts "You've got #{10 - num guesses} guesses left."
print "Make a guess: "
guess = gets.to i

num _guesses += 1

Compare the guess to the target.
Print the appropriate message.
if guess < target
puts "Oops. Your guess was LOW."
elsif guess > target
puts "Oops. Your guess was HIGH."
elsif guess == target
puts "Good job, #{name}!"
puts "You guessed my number in #{num guesses} guesses!"
guessed it = true
end

end

If the player didn't guess in time, show the target number.
unless guessed it

puts "Sorry. You didn't get my number. (It was #{target}.)"
end

32 Chapter #

www.it-ebooks.info

http://www.it-ebooks.info/

chapter title here

Let's try running our game!

Our loop is in place - that's the last
requirement! Let's open a command
prompt, and try running the program! ess until they get it

‘ \ a Keep allowing the player to 8
right, or they run out of turns.

File Edit Window Help Cheats
$ ruby get number.rb

Welcome to 'Get My Number!'

What's your name? Gary

Welcome, Gary!

I've got a random number between 1 and 100.
Can you guess it?

You've got 10 guesses left.

Make a guess: 50

Oops. Your guess was LOW.

You've got 9 guesses left.

Make a guess: 75

Oops. Your guess was HIGH.

You've got 8 guesses left.

Make a guess: 62

Oops. Your guess was HIGH.

You've got 7 guesses left.

Make a guess: 56

Oops. Your guess was HIGH.

You've got 6 guesses left.

Make a guess: 53

Good job, Gary!

You guessed my number in 5 guesses!

$

Our players will love

this! You implemented
everything we needed, and
you did it on time, too!

Using variables, strings, method calls, conditionals, and loops, you've
written a complete game in Ruby! Better yet, it took less than 30 lines
of code! Pour yourself a cold drink - you've earned it!

you are here » 33

www.it-ebooks.info

http://www.it-ebooks.info/

page goal

Your Ruby Toolbox

You’ve got Chapter 1 under your belt
and now you’ve added method calls,

conditionals, and loops to your tool
box.

34

www.it-ebooks.info

Q BULLET POINTS ————

= Ruby is an interpreted language.
You don't have to compile Ruby code
before executing it.

= You don't need to declare variables
before assigning to them. You also
don't have to specify a type.

= Ruby treats everything from a # to the
end of the line as a comment - and
ignores it.

= Text within quotation marks is treated
as a string - a series of characters.

= [fyou include #{} in a Ruby string,
the expression in the brackets will be
interpolated into the string.

®m Method calls may need one or more
arguments, separated by commas.

m Parenthesis are optional around
method arguments. Leave them off if
you're not passing any arguments.

m Usethe inspect and p methods to
view debug output for Ruby objects.

= You can include special characters
within double-quoted strings by using
escape sequences like \n and \ t.

= You can use the interactive Ruby
interpreter, or irb, to quickly test out
the result of Ruby expressions.

= Call to_s onalmost any object to
convert it to a string. Call to_i ona
string to convert it to an integer.

® unless is the opposite of 1 f;
its code won't execute unless a
statement is false.

® until isthe opposite of while; it
executes repeatedly until a condition
is true.

http://www.it-ebooks.info/

2 methods and classes

Getting Organized

How am I supposed to find
anything in all this code? I wish

the developers had split it up
into methods and classes...

You’ve been missing out. You've been calling methods and creating objects
like a pro. But the only methods you could call, and the only kinds of objects you could
create, were the ones that Ruby defined for you. Now, it's your turn. You're going to learn
to create your own methods. You'll also create your own classes - templates for new
objects. You'll decide what objects based on your class will be like. You'll use instance
variables to define what they know, and instance methods to define what they do. And

most importantly, you'll discover how defining your own classes can make your code
easier to read and maintain.

this is a new chapter

www.it-ebooks.info

35

http://www.it-ebooks.info/

page goal header

Defining methods

Got-A-Motor, Inc. is working on their "virtual test-drive" app, which lets their
customers try vehicles out on their computers without needing to visit a show room.
For this first version, they need methods to let users step on the virtual gas, sound the
virtual horn, and turn on the virtual headlights in low-beam or high-beam modes.

Method definitions look like this in Ruby:

Start of definition Method name Parameters

def| [print suml(argl, argz)

print argl + arg?2
nd \

Method bod\/

End of definition

If you want calls to your method to include arguments, you'll need to add parameters to the method definition.
Parameters appear after the method name, within parenthesis. (You should leave off the parenthesis if there are
no parameters.) Each argument on the method call gets stored in one of the parameters within the method.

The method body consists of one or more Ruby statements that are executed when the method is called.

Let's create our very own methods to represent the actions in the test-drive app.

Here are two methods for Method takes no yaramdccrs
accelerating and sounding def accelerat§:<//
the horn. They're about as These statements will be rw\éputs ::Stepp}ng on"the gas"
simple as Ruby methods when the method is Ca||6d~en§1‘1ts Speeding up
S T
that print strings. These statements will be vun (puts " P;essing the horn button"

when the method is called. éputs "Beep beep!"

end

The use_headlights method is only slightly more complex; it takes
a single parameter, which is interpolated into one of the output strings.

def use headlights (briq.;l’ltness)&’_OV\c method ?ava"‘d""'
puts "Turning on #{brightness} headlights"

puts "Watch out for deer!"
end Parameter is used in the output.

That's all it takes! With these method definitions in place, we're ready to
make calls to them.

36 Chapter #

www.it-ebooks.info

http://www.it-ebooks.info/

chapter title here

Calling methods you've defined

You can call methods you've defined
just like any other. Let's try out our new
vehicle simulator methods.

Ruby lets you put calls to your methods
anywhere - even within the same source
file where you defined them. Since this
is such a simple program at this point,
we'll do that, just for convenience. We'll
just stick the method calls right after the
method declarations.

When we run the source file from the
command line, we'll see the result of
our method calls!

def accelerate
puts "Stepping on the gas"
puts "Speeding up"

end

def sound horn
puts "Pressing the horn button"
puts "Beep beep!"

end

def use headlights (brightness)
puts "Turning on #{brightness} headlights"
puts "Watch out for deer!"

end Calls without
argumcnts
sound horn
accelgratej This is used as the
use headlights ("hi-beam")%—"bﬁgh{,ncss" argumcn‘{:.

—_—
—

—
—
—

vehicle_methods.rb

File Edit Window Help

$ ruby vehicle methods.rb
Pressing the horn button
Beep beep!

Stepping on the gas

Speeding up
Turning on hi-beam headlights
Watch out for deer!

$

T notice you didn't use the dot
operator to specify a receiver
for those method calls, just
like when we call the puts and
print methods.

That's right. Like puts and print, these
methods are included in the top-level
execution environment.

Methods that are defined outside of any class (like these examples) are included in

the top-level execution environment. Like we saw back in Chapter 1, you can call
them anywhere in your code, without using the dot operator to specify a receiver.

you are here » 37

www.it-ebooks.info

http://www.it-ebooks.info/

page goal

Method names |
The method b | . : * Ocaindvenﬁ(@na] |
¢ method name can be one or more lower-case words. N
: : Wisdom *

separated by underscores. (This 1s just like the convention for

variable names.) Numbers are legal, but rarely used. :
: Method names should be in "snake

, . . :
It's also legal for a method name to end in a question mark ! case": one or more lower-case words,

(?) or exclamation point (!). These endings have no special . separated by underscores, just like

meaning to Ruby, but there are certain conventions around © variable names.

their use, which we'll cover in later chapters.

© def bark
Lastly, it's legal for a method name to end in an equals sign ! end
(=). Methods ending in this character are used as attribute
writers, which we'll be looking at in the upcoming section on i def wag_tail
classes. Ruby does treat this ending specially, so don't use it for end :
a regular method, or you may find it acts strangely! ¢ As with method calls, you should leave

. parenthesis off the method definition
Para me‘l' ers . if there are no parameters. Please
: don't do this, even though it's legal:
If you need to pass data into your method, you can include ! def no_args ()
one or more parameters after the method name, separated by : puts "Bad Rubyist!"
commas. In your method body, parameters can be accessed * end

just like any variable. . But if there are parameters, you

def print area(length, width) . should always include parenthesis.
puts length * width : (Back in Chapter 1, we showed some
end : tasteful exceptions when making

: method calls, but there are no

. . exceptions when declaring methods.)
op‘rlonal para mef ers . Leaving them off is legal, but again,
. don't do it:
Got-A-Motor's developers are happy with our work on the def with args first, second
virtual test drive system... mostly. { puts "No! Bad!"
: end

Do we have to specify an argument
on this use_headlights
method? We almost always use
"low-beam", and we're copying
that string everywhere in our code!

use headlights ("low-beam")
stop engine -
buy coffee

start engine

use headlights ("low-beam")
accelerate

create obstacle ("deer")

use headlights ("high-beam")

www.it-ebooks.info

http://www.it-ebooks.info/

Optional parameters (cont.)

This scenario is pretty common - you use one particular
argument 90% of the time, and you're tired of repeating it
everywhere. You can't just take the parameter out, though,
because 10% of the time you need a different value.

There's an easy solution, though; make the parameter optional. You
can provide a default value in the method declaration.

Here's an example of a method that uses default values for
some of its parameters:

chapter title here

def order soda(flavor, size = "medium", quantity = 1)
if quantity == 1
Plural = "soda” Default value lzecawc b
else :
1ze. or quantIty-
plural = "sodas" for size 9)
end
puts "#{quantity} #{size} #{flavor} #{plural}, coming right up!"
end

Now, if you want to override the default, just provide an argument
with the value you want. And if you're happy with the default, you can

skip the argument altogether. Speci L\/ Clavor, use default

v size and quantity.
order soda ("orange")4'/ o ! !
order soda("lemon-lime", "small", 2)&— g‘acciﬁy cvcr\/{:hing.
order soda ("grape", "large")
\ Spcci(:\/ flavor and size,
use default for quantity.

1 medium orange soda, coming right up!

2 small lemon-lime sodas, coming right up!
1 large grape soda, coming right up!

There is one caveat to be aware of with optional parameters: they
need to appear afler any other parameters you intend to use. If you
make a required parameter following an optional parameter, you
won't be able to leave the optional parameter off:

def order soda(flavor, size =

Don't Plaéc an o\?{‘,iovaal ?aramc{:cv
before a requived one!

"medium", quantity)
end

order soda ("grape")

wrong number of
i deeed arguments (1 for 2..3)

www.it-ebooks.info

therejare no
Dumb Questions

Q; What's the difference between an
argument and a parameter?

AI You define and use parameters within
a method definition. You provide arguments
with method calls.

Parameter.
def say hello(name)

puts "Hello, #{name}!"
end

Parameter.
say hello ("Marcy")
Argumcn{;.

Each argument you pass with the method
call gets stored in a method parameter.

The two terms mostly serve to distinguish
whether you're talking about a method
definition, or a method call.

you are here » 39

http://www.it-ebooks.info/

page goal header

Optional parameters (cont.)

Let's earn some goodwill with the developers using our methods and
make that use_headlights parameter optional.

Yeah, this will make
scripting our test drives
a lot easier! Thanks!

def use headlights(brightness = "low-beam")
puts "Turning on #{brightness} headlights"
puts "Watch out for deer!"

end

Now, they won't have to specify the brightness, unless they want the

high-beams.)
Uses the default, "low—beam
use headlights

use headlights ("high-beam") &——— Qvervides the
dc(:aul{:.

Turning on low-beam headlights
Watch out for deer!

Turning on high-beam headlights
Watch out for deer!

use headlights

stop_engine No argument
start engine needed!
use_headlightsﬁ/
accelerate

use _headlights ("high-beam")

We've finished up our methods for Got-A-Motor's virtual test drive
app. Let's try loading them up in irb, and take them for a spin.

2 ARACH def accelerate
E?-eRC\Se puts "Stepping on the gas" =l
puts "Speeding up" —=:_
Step One: Save our method end e
definitions to a file, named vehicle_methods.rb
"vehicle_methods.rb". def sound horn

puts "Pressing the horn button"

Step Two: Open a system command puts "Beep beep!"
prompt, and navigate into end

the directory where you
saved your file. def use headlights (brightness = "low-beam")

puts "Turning on #{brightness} headlights"
puts "Watch out for deer!"
end

40 Chapter #

www.it-ebooks.info

http://www.it-ebooks.info/

chapter title here

" ExeRciSe (Continven)

Step Three: Since we're loading code from a file into 1rb, we want to be able to load
Ruby files from the current directory. So we're going to invoke irb a little
differently this time.

At the command prompt, type this and press Enter:
irb -T .
n . . »n
A flag that means "seaveh the turrent divectory for files to load”.

The -T is a command line flag, a string that you add on to a command to
change how it operates. In this case, - T alters the set of directories that Ruby
searches for files to load. And the dot (.) represents the current directory.

Step Four: Now, irb should be loaded, and we should be able to load the file with
our methods. Type this line:

require "vehicle methods"

Ruby knows to search in . rb files by default, so you can leave the
extension off. If you see the result true, it means your file was loaded

successfully.
Now, you can type in a Heve’s 3 File Edt Window Help
call to any of our methods, sample session: EERERS Tt
and they'll be run! irb(main) :001:0> require "vehicle methods"

=> true

irb(main) :002:0> sound horn
Pressing the horn button

Beep beep!

=> nil

irb(main) :003:0> use_headlights
Turning on low-beam headlights

Watch out for deer!

=> nil

irb(main) :004:0> use_headlights ("high-beam")
Turning on high-beam headlights
Watch out for deer!

=> nil

irb(main) :005:0> exit

$

you are here » 41

www.it-ebooks.info

http://www.it-ebooks.info/

page goal header

Return value

Got-A-Motor wants the test-drive app to highlight how fuel-efficient
its cars are. They want to be able to display the mileage a car got on
its most recent trip, as well as lifetime average mileage.

In the first scenario, you're dividing the mileage from the car's trip
odometer by the number of gallons from your last fillup, and in

the second you're dividing the main odometer's value by the car's
lifetime fuel use. But in both cases, you're taking a number of miles,
and dividing it by a number of gallons of fuel. So, do you still have
to write two methods?

Nope! Like in most languages, Ruby methods have a return value,
a value that they can send back to the code that called them. A Ruby
method can return a value to its caller using the return keyword.

You can write a single mileage method, and use its return value in
your output.

def mileage (miles driven, gas_ used)
return miles driven / gas used
end

Then, you can use the same method to calculate both types of mileage.
trip mileage = mileage (400, 12)
puts "You got #{trip mileage} MPG on this trip."

lifetime mileage = mileage (11432, 366)
puts "This car averages #{lifetime mileage} MPG."

You got 33 MPG on this trip. O@jnvenﬁ@nal
This car averages 31 MPG. : %’6 5
Wisdom *

Implicit return values . Rubyists generally prefer

: implicit return values over
You don't actually need the return keyword in the above explicit return values. With a
method. The value of the last expression evaluated within a . short method, there's no
method automatically becomes that method's return value. So, our . reason to write this:

mileage method could be rewritten without an explicit return: : _
: def area(length, width)
: return length * width
def mileage(miles driven, gas used) *end
miles driven / gas_used :

end :...When you can just write this:

def area(length, width)
: length * width
puts mileage (400, 12) *end

It will still work in exactly the same way.

42 Chapter #

www.it-ebooks.info

http://www.it-ebooks.info/

chapter title here

Returning from a method early

So, why does Ruby
even have a return

keyword, if it's usually
unnecessary?

There are still some circumstances
where the return keyword is useful.

The return keyword causes the method to exit, without running the
lines of code that follow it. This is useful in situations where running
that code would be pointless, or even harmful.

For example, consider the case where a car is brand-new, and hasn't
been driven anywhere yet. The miles driven and the gas used would p 8 Z
both be zero. What happens if you call the mileage method for s

such a car? ‘

Well, mileage works by dividing miles driven by gas used...
And as you may have learned in your other programming language,
dividing anything by zero is an error!

puts mileage (0, 0) Error — > [NRVAREI T N W)
(ZeroDivisionError)

We can fix this by testing whether gas_used is zero, and if so,
returning from the method early.

def mileage(miles driven, gas_ used)
if gas_used == 0&——|f no gas has been used..
return 0.0 &——Return zevo.

end
miles driven / gas used&——This tode won't be vun
end if "5as__uscd" is zevo.

If we try the same code again, we'll see that it returns 0 . 0, without
attempting the division operation. Problem solved!

puts mileage (0, 0) m

Methods are a great way to reduce duplication, and keep your code
organized. But sometimes, methods by themselves aren't enough. Let's leave
our friends at Got-A-Motor for now, to look at a somewhat fuzzier problem...

you are here » 43

www.it-ebooks.info

http://www.it-ebooks.info/

page goal header

Some messy methods

Fuzzy Iriends Animal Rescue 1s in the middle of a fundraising drive,
and are doing an interactive storybook application to raise awareness.
They've approached your company for help. They need many different
types of animals, each of which has its own sounds and actions.

They've created some methods that simulate movement and animal
noises. Their methods are called by specifying the animal type as the
first argument, followed by any additional arguments that are needed.

Here's what they have so far:

def talk(animal type, name)

if animal type == "bird"
pGEE‘*?TEEEE} says Chirp! Chirp!"
elsif animal type == "dog"
puts "#{name} says Bark!" X
elsif animal type == "cat" The ammay{yvc
puts " (name] says Meow!" ?a‘ra"‘c{:ﬂ is used
end to sclcl_{ whith
end string is printed.
def move (animal type, name, destination)
if animal type == "bird"
pGEE_W¥TEEE€} flies to the #{destination}."
elsif animal type == "dog"
putshwﬁTEEEET—;uns to the #{destination}."
elsif animal type == "cat"
puts "#{name} runs to the #{destination}."
end This method is the same for
end

all animal types, so theve's

imal type pavameter.
def report age (name, age)é_,’-‘no animd {:\/‘7 P

puts "#{name} is #{age} years old."
end

And here are some typical calls to those methods:

move ("bird", "Whistler", "tree") Whistler flies to the tree.

(
talk ("dog", "Sadie") Sadie says Bark!
talk ("bird", "Whistler") Whistler says Chirp! Chirp!
move ("cat", "Smudge", "house") Smudge runs to the house.
report_age ("Smudge", 6) Smudge is 6 years old.

Fuzzy Iriends just needs you to add 10 additional animal types and 30
more actions, and version 1.0 will be done!

44 Chapter #

www.it-ebooks.info

http://www.it-ebooks.info/

chapter here

Too many arguments

That's looking pretty messy with just
three animal types and two actions. Those "if"
and "elsif" statements are long already, and look at
all those method arguments! Isn't there a better
way to organize this code?

Part of the problem with the virtual storybook methods is that
} We need the
we're having to pass around too much data. Look at these calls to

H H a cy\{;...
the move method, for example: destination argum

"bird" ,
"cat" ,

"Whistle
"Smudge"

move (
move

"house")
~But do we veally have
{o pass these each time?
The destination argument belongs there, sure. It doesn't make sense to move without

a destination. But do we really have to keep track of values for the animal type and

name arguments, so that we can include them each time? It's also becoming hard to tell

which argument is which!

r

Too many "if" statements

The problem 1sn't just with the method arguments, either — things are messy nside the methods.
Consider what the talk method would look like if we added ten more animal types, for example...

Each time you want to change the sound an animal makes (and def talk(animal type, name)

you will be asked to change the sounds, you can count on it), you'll if animﬁl_type - "bird'.' } .
have to search through all those e1sif clauses to find the right lpl,ﬂgs #{n?me} sazf Sglrﬁl Chirp!
animal type... What happens when the code for talk becomes erst af,llma _type == "dog "

. puts "#{name} says Bark!
more complex, adding things like animations and sound file elsif animal type == "cat"
playback? What happens when a// of the action methods are like puts "#{name} says Meow!"
that? elsif animal type == "lion"
What we need is a better way to represent which animal type pl.lts #{name} sazf E{oar'!'

elsif animal type == "cow

we're working with. We need a better way to break all that code puts "#{name} says Moo."

up by animal type, so that we can maintain it more easily. And elsif animal type == "bob"
we need a better way to store the attributes for each individual puts "#{name} says Hello."
animal, like their name and their age, so we don't have to pass so elsif animal type == "duck"
many arguments around. puts "#{name }, says Quack."
We need to keep the animals' data, and the code that operates on end < {V\f ‘i?:{-‘{;r?h::?w room
that data, in one place. We need: classes and objects. end

45

www.it-ebooks.info

http://www.it-ebooks.info/

page goal header

Pesigning a class

The benefit of using objects is that they keep a set of data, and the methods that

operate on that data, in one place. We want those benefits in the Fuzzy Friends app.

To start creating your own objects, though, you're going to need classes. A class is
a blueprint for making objects. When you use a class to make an object, the class

describes what that object Anows about itself, as well as what that object does.

User
knows | name
password
d subscribe
oes login

knows

does

Appointment

date
location

remind
cancel

Things an object knows about itself are called:

instance variables

Things an object does are called:

instance methods

knows

does

An instance of a class is an object that was made using that class.
You only have to write one class, but you can make many instances

of that class.

Think of "instance" as another way of saying "object".

Instance variables are variables that belong to one object. They
comprise everything the object knows about itself. They represent
the object's state (its data), and they can have different values for

each instance of the class.

Instance methods are methods that you can call directly on that
object. They comprise what the object does. They have access to
the object's instance variables, and can use them to change their
behavior based on the values in those variables.

46 Chapter #

www.it-ebooks.info

knows

does

Video

encoding
duration

play
pause
rewind

Cat .

hame ms’r.ance

age variables
(state)

talk instance

move

report_age Wle‘l'h_OdS
(behavior)

http://www.it-ebooks.info/

chapter title here

What's the difference between a class and an object?

A class 1s a blueprint for an object. The class tells
Ruby how to make an object of that particular
type. Objects have instance variables and instance
methods, but those variables and methods are
designed as part of the class.

If classes are cookie cutters,
objects are the cookies they make.
Class

Each instance of a class can have its own values Doy elass:

for the instance variables used within that class's

methods. For example, you'll only define the Dog Dog .

class once. Within that Dog class's methods, you'll name instance

only specify once that Dog instances should have age Va[’iables

"name" and "age" instance variables. But each (state)

Dog object will have its own name and age, distinct talk inst

from all the other Dog instances. move Instance
report_age methods

(behavior)

DOS instantes:

name: "Lucy" name: "Rex" name: "Bella" name: "Daisy" name: "Killer"
age: 4 age: 2 age: 7 age: 5 age: 1
you are here » 47

www.it-ebooks.info

http://www.it-ebooks.info/

page goal header

Your first class

Here's an example of a class we could use in our interactive storybook:

a Dog class.)
New ¢lass detlavation
We use the class keyword Class name
to start a new class definition,
followed by the name of our Instance method
new class. def talk foobher
Within the class definition, puts "Bark!" ne Cl}:hj:&ndc
. m
we can include method end ethe
definitions. Any method we
define here will be available g g
as an instance method on def move (destination)
instances of the class. puts "Running to the #{destination}."
We mark the end of the end
class definition with the end
keyword.
End O‘F ¢lass
detlaration A diagram of this class might Class n
look like this... "L
Dog

Instance variables ——>

(we'll add some soon).

talk

move
Ins{',anCc /
mc{‘)\ods

Creating new instances (objects)

If we call the new method on a class, it will return a new
instance of that class. We can then assign that instance to a
variable, or whatever else we need to do with it.

fido = Dog.new
rex = Dog.new

Once we have one or more instances of the class, we can
call their instance methods. We do it in the same way we've
called all other methods on objects so far: we use the dot
operator to specify which instance is the method's reciever.

fido.talk Bark!
rex.move ("food bowl") Running to the food bowl.

48 Chapter #

www.it-ebooks.info

http://www.it-ebooks.info/

Breaking our giant methods up into classes

The animal rescue's solution uses strings to

def talk(animal type, name)

chapter title here

Chirp! Chirp!"

track what type of animal they're dealing if animal type == "bird"

with. Also, all knowledge of the different puts "#{name} says

ways that different animals should respond elsif animal type == "dog"

is embedded in giant 1 f/else statements. puts "#{name} says Bark!"

Their approach is unwieldy, at best. elsif animal type == "cat"
puts "#{name} says Meow!"

end
The object-oriented approach end

Now that you know how to create classes, we can take an
object-oriented approach to the problem. We can create a
class to represent each type of animal. Then, instead of one
big method that contains behavior for a/l the animal types,
we can put lttle methods in each class, methods that define
behavior specific to that type of animal.

class Bird

‘/ou’“ be able tp def talk i) £ £
eall "{:alk” or puts "Chirp! Chirp!" No more i /elsi
"oV » on an end S‘taJCCMCh{',S!
'"_o c. Y —~——>def move (destination)

Bivd "‘S{"a{:tf puts "Flying to the #{destination}."
You treate, end

Note: We don't have
suy‘?o\r{‘, ‘For animal names
class Dog \')uS{: yet. We'll get to that!

def talk
Same ﬁ puts "Bark!"

‘COY‘ D°5< end

end

instantes... def move (destination)
puts "Running to the #{destination}."
end
end

class Cat

def talk
Came ﬁ

puts "Meow!"
‘(:OY' Ca{',’\ end
instances! gdef move (destination)

puts "Running to the #{destination}."
end

end

www.it-ebooks.info

Ruby class names must

. begin with a capital letter.
. Letters after the first
: should be lower case.

§ class Appointment

end

If there's more than one

. word in the name, the first :
. letter of each word should
also be capitalized.

§ class AddressBook

end

: class PhoneNumber

end

: Remember how the

. convention for variable

: names (with underscores

. separating words) is
. called "snake case'"? The

: style for class names

: is called "camel case",

. because the capital letters

: look like the humps on a

¢ camel.

you are here » 49

http://www.it-ebooks.info/

page goal header

Creating instances of our new animal classes

With these classes defined, we can create new instances of them (new objects based on the classes), and
call methods on them.

Just as with methods, Ruby lets us create instances of classes right in the same file where we declared
them. You probably won't want to organize your code this way in larger applications, but since this is such
a simple app right now, we can go ahead and create some new instances right below the class declarations.

class Bird —
def talk =
puts "Chirp! Chirp!" ==
end .-__
animals.rb

def move (destination)
puts "Flying to the #{destination}."
end
end

class Dog
def talk
puts "Bark!"
end
def move (destination)
puts "Running to the #{destination}."
end
end

class Cat
def talk
puts "Meow!"
end
def move (destination)
puts "Running to the #{destination}."
end
end

Create new instantes
o‘(: our ¢tlasses.

bird = Bird.new
dog = Dog.new
cat = Cat.new
bird.move ("tree")
dog.talk

File Edit Window Help
Call some methods on $ ruby animals.rb

bird.talk . .
ces.
cat.move ("house") the instantes Flying to the tree.

Bark!
Chirp! Chirp!

Running to the house.
If we save all this to a file named animals. rb, then run ruby $
animals.rb at a command prompt, we'll see the output of our
instance methods!

50 Chapter #

www.it-ebooks.info

http://www.it-ebooks.info/

chapter title here

Updating our class diagram with instance methods

If we were to draw a Class name. Class name. Class name.
diagram of our new . 2, ‘L .L
classes, they'd look Bird Dog Cat
something like this: Instance vaviables
Comih5 Soon/)
talk talk talk
move move move
|ns{',3m‘.c lns{:amc |ns{',3m‘.c
methods. methods. methods.

At this point, instances of our classes have two instance methods (things they can do): talk and move.
They don't have any instance variables (things they know) yet, however. We'll be looking at that next.

Code Magnets

A working Ruby program is scrambled up on the fridge. Some of the code snippets are
in the correct places, but others have been moved around randomly. Can you rearrange
the code snippets to make a working program that produces the output listed below?

|c1ass 'I Blender ' (speed)

def close_lid

.blend ("high")

blender

i
ot

blender

Puts "Sealed tight!"

puts "Spinning on # {speed} setting.'

Output File Edit Window Help

Sealed tight!
Spinning on high setting.
I blender = ' Blender |.new

you are here » 51

www.it-ebooks.info

http://www.it-ebooks.info/

page goal header

Code Magnets Solution

A working Ruby program is scrambled up on the fridge. Some of the code snippets are
in the correct places, but others have been moved around randomly. Can you rearrange
the code snippets to make a working program that produces the output listed below?

|c1ass 'I Blender '
def

close_lid

puts "Sealed tight!"

I blender = ' Blender |.new

|blender I.close_lid '

blender || .blend ("high")

therejare no
b Questions

Dum

Q: Can | call these new move and talk methods by
themselves (without an object)?

A: Not from outside the class, no. Remember, the purpose of
specifying a receiver is to tell Ruby which object a method is being
called on. The move and talk methods are instance methods; it
doesn't make sense to call them without stating which instance of the
class you're calling them on. If you try, you'll get an error, like this:

move ("food bowl")
undefined method "move' for

main:Object (NoMethodError)

52 Chapter #

Output

File Edit Window Help
Sealed tight!
Spinning on high setting.

Q: You say that we have to call the new method on a class to
create an object. You also said back in chapter 1 that numbers
and strings are objects. Why don't we have to call new to get a
new number or string?

A: Creating new numbers and strings is something developers
need to do so frequently that special shorthand notation is built right
into the language: string and number literals.

new string = "Hello!"

new float = 4.2
Doing the same for other classes would require modifying the Ruby
language itself, so most of them just rely on new to create new
instances. (There are exceptions; we'll get to those in later chapters.)

www.it-ebooks.info

http://www.it-ebooks.info/

Our objects don't "know" their names or ages!

The animal rescue's lead developer points out a couple details we forgot

to address with our class-based solution:

Bark!

the original program.

and move methods:

A name will have to

be provided when we

call these methods,
like before.

We're supposed to see the
animal's name when we call these
methods! And where is the
report age method?

Flying to the tree.

Chirp! Chirp!
Running to the house.

She has a point; we're missing a couple of features from

Let's start by re-adding the name parameter to the talk

class Bird
def talk (name)
puts "#{name} says Chirp!
end
def move (name, destination)

puts "#{name} flies to the #{destination}."

chapter title here

Chirp!"

end N\\\
end And like before, we'll use
the names in the output.

class Dog
def talk (name)
puts "#{name} says Bark!"
end
def move (name, destination)
puts "#{name} runs to the
end
end

class Cat
def talk(ggmg)
puts "#{name} says Meow!"
end
def move(ggmg, destination)
puts "#{name} runs to the
end
end

www.it-ebooks.info

#{destination}."

#{destination}."

you are here »

53

http://www.it-ebooks.info/

page goal header

Too many arguments (again)

Now that we've re-added the name parameter to the
talk and move methods, we can once again pass in
the animal's name to be printed.

dog = Dog.new

dog name = "Lucy"
dog.talk (dog name)
dog.move (dog name, "fence")

cat = Cat.new

cat name = "Fluffy"
cat.talk (cat name)
cat.move (cat name, "litter box")

Lucy says Bark!
Lucy runs to the fence.

Fluffy says Meow!
Fluffy runs to the litter box.

Come on. We already have a variable to
hold the animal object. You really want
us to pass a second variable with the

animal's name everywhere? What a pain!

dog = Dog.new

dog name = "Lucy"
cat = Cat.new

e —d

cat name = "Fluffy"

Actually, we can do better. We can use instance variables
to store data inside the object.

One of the key benefits of object-oriented programming is that it
keeps data, and the methods that operate on that data, in the same
place. Let's try storing the names iz the animal objects so that we
don't have to pass so many arguments to our instance methods.

54 Chapter #

www.it-ebooks.info

http://www.it-ebooks.info/

chapter title here

Local variables live until the method ends

So far, we've been working with local variables - variables that are local to the current scope
(usually the current method). When the current scope ends, local variables cease to exist, so they
won't work for storing our animals' names, as you'll see below.

Here's a new version of the Dog class Dog
class with an additional method,
make up name. When we call def make up name
make up name, it stores a name name = "Sandy" &€———Cfore a name.
for the dog, for later access by the end
talk method.
def talk
puts "#{name} says Bark!"
end
Attempt to aceess
end the stored name.
The moment we call the talk dog = Dog.new Eveor
method, however, we get an error, dog.make up name ‘],
saying the name variable doesn't exist: dog.talk S Skl o ancEinedl leemil

variable or method "name' for
#<Dog:0x007fa3188ae428>

What happened? We did define a name variable, back in the make up name method!

The problem, though, is that we used a local variable. Local
variables live only as long as the method in which they were class Dog
created. In this case, The name variable ceases to exist as soon as

make up name ends. def make up name

name = "Sandy"
end &———“"namc" dro\?s ou‘[‘, 0‘(: stope
as soon as the method ends.

def talk
puts "#{name} says Bark!"
end
This vaviable no
end longer exists heve!

Trust us, the short life of local variables is a good thing. If any variable was accessible anywhere
in your program, you'd be accidentally referencing the wrong variables all the time! Like most
languages, Ruby limits the scope of variables in order to prevent this sort of mistake.

Just def alert ceo

imas'mc i‘c~—)message = "Sell your stock." ’Cl
this lotal email (ceo, message) ..weve Whew! Close one.
: end { . .
variable... acﬁgssnblc Evvor undefined local variable
v ere... or method ‘message'
email (shareholders, message) g
you are here » 55

www.it-ebooks.info

http://www.it-ebooks.info/

page goal header

Instance variables live as long as the instance does

Any local variable we create disappears as soon as its scope ends. If that's true, though,
how can we store a Dog's name together with the object? We're going to need a new
kind of variable.

An object can store data in instance variables - variables that are tied to a particular
object instance. Data written to an object's instance variables stays with that object,
getting removed from memory only when the object is removed.

An instance variable looks just like a regular variable,

and follows all the same naming conventions. The

only difference in syntax is that its name begins with
n "at" symbol (@).

my variable @my variable

Local variable Instance variable

Here's that Dog class again. It's identical to the previous one, except
that we added two little "@" symbols to convert the fwo local variables
to one instance variable.

class Dog

def make up name
Gtove a value in an —> @name = "Sandy"

inskance vaviable end
def talk
puts "#{_@name} says Bark!"
end
d Access the instante
en

vaviable.

Now, we can make the exact same call to talk that we did before, and
the code will work! The @name instance variable that we create in the
make up name method is still accessible in the talk method.

dog = Dog.new
dog.make up name

dog.talk Sandy says Bark!

56 Chapter #

www.it-ebooks.info

http://www.it-ebooks.info/

chapter here

Instance variables live as long as the instance does (cont.)

With instance variables at our disposal, it's
casy to add the move and report age
methods back in, as well...

And now that we have instance variables, we can

Our ne
CodC!

finally fill in that hole in the class diagram for Dog!

Instance ——>
variables.

Instance ——>
mC‘U’\odS‘

That's true. Up next, we'll show you a way
to set a dog's name and age to other values.

WWW.

class Dog

def make up name

@name = "Sandy"
end
def talk
puts "#{@name} says Bark!"

end

def move (destination)
puts "#{@name} runs to the #{destination}."
end

def make up age
@age 5
end

W

def report age
puts "#{@name} is #{Q@age} years old."

end
end
dog = Dog.new
dog.make up name
dog.move ("yard")
dog.make up age
dog.report age

Sandy runs to the yard.
Sandy is 5 years old.

That's an improvement.
But this class only lets
us make 5-year-old

dogs named "Sandy"!

it-ebooks.info

http://www.it-ebooks.info/

page goal header

Encapsulation

Thanks to instance variables, we now have a way to store names class Dog
and ages for our animals. But our make up name and

make up age methods only allow us to use hard-coded values
(we can't change them when the program's running). We need a

def make up name
@name = "Sandy"

end
way for our program to set any values we want.

def make up age
@age = 5
end

end

. . v
Code like this won 't work, though: fido = Dog.new Brvo

fido.@age = 3 (/a syntax error, unexpected tIVAR

Ruby never allows us to access instance variables directly from outside our class. This isn't
due to some authoritarian agenda; it's to keep other programs and classes from modifying
your instance variables willy-nilly.

Let's suppose that you could update instance variables directly. What's to prevent other
portions of the program from setting the variables to invalid values?

fido = Dog.new

This is invalid eode/ ——>fido.Ename = "* |£ ow COULD do
1S 1S In ——>fido.Rage = -1 {:}\a{; the ou{:\’u‘t
fido.report_age N is -1 years old.

Who is how old? This object's data is clearly invalid, and the user can see it in the program
output!

Blank names and negative ages are just the start. Imagine someone accidentally replacing
the value in an Appointment object's @date instance variable with a phone number.
Or setting the @sales tax on all their Invoice objects to zero. All kinds of things
could go wrong!

To help avoid exposing an object's data to malicious (or clumsy) users, most object-
oriented languages encourage the concept of encapsulation: of preventing other parts
of the program from directly accessing or changing an object's instance variables.

58 Chapter #

www.it-ebooks.info

http://www.it-ebooks.info/

chapter title here

Attribute accessor methods

To encourage encapsulation and protect your instances from invalid data, Ruby doesn't
allow you to access or change instance variables from outside the class. Instead, you can
create accessor methods, which will write values to the instance variables and read them
back out again for you. Once you're accessing your data through accessor methods, it's easy
to extend those methods to validate your data—to reject any bad values that get passed in.

Ruby has two kinds of accessor methods: attribute writers and attribute readers. (An "attribute"”
1s another name for a piece of data regarding an object.) Attribute writer methods set an
nstance variable, and attribute reader methods get the value of an instance variable back.

Here's a simple class with writer and reader methods for an attribute named my attribute:

class MyClass A{:-Jc\rlbu{c
writer
def my attribute=(new value) "‘Cde'
@my attribute = new value
end
Actcssor def b
ttribute<
ethods. [9€T MY_2 .
" @my attribute _\A‘{:{;Ylbu{:c
end veader
method.
end
If we create a new instance of the above class... my instance = MyClass.new
...we can set the attribute like this... my instance.my attribute = "a value"
...and read the attribute like this. puts my instance.my attribute

Accessor methods are just ordinary instance methods; we only refer to them as "accessor
methods" because their primary purpose is to access an instance variable.

Look at the attribute reader method, for example; it's a perfectly ordinary method that
simply returns the current value of @my attribute.

Nothing magic about the veader!
def my attribute Just veturns the turrent value.

@my attribute «—
d

en

you are here » 59

www.it-ebooks.info

http://www.it-ebooks.info/

page goal header

Attribute accessor methods (cont.)

Like attribute reader methods, an attribute writer method
is a perfectly ordinary instance method. We just call it an
"attribute writer" method because the primary thing it class MyClass

does 1s to update an instance variable.

def my attribute=(new value)
@my attribute

end

end

It may be a perfectly ordinary method, but calls to it are treated
somewhat specially.

Remember that earlier in the chapter, we said that Ruby method names
could end in "="? Ruby allows that equals-sign ending so that it can be
used in the names of attribute writer methods.

end

When Ruby sees something like this in your code:
my instance.my attribute = "a value"
..it gets translated into a call to the my attribute= instance

method. The value to the right of the "="1s passed as an
argument to the method:

A method The method
ealll (argument.
my instance.my attribute=("a value")

The above code is valid Ruby, and you can try it yourself, if you like:

class MyClass
def my attribute=
@my attribute =
end
def my attribute
@my attribute
end
end

(new_value)
new value

A eall to ""\\/ a{:{:wbujcc—-)
disuised as assugnmcn{:

my instance = MyClass.new

my instance.my attribute = "assigned via method call"
puEs my_instange.my_attribute A eall to

my instance.my attribute=("same here")/"my_aﬁ{:ribu{:cf—"
puts my instance.my attribute that ac{uall\/

looks like OV\C!

60 Chapter #

www.it-ebooks.info

def my attribute=

Attribute
writer

</ method.

= new value

(new _value)
N Part of the
method namC!

% Oonvenﬁonal *
: \XPS om *

: We only show this

. alternate way of calling

: attribute writer methods

: so that you can

: understand what's going

. on behind the scenes. In

. your actual Ruby :
. programs, you should only :
. use the assignment syntax! :

assigned via method call
same here

http://www.it-ebooks.info/

Using accessor methods

Now we're ready to use what class Dog

chapter title here

we've learned in the Fuzzy Friends
application. As a first step, let's
update the Dog class with methods
that will let us read and write @name
and @age instance variables. We'll
also use @name and @age in the
report age method. We'll look at
adding data validation later.

Write a new value

def name=(new value) 4o @name
@name = new_value

end

def name
@name < Read the value

end Lrom @rame

def age=(new value) { value
@Qage = new value&e—"— Write a new

end to @a‘.’»c
def age

Rage &— —— Read the value
end Lrom @agc

def report age
puts "#{@name} is #{Cage} years old."

end

end

With accessor methods in place, we can
(indirectly) set and use the @name and Qage
instance variables from outside the Dog class!

fido = Dog.new
fido.name = "Fido"

fido.age = 2 &—— Set @age for Fido.

rex = Dog.new
rex.name = "Rex"&—— Set @name for Rex.
rex.age = 3 &—— Get Bage for Rex.

fido.report age
Fido is 2 years old.
Rex is 3 years old.

rex.report age
Writing a reader and writer method by hand
for each attribute can get tedious, though.
Next, we'll look at an easier way...

Set @name for Fido.

s’e\xfisde‘)m *

! The name of an attribute reader method

. should usually match the name of the

! instance variable it reads from (without

. the @ symbol, of course).

i def tail length

: @tail le ngth

end B

. The same is true for attribute writer

. methods, but you should add an = symbol
. on to the end of the name.

def tail length=(value)
: @tail length = value
* end

you are here » 61

www.it-ebooks.info

http://www.it-ebooks.info/

page goal header

Attribute writers and readers

Creating this pair of accessor methods for an attribute is so common that
Ruby offers us shortcuts - methods named: attr writer,attr reader,
and attr accessor. Calling these three methods within your class
definition will automatically define new accessor methods for you:

...and Rub\/ will
Write this within Yyour a.,-boma{:icall\/ define
class definition... these methods:
Just like
def name=(new value) our old
attr writer :name @name = new_value d (: i{ion’
end exin :
def name Just like
attr reader :name @name i&— our old
end dc‘(:ini{:ion!
def name=(new value)
@name = new value
end Defines two
attr_accessor :name e mcﬂ\ods a{
def name m',c,
@name onee
end

All three of these methods can take multiple
arguments, specifying multiple attributes that you
want to define accessors for. attr accessor :name, :age
’\&E Dc‘(:'mcs FOUR

methods at onte!

Sywbols

In case you're wondering, those : name and :age things are thello

symbols. A Ruby symbol is a series of characters, like a string. Ruby symbol&—) :over easy
Unlike a string, its value can't be changed later. That makes them -
perfect for use inside Ruby programs, to refer to anything whose
name doesn't (usually) change, like a method. For example, if you
call the method named methods on an object in irb,
you'll see that it returns a list of symbols.

ceast

> Object.new.methods

=> [:class, :singleton class, :clone,

A symbol reference in Ruby code always begins with a
colon character (:). A symbol should be in all lower-case,
with words separated by underscores, just like a variable name.

62 Chapter #

www.it-ebooks.info

http://www.it-ebooks.info/

chapter title here

Attribute writers and readers in action

The Dog class currently devotes 12 lines of code to accessor
methods. With the attr accessor method, we can shrink
that down to 1 line!

It will let us reduce our Dog class's size...

from this... 1o this!

class Dog class Dog

Ec\uivalcn{:!
A
def name=(new value) attr accessor :name, :ige
@name = new value
end

def report age
puts "#{@name} is #{@age} years old."

def name end
@name
end def talk
puts "#{@name} says Bark!"
def age=(new value) end

@age = new value
end def move (destination)
puts "#{@name} runs to the #{destination}."
def age end
Qage
end end

def report age
puts "#{@name} is #{@age} years old."
end

def talk
puts "#{@name} says Bark!"
end

def move (destination)
puts "#{@name} runs to the #{destination}."

end

end

...how's that for efficiency? It's a lot easier to read, too!

Let's not forget why we're writing accessor methods in the first place,
though. We need to protect our instance variables from invalid data. Right
now, these methods don't do that... We'll see how to fix this in a few pages!

you are here »

www.it-ebooks.info

63

http://www.it-ebooks.info/

page goal header

We haven't really gotten to play around with classes and objects much yet. Let's try another
_ RC’SQ irb session. We'll load up a simple class so we can create some instances of it interactively

Step One:

Save this class definition to a file, named "mage.rb".

class Mage

attr accessor :name, :spell

def enchant (target)

puts "#{@name} casts #{@spell} on #{target.name}!"
end

end

e
Step Two:

mage.rb

V)

From a system command prompt, navigate into the directory
where you saved your file.

Step Three:

We want to be able to load Ruby files from the current directory, so
as in the previous exercise, type the following to launch irb:

irb -1 .

Step Four:

As before, we need to load the file with our saved Ruby code. Type this line:

require "mage"

64 Chapter #

www.it-ebooks.info

http://www.it-ebooks.info/

Exercise (Continven)

Heve's 3

chapter title here

File Edit Window Help
$ irb -I

sample session: RS (main) ;001:0> require 'mage'

=> true
irb (main) :002:0> merlin = Mage.new
=> #<Mage:0x007£d4432082308>

irb(main) :003:0> merlin.name = "Merlin"
=> "Merlin"
With our Mage class's code loaded, you can irb (main) :004:0> morgana = Mage.new
try creating as many instances as you like, => #<Mage:0x007£d43206b310> . .
set their attributes, and have them cast spells lfb (1;:‘1a1n) . 00:‘: WL DUSEEEIN TR S R
h other! Try the following for starters: => "Morgana :
at each other: lry g irb(main) :006:0> morgana.spell = "Shrink"
=> "Shrink"

. irb(main) : 007:0> morgana.enchant (merlin)
merljl_n = Mage.new) Morgana casts Shrink on Merlin!
merlin.name = "Merlin" => nil
morgana = Mage.new irb (main) : 008:0>
morgana.name = "Morgana"
morgana.spell = "Shrink"

morgana.enchant (merlin)

Who am, 1,

A bunch of Ruby concepts, in full costume, are playing a party game, “Who am
[?” They'll give you a clue — you try to guess who they are based on what they
say. Assume they always tell the truth about themselves. Fill in the blanks to
the right to identify the attendees. (We've done the first one for you.)

Tonight’s attendees: Any of the terms related to storing data within an
object just might show up!

Nawme

| stay within an object instance, and store data

about that object. instance variable

I'm another name for a piece of data about an
object. | get stored in an instance variable.

| store data within a method. As soon as the
method returns, | disappear.

I'm a kind of instance method. My main purpose
is to read or write an instance variable.

I'm used in Ruby programs to refer to things
whose names don't change (like methods).

you are here »

www.it-ebooks.info

65

http://www.it-ebooks.info/

page goal

Wh

() El :)

SOI o m I. therejare no o
Ution Dumb Questions

Q: What's the difference between
an accessor method and an instance
method?

A: "Accessor method" is just a way of
describing one particular kind of instance
method, one whose primary purpose is to
get or set the value of an instance variable.

Name In all other respects, accessor methods
are ordinary instance methods.

| stay within an object instance, and store data . .
about that object. instance variable Q I set up an instance variable
outside an instance method, but it's not
I'm another name for a piece of data about an) there when | try to access it. Why?
a‘H‘xlbu{:c

object. | get stored in an instance variable.
class Widget

| store data within a method. As soon as the lotal vaviabl @size = 'large!
method returns, | disappear. ocd vandbe def show_size ,
puts "Size: #{@size}"
. . . d
I'm a kind of instance method. My main purpose en
. . . . d
is to read or write an instance variable. accessor method = E"‘FJC)’/

, .) widget = Widget.new
I'm used in Ruby plrograms to. refer to things symbol widget.show size
whose names don't change (like methods).

A: When you use instance variables
outside of an instance method, you're
actually creating an instance variable

on the class object. (That's right, even
classes are themselves objects in Ruby.)

While there are potential uses for this,
they're beyond the scope of this book. For
now, this is almost certainly not what you
want. Instead, set up the instance variable
within an instance method:

class Widget
def set size
@size = 'large'

end

end

66

www.it-ebooks.info

http://www.it-ebooks.info/

chapter title here

Poo] Puzzle

/\ Your job is to take code snippets from the pool and place them into the blank lines in the code.
Don't use the same snippet more than once, and you won't need to use all the snippets. Your
goal is to make code that will run and produce the output shown.

class Robot robot = Robot.new
def robot.assemble
@head
end robot.arms = "MagGrip Claws"
robot.eyes = "X-Ray Scopes"
def (value) robot.feet = "MagGrip Boots"
@arms = value
end puts robot.head
puts robot.legs
:legs, :body puts robot.body
puts robot.feet
attr writer robot.diagnostic
: feet
Output
def assemble
@legs - ::RubyTek Walkerf" File Edit Window Help
@body = "BurlyBot FraTe SuperAI 9000
= "SuperAI 35000 RubyTek Walkers
end BurlyBot Frame
MagGrip Boots
def diagnostic MagGrlp Claws
puts X-Ray Scopes
puts @Qeyes
end
end

Note: each thing from
the pool can only be
used once!

attr reader

attr writer

@head
Qfeet

attr accessor :eyes

st

you are here » 67

www.it-ebooks.info

http://www.it-ebooks.info/

page goal header

. _ 9 _
Pool Puzzle Solution
/\ Your job is to take code snippets from the pool and place them into the blank lines in the code.

Don't use the same snippet more than once, and you won't need to use all the snippets. Your
goal is to make code that will run and produce the output shown.

class Robot robot = Robot.new
def head robot.assemble
@head
end robot.arms = "MagGrip Claws"
robot.eyes = "X-Ray Scopes"
def arms=(value) robot.feet = "MagGrip Boots"
@arms = value
end puts robot.head
puts robot.legs
attr reader :legs, :body puts robot.body
puts robot.feet
attr writer :eyes robot.diagnostic

attr accessor :feet

Output
def assemble
@legs = "RubyTek Walkers" File Edit Window Help Lasers
@body = "BurlyBot Frame" SuperAI 9000
@head = "SuperAI 9000" RubyTek Walkers

BurlyBot Frame
MagGrip Boots
MagGrip Claws

end

def diagnostic
puts @arms
puts Qeyes
end

X-Ray Scopes

end

68 Chapter #

www.it-ebooks.info

http://www.it-ebooks.info/

chapter title here

Ensuring data is valid with accessors

Remember our scenario from a nightmare world where Ruby let
programs access instance variables directly, and someone gave your
Dog instances blank names and negative ages? Bad news: now that
you've added attribute writer methods to your Dog class, they actually

can!

joey = Dog.new
joey.name = ""

joey.age

joey.report age

is -1 years old.

Don't panic! Those same writer methods are going to help us prevent

this from happening in the future. We're going to add some simple
data validation to the methods, which will give an error any time an

invalid value 1s passed in.

Since name= and age= are just
ordinary Ruby methods, adding the
validation is really easy; we'll use
ordinary if statements to look for
an empty string (for name=) or a
negative number (for age=). If we
encounter an invalid value, we'll
print an error message. Only if the
value is valid will we actually set the
@name or @age instance variables.

class Dog

We only define the
reader methods
au‘bomafica“\/, sinte
we've dc«cining writer
methods ourselves.

attr reader :name, :age
|£ £he name is blank,
def name=(value)

vink viror messaoe.
? Int an € €ss.
if alue wn é//

puts "Name can't be blank!"
else

@name = value &—_ Set the instante vaviable

enceind only if the name is valid-

def age=(value) £ the age is negative,
if value < 0&e———" ?r'm{: an error message.
puts "An age of #{value} isn't valid!"
else

@age = value&—_ g4 the instante variable
end onl\/ if the age is valid.

end

def report age
puts "#{@name} is #{Q@age} years old."
end

end

you are here »

www.it-ebooks.info

69

http://www.it-ebooks.info/

page goal header

Errors - the "emergency stop” button

So now, we get a warning if an invalid name
or age are set. Great. But then the program
goes right on to call report age anyway,
and the name and age are blank!

glitch = Dog.new
glitch.name = "" Name can't be blank!
glitch.age = -256 An age of -256 isn't valid!
glitch.report age is years old.

Blank!

Instead of just printing a message, we need to deal with invalid
parameters in the name= and age= accessor methods in a more
meaningful way. Let's change the validation code in our name= and
age= methods to Ruby's built-in raise method to report any errors.

raise "Something bad happened!"

That's raise asin "raise an issue". Your program is bringing a
problem to your attention.

You call raise with a string describing what's wrong. When Ruby
encounters the call, it stops what it's doing, and prints your error
message. Since this program doesn't do anything to handle the error,
it will exit immediately.

70 Chapter #

www.it-ebooks.info

http://www.it-ebooks.info/

chapter title here

Using "raise" in our attribute writer methods

Since we're using raise in

both of our writer methods,

we don't need to use an else
clause on the if statements. If
the new value is invalid and the
raise statement is executed, the
program will halt. The statement
that assigns to the instance
variable will never be reached.

exetukion will halt her

class Dog
attr reader :name, :age

,‘(" "value” is invalid... def name=(value)

TT~—sif value == "

‘..cﬁccu{:ior\ will halt hcn',———%raise "Name can't be blank!"

end :
@name = valuee——" Ihis statement won £ be
end veathed if "vaise is called.

,1C "valuc" is invalid... def age=(value)
ST~ value < 0
e. _————>raise "An age of #{value} isn't valid!"
end

Gage = value &—— Ihis statement won't be

end veathed if "vaise’ is called-

def report age
puts "#{@name} is #{@age} years old."

end
end
Now, if a blank name is passed in to
name=, Ruby will report an error, and anonymous = Dog.new

the entire program will exit.

You'll get another error message

if someone tries to set the age to a

number less than zero.

anonymous.name = ""

in ‘name=': Name

can't be blank!
(RuntimeError)

joey = Dog.new
joey.age = -1

in “age=': An age
of -1 isn't valid!
(RuntimeError)

In alater chapter, we'll see that errors can also be handled by other
parts of your program, so that it can continue running. But for now,
naughty developers that try to give your Dog instance a blank name
or a negative age will know immediately that they have to re-write
their code.

Awesome! Now, if there's an error ina
developer's code, it'll be brought to their
attention before a user sees it. Nice work!

www.it-ebooks.info

7

http://www.it-ebooks.info/

page goal header

Our complete Pog class Dog .
name instance
Here's a file with our complete Dog class, plus some code to create a Dog instance. age Variables
» (state)
class Dog Sets up 'name” and .
"age” attribute move instance
attr reader :name, :age&—— reader methods talk methds
report_age .
def name= (value)&—— Attribute writer (behavior)

Type the above code into a file named
"dog. rb". Try adding more Dog instances!
Then run ruby dog.rb from a command line.

72

if value == "" mcﬁhod~QW'"@namc%
raise "Name can't be blank!"
end ™~——Dats validation.
@name = value
end
Attribute writer
def age=(value) e cthod for "Bane”

if value < 0
raise "An age of #{value} isn't valid!"
end ®~—____ Data validation.
@age = value
end

def move (destination)€&—— [nstante method.

puts "#{@name} runs to the #{destination}."

end N Using an instance vaviable.
def talk €—— [nstante method.

puts "#{@name} says Bark!"
end N— Msing an instante vaviable.

def report_age &—— |nstante method.
puts "#{@name} is #{Q@age} years old."

end Using instante vaviables.

end

dog = Dog.new<//

dog.name = "Daisy"¢—— |nitialize attributes.

Create a new Dog instance.

dog.age = 3 R
dog.report age —
dog.talk€&———— (3l instante methods. —
dog.move ("bed")

dog.rb

Chapter #

www.it-ebooks.info

We have instance methods that act as attribute
accessors, letting us get and set the contents of
our instance variables.

puts dog.name
dog.age = 3
puts dog.age

Daisy
K]

We have instance methods that let our dog
object do things, like move, make noise, and
report its age. The instance methods can make
use of the data in the object's instance variables.

dog.report age
dog.talk
dog.move ("bed")

Daisy is 3 years old.

Daisy says Bark!
Daisy runs to the bed.

And we've set up our attribute writer methods
to validate the data passed to them, raising an
error if the values are mnvalid.

dog.name = ""

Evvor in ‘name=': Name

can't be blank!
(RuntimeError)

Now, we just need to do the same for the Cat and Bird classes!

Not excited by the prospect of duplicating all that code? Don't
worry! The next chapter is all about inheritance, which will make
the task easy!

http://www.it-ebooks.info/

chapter here

Your Ruby Toolbox

That's it for Chapter 2! You’ve added
methods and classes to your tool box.

Q BULLET POINTS ————

= Amethod body consists of one or
more Ruby statements that will be

\ executed when the method is called.
‘\',S m Parenthesis should be left off of a
S-\-,a’cc""e“ method definition if (and only if) you're
c MC 'h\‘ Ods not defining any parameters.
on
Lhe Levs Lan be made = |fyou don't specify a return value,
Mekhod pavamets default values: methods will return the value of the
3 | by provid™d last ion evaluated
o‘a’c'\O"a)| 4 name ast expression evaluated.
W
foc 3 metho = Method definitions that appear within

a class definition are treated as
instance methods for that class.

m Qutside a class definition, instance
variables can only be accessed via
accessor methods.

= Youcancallthe attr writer,
attr reader,andattr
accessor methods within your
class definition as a shortcut for
defining accessor methods.

= Accessor methods can be used to
ensure data is valid before it's stored
in instance variables.

® The raise method can be called to
report an error in your program.

73

www.it-ebooks.info

http://www.it-ebooks.info/

page goal header

74 Chapter #

www.it-ebooks.info

http://www.it-ebooks.info/

3 snheritance

Relying on Your Parents

My siblings and I used to
quarrel over our inheritance.
But now that we've learned
how to share everything,
things are working out great!

So much repetition! Your new classes representing the different types of vehicles
and animals are awesome, it's true. But you're having to copy instance methods from
class to class. And the copies are starting to fall out of sync - some are fine, and others

have bugs. Weren't classes supposed to make code easier to maintain?

In this chapter, we'll learn how to use inheritance to let your classes share methods.

Fewer copies means fewer maintenance headaches!

this is a new chapter 75

www.it-ebooks.info

http://www.it-ebooks.info/

page goal header

Copy, paste... Such a waste...

Back at Got-A-Motor, Inc., the development team wants to try this

"object-oriented programming” thing out for themselves. They've

converted their old virtual test drive app to use classes for each vehicle

type. They have classes representing cars, trucks, and motorcycles.

Here's what their class structure looks like right now:

. Car . Truck . Motorcycle
instance odometer instance odometer instance odometer
variables |gas_used variables | gas_used variables | gas used

: mileage : mileage : mileage
Instance accelerate Instance accelerate instance accelerate
wmethods sound_horn methods sound_horn methods sound_horn

Thanks to customer demand,
management has asked

that steering be added

to all vehicle types. Mike,
Got-A-Motor's rookie
developer, thinks he has this
requirement covered.

Not a problem! I'll just add a
steer method to the Car class. Then
I'll copy and paste it into the other
classes, just like I did with the other
three methods!

76 Chapter #

www.it-ebooks.info

http://www.it-ebooks.info/

chapter title here

Mike's code for the Virtual Test Prive classes

class Car class Truck

attr accessor :odometer
attr accessor :gas used

def mileage
@odometer / @gas_used
end

def accelerate
puts "Floor it!"
end

def sound horn
puts "Beep! Beep!"
end

Copy!
def steerkf// !

puts "Turn front 2 wheels."

end

attr accessor :odometer
attr accessor :gas used

def mileage
@odometer / @gas_used
end

def accelerate
puts "Floor it!"
end

def sound horn
puts "Beep! Beep!"
end

Paste!
def steer‘ff’

puts "Turn front 2 wheels.'

end

end end

class Motorcycle

But Marcy, the team's experienced
attr accessor :odometer

object-oriented developer, has
attr accessor :gas_used

some reservations about this

def mileage approach.

@odometer / @gas_used
end

This copy-pasting is a bad
idea. What if we needed
to change a method?
We'd have to change it in
every class! And look at
the Motorcycle class—

def accelerate
puts "Floor it!"
end

def sound horn
puts "Beep! Beep!"

end | motorcycles don't have two
Paste! front wheels!
def steer <«
puts "Turn front 2 wheels."
end
end

Marcy is right; this is a maintenance nightmare waiting to happen. First, let's figure out how to
address the duplication. Then we'll fix the steer instance method for Motorcycle objects.

you are here » 77

www.it-ebooks.info

http://www.it-ebooks.info/

page goal header

Inheritance to the rescue!

Fortunately, like most object-oriented languages, Ruby has the
concept of inheritance, which allows classes to inherit methods

from one another. If one class has some functionality, classes that

inherit from it can get that functionality automatically.

Instead of repeating method definitions across many similar classes,

inheritance lets you move the common methods to a single class. You
can then specify that other classes inherit from this class. The class
with the common methods is referred to as the superclass, and the
classes that inherit those methods are known as subclasses.

If a superclass has instance methods, then its subclasses automatically
inherit those methods. You can get access to all the methods you need
from the superclass, without having to duplicate the methods' code in

each subclass.

Here's how we might use inheritance to get rid of the repetition in

the virtual test drive app...

o We see that the Car,
Truck, and Motorcycle
classes have several instance
methods and attributes in
common.

e Each one of these classes
is a type of vehicle. So
we can create a new class,
which we'll choose to call
Vehicle, and move the
common methods and
attributes there.

78 Chapter #

Motorcycle

Car Truck
odometer odometer
gas_used gas_used
mileage mileage
accelerate accelerate
sound_horn sound_horn
steer steer

odometer
gas_used

mileage
accelerate
sound_horn
steer

Vehicle

odometer
gas_used

mileage
accelerate
sound_horn
steer

www.it-ebooks.info

http://www.it-ebooks.info/

Inheritance to the rescue! (cont)

(3]

Then, we can specify that each

of the other classes inherits
from the Vehicle class.

The Vehicle class is called the
superclass of the other three classes.
Car, Truck, and Motorcycle are
called subclasses of Vehicle.

chapter title here

Supertlass.

Vehicle

odometer
gas_used

mileage
accelerate
sound_horn
steer

The subclasses inherit all the methods and attributes

of the superclass. In other words, if the superclass has

some functionality, its subclasses automatically get that

functionality. We can remove the duplicated methods
from Car, Truck, and Motorcycle, because they

will automatically inherit them from the Vehicle class.
All of the classes will still have the same methods, but

there's only one copy of each method to maintain!

Note that in Ruby, subclasses technically do not inherit

instance variables; they inherit the attribute accessor methods
that create those variables. We'll talk about this subtle

distinction in a few pages.

You ean still eall all these
inhevited methods and
attribute aceessors on

instantes of Lhe subtlasses,

Just as if the subtlasses

detlared them di\rcd:l\/,/

Subelass. Subelass. Subelass.
Car Truck Motorcycle
Superelass.
Vehicle
odometer
gas_used
mileage
accelerate
sound_horn
steer
Qubelass. Subelass. Qubelass.
Car Truck Motorcycle
odometer odometer odometer
gas_used gas_used gas_used
mileage mileage mileage
accelerate accelerate accelerate
sound_horn sound_horn sound_horn
steer steer steer

www.it-ebooks.info

79

you are here »

http://www.it-ebooks.info/

page goal header

Pefining a superclass (requires nothing special)

To eliminate the repeated methods
and attributes in our Car, Truck,
and Motorcycle classes, Marcy

has created this design. It moves the
shared methods and attributes to a
Vehicle superclass. Car, Truck,

and Motorcycle are all subclasses
of Vehicle, and they wmherit all of
Vehicle's methods.

There's actually no special syntax to
define a superclass in Rubys; it's just an
ordinary class. (Most object-oriented
languages are like this.)

80

Chapter #

Vehicle

gas_u

odometer

sed

steer

Qubelass. Qubelass.

mileage
accelerate
sound_horn

Qubelass.

Car

Truck

Motorcycle

class Vehicle

inhevited when we
detlare a subtlass.

A"3H*$dxsmnbc{attr_accessor

def accelerate
"Floor it!"

puts
end

def sound horn
puts "Beep!

So Wl” a” end
instante
methods [4or gte
puts
end

def mileage

attr accessor

er

:odometer
:gas_used

"Turn front 2 wheels."

return Qodometer / @gas used

end

end

www.it-ebooks.info

http://www.it-ebooks.info/

chapter title here

Pefining a subclass (is really easy)

The syntax for subclasses isn't much more A% ess—than’
complicated. A subclass definition looks just symbol. Read aloud
like an ordinary class definition, except that .

! HHOM, EXCCE as "inhevits from
you specify the superclass it will inherit from.

» AT
or "spetializes -

Class name SuPchlass name
Ruby uses a less-than (<) symbol because class |Ca rl |Veh icl el
the subclass is a subset of the superclass.
(All cars are vehicles, but not all vehicles
are cars.) You can think of the subclass
as being lesser than the superclass. end

We ean define additional
methods and attributes
heve, but for now we'll ")us{:
use the inherited ones.

So here's all we have to write in order to specify that Car, Truck, and
Motorcycle are subclasses of Vehicle:

class Car < Vehicle
end

class Truck < Vehicle
end

class Motorcycle < Vehicle
end

As soon as you define them as subclasses, Car, Truck, and Motorcycle inherit all the attributes
and instance methods of Vehicle. Even though the subclasses don't contain any code of their own,
any instances we create will have access to all of the superclass's functionality!

truck = Truck.new
truck.accelerate
truck.steer

car = Car.new
car.odometer = 11432
car.gas_used = 366

Floor it!
Turn front 2 wheels.

Lifetime MPG:

puts "Lifetime MPG: 31

puts car.mileage

Our Car, Truck, and Motorcycle classes have all the same functionality they used to, without all
the duplicated code. Using inheritance will save us a lot of maintenance headaches!

you are here » 81

www.it-ebooks.info

http://www.it-ebooks.info/

page goal header

Adding methods fo subclasses

As it stands, there's no difference between our Truck class and the Car

or Motorcycle classes. But what good is a truck, if not for hauling
cargo? Got-A-Motor wants to add a Load bed method for Truck
instances, as well as a cargo attribute to access the bed contents.

It won't do to add cargo and load bed to the Vehicle class,
though. The Truck class would inherit them, yes, but so would Car
and Motorcycle. Cars and motorcycles don't fave cargo beds!

So instead, we can define a cargo
attribute and a Load_bed method
directly on the Truck class.

class Truck < Vehicle

attr accessor :cargo

def load bed(contents)
puts "Securing #{contents} in the truck bed."

@cargo
end

end

If we were to draw the diagram of Vehicle and its
subclasses again now, it would look like this:

With these code changes in place, we
can create a new Truck instance,
then load and access its cargo.

82

Chapter #

Subelass.

contents

Supertlass.

Vehicle

odometer
gas_used

mileage
accelerate
sound_horn
steer

Subelass.

Subelass.

Car

Truck

Motorcycle

cargo

truck = Truck.new
truck.load bed("259 bouncy balls")

puts "The truck is carrying #{truck.cargo}."

load_bed

Securing 259 bouncy balls in the truck bed.
The truck is carrying 259 bouncy balls.

www.it-ebooks.info

http://www.it-ebooks.info/

chapter title here

Subclasses keep inherited methods alongside new ones

A subclass that defines its own methods doesn't lose the Vehicle

R . . Superelass.
ones it inherits from its superclass, though. Truck will
still have all the attributes and methods it inherits from odometer
Vehicle, but cargo and load bed will be added gas_used
alongside them. mileage
If we re-drew our diagram with the inherited attributes accelerate
and methods included, it would look like this: sfund_hom

steer

Subelass. Subelass. Subtlass.
Car Truck Motorcycle
odometer odometer odometer
gas_used gas_used gas_used
cargo
So in addition to the cargo mileage mileage mileage
attribute and 1oad bed method, accelerate accelerate accelerate
our Truck instance can also access sound_horn sound_horn sound_horn
all the old inherited attributes and steer steer steer
methods it used to. load_bed

truck.odometer = 11432
truck.gas used = 366

puts "Average MPG:" _ C—f harpen your Penc“

puts truck.mileage

P We need two classes,
Average MPG: Kiteand StuntKite.
31 Both Kite and
Kite StuntKite instances

will need £1y and
land methods. Only
StuntKite instances
should have a steer

So, a subclass inherits instance methods from method, however. Place

its superclass. Does it also inherit instance the class names and

variables? method definitions at the
StuntKite appropriate places in this

class diagram.

/A
m~
1@

=5 C fly
A Ruby Detour o steer
Surprisingly, the answer is no! Bear with us, an
we need to take a 2-page detour to explain...
you are here » 83

www.it-ebooks.info

http://www.it-ebooks.info/

page goal header

_ qaoharpen your pencil _
§\\£ ySoIlF:tion

Kite

fly
land

StuntKite

The only tlting that
Rul)y subclasses
ever inherit are
instance methods.
Instance variables
usually come along

for the riJe, though.

84 Chapter #

Instance variables —f—===

are NOT inherited! Aty beio

It's easy to form the (incorrect) impression that instance variables
are inherited from the superclass. Let's take another look at our class
diagram, focusing on the attributes of the Vehicle and Car classes...

Supertlass.
Vehicle

Defined heve. — 3::11:‘(351::;

Subelass.

Car

[nhevited heve. —— odometer
gas_used

All Ruby objects have a method called instance variables that we
can call to see what instance variables are defined for that object. So if
we create a new Car and assign values to its odometer and gas_used
attributes...

car = Car.new
car.odometer = 22914
car.gas_used = 728

...then call the instance variables method to see what instance

variables it has...
. . @odometer
puts car.instance variables
- @gas_used

...t sure looks like the Godometer and @gas used instance variables got

inherited from the Vehicle superclass.

But what actually gets inherited are the odometer and gas_used
instance methods (the attribute accessor methods). These methods just happen
to assign to instance variables named @odometer and @gas used
(because that's the Ruby convention). The variables are created on the car
object at the time a value is assigned to them.

www.it-ebooks.info

http://www.it-ebooks.info/

chapter title here

Instance variables are NOT inherted! (cont.)

To prove that it's the odometer and class Car < Vehicle
gas used instance methods that are def odometer=(new_value)
i @banana = new value

inherited from Vehicle, and not the

@odometer and @gas used instance end
. . . def odometer

variables, let's try breaking the convention. @banana
We'll override the Car subclass's attribute end
accessor methods to write to and read from def gas used=(new value)
totally different instance variables. Rapp le = new value

end

def gas used

@apple
end
end

Now, we can run the very same code to create a Car instance: car = Car.new

car.odometer = 22914
car.gas_used = 728

..But the odometer=and gas used= methods will assign
to different instance variables:
Note the complete
puts car.instance variables @banana €— absente o('\ @odometer
Eeigenie and @5as_uscd.’

So, why worry about the fact that instance variables aren't inherited? As long as you
follow the convention of ensuring your instance variable names match your accessor
method names, you won't have to. But if you deviate from that convention, look
out! You may find that a subclass can interfere with it's superclass's functionality by
overwriting its instance variables.

class Person class Employee < Person
def name=(new value) def salary=(new value)
NOT a 5ood engstorage = new_value ~But well use the enc@;storaqe = new_value
. ﬁlhomc °£ def name (samc name here. def salary
variable names. @storage HCY‘ Wh\/ not?) @storage
end end
end end

When we try to actually use the Employee subclass, we'll find

that any time we assign to the salary attribute, we overwrite the What an
employee = Employee.new

name attribute, because both are using the same instance variable. employee.name = "John Smith" wnusual
employee.salary = 80000 "a"‘C.’
puts employee.name
) .) 80000
What's the lesson here? Ensure you're using sensible variable
names that match your attribute accessor names. That simple
practice should be enough to keep you out of trouble! End of Ruby Detour
you are here » 85

www.it-ebooks.info

http://www.it-ebooks.info/

page goal header

Overriding methods

Marcy, the team's experienced object-
oriented developer, has re-written our

Car, Truck, and Motorcycle classes as
subclasses of Vehicle. They don't need
any methods or attributes of their own - they
inherit everything from the superclass! But
Mike points out an issue with this design...

Pretty slick, Marcy. But you
forgot one little detail: the
Motorcycle class needs a
specialized steer method!

motorcycle = Motorcycle.new
motorcycle.steer

Turn front 2 wheels.

One wheel too many,
for a motoreyele!

Not a problem - T
can just override that
method for Motorcycle!

If the superclass's behavior isn't what you need in the
subclass, inheritance gives you another mechanism to
help: method overriding. When you override one or

more methods in a subclass, you replace the inherited

methods from the superclass with methods specific to Vehicle
the subclass. odometer
gas_used
class Motorcycle < Vehicle mileage
def steer accelerate
puts "Turn front wheel." sound_horn
end steer
end
Now, if we call steer on a Motorcycle instance, we'll get the Overvides
overriding method. That is, we'll get the version of steer defined
within the Motorcycle class, not the version from Vehicle. Motorcycle

motorcycle.steer steer
Turn front wheel.

86 Chapter #

www.it-ebooks.info

http://www.it-ebooks.info/

chapter title here

Overriding methods (continued)

If we call any other methods on a Motorcycle instance, though,
we'll get the inherited method.

motorcycle.accelerate

How does this work?

. Vehicle
If Ruby sees that the requested method is
defined on a subclass, it will call that method odometer
and stop there. gas_used
But if the method's not found, Ruby will look mileage
for it on the superclass, then the superclass's accelerate
superclass, and so on, up the chain. sound_horn

steer Ves!

Motorcycle

steer ‘/CS.’

(.

ot a "steer” Got a "stee
MC‘f:hod.? mc{‘)\od?

Everything seems to be working again! When changes are needed,
they can be made in the Vehicle class, and they'll propagate to the
subclasses automatically, meaning everyone gets the benefit of updates
sooner. If a subclass needs specialized behavior, it can simply override
the method it inherited from the superclass.

Nice work cleaning up Got-A-Motor's code! Up next, we have a couple
exercises where you can practice working with superclasses and subclasses.

Then, we'll take another look at the Fuzzy Iriends code. They still have
alot of redundant methods in their application's classes. We'll see if
inheritance and method overriding can help them out.

you are here » 87

www.it-ebooks.info

http://www.it-ebooks.info/

page goal header

Q; Can you have more than one level
of inheritance? That is, can a subclass
have its own subclasses?

A: Yes! If you need to override methods
on some of your subclass's instances, but
not others, you might consider making a
subclass of the subclass.

class Car < Vehicle
end

class DragRacer < Car
def accelerate

puts "Inject nitrous!"

end
end

Don't overdo it, though! This kind of design
can rapidly become very complex. Ruby

doesn't place a limit on the number of levels

of inheritance, but most Ruby developers
don't go more than one or two levels deep.

88 Chapter #

therejare no
Dumb Questions

Q: You said that if a method is called
on an instance of a class and Ruby
doesn't find the method, it will look on
the superclass, then the superclass's
superclass... What happens if it runs
out of superclasses without finding the
method?

A: After searching the last superclass,
Ruby gives up the search. That's when
you get one of those "undefined
method" errors we've been seeing.

Car.new.fly

undefined method

“fly' for
#<Car:0x007£ffec48c>

www.it-ebooks.info

Q; When designing an inheritance
hierarchy, which should | design first, the
subclass or the superclass?

A: Either! You might not even realize you
need to use inheritance until after you've
started coding your application.

When you discover that two related classes
need similar or identical methods, though,
just make those classes into subclasses of
a new superclass. Then move those shared
methods into the superclass. There: you've
designed the subclasses first.

Likewise, when you discover that only some
instances of a class are using a method,
create a new subclass of the existing class,
and move the method there. You've just
designed the superclass first!

http://www.it-ebooks.info/

chapter title here

Code Magnets

A Ruby program is all scrambled up on the fridge. Can you
reconstruct the code snippets to make a working superclass and
subclass, so the sample code below can execute and produce the
given output?

‘ Camera ' I DigitalCamera ' I < ' ‘ Camera '
Sample code:
l def ' l def ' load ' camera = Camera.new

camera.load

| end h I end ' I end ' | end ' load] camera.take picture

camera?2 = DigitalCamera.new

| end ' take_picture camera?.load
camera2.take picture
Output:

puts "Triggering shutter. ' T

Winding film.

puts "Inserting memory card." Trlggel_:‘lng shutter.
Inserting memory card.
Triggering shutter.

puts "Winding film. "'

", *
* WHaAT'S 9 vrvve:t#

Match each of . .
the concepts Subelass Replaces a rr.lethod mherlFed fr'om a
on the left to a superclass with new functionality.
definition on
the right. . Allows a single method or attribute to
OVerrldmg be shared by multiple classes.
i 11 . A class that holds the code for
nheritance methods that are shared by one or
more other classes.
S uper class A class that inhc'rits one or more
methods or attributes from a
superclass.
you are here » 89

www.it-ebooks.info

http://www.it-ebooks.info/

page goal header

Code Magnets Solution

A Ruby program is all scrambled up on the fridge. Can
you reconstruct the code snippets to make a working
superclass and subclass, so the sample code below
can execute and produce the given output?

‘ class ' ‘ Camera ' l DigitalCamera ' | < ” Camera '
take _picture .

puts "Triggering shutter."

def

def

puts "Inserting memory card."

Sample code: Output:
camera = Camera.new
camera.load

File Edit Window Help
Winding film.
camera.take picture Triggering shutter.

Inserting memory card.
camera2 = DigitalCamera.new [ilakNefe(-Nah%sle B-1a1bEsALF N
camera2.load
camera2.take picture

*
+ W ..v-g vurrase>
+ SQALOTIQNM
Match each of Replaces a method inherited from a
the concepts Subclass

superclass with new functionality.
on the left to a p Y

definition on

the right. Allows a single method or attribute to

Overriding be shared by multiple classes.
A class that holds the code for
methods that are shared by one or
more other classes.

Inheritance

A class that inherits one or more
methods or attributes from a
superclass.

Superclass

90 Chapter #

www.it-ebooks.info

http://www.it-ebooks.info/

chapter title here

Bringing our animal classes up to date with inheritance

Remember the Fuzzy Friends virtual storybook application from last chapter? We did a lot of
excellent work on the Dog class. We added name and age attribute accessor methods (with
validation), and updated the talk, move, and report age methods to use the @name
and Qage instance variables.

Here's a recap of the code we have so far:

Creates methods to class Dog
5:{ Lu\rrcnjc Valucs
@name and @asc. \—9 attr reader :name, :age

def name=(value)
if value == ""
raise "Name can't be blank!"

We treate our own end

attribute writer @name = value
methods, so we £an end

ctheek that the new

values ave valid. def age=(value)

if value < O
raise "An age of #{value} isn't valid!"
end
@age = value
end

def talk

puts "#{@name} says Bark!"
end

Other instante def move (destination)
methods for our puts "#{@name} runs to the #{destination}."

Dog ob")cc{ts‘ end
def report age
puts "#{@name} is #{Qage} years old."

end

end

The Bird and Cat classes have been completely left behind, however, even though they
need almost identical functionality.

Let's use this new concept of inheritance to create a design that will bring all our classes up to
date at once (and keep them updated in the future).
you are here » 91

www.it-ebooks.info

http://www.it-ebooks.info/

page goal header

Pesigning the animal class hierarchy

We've added lots of new functionality to our Dog class, and now

we want it in the Cat and Bird classes as well...

We want all the classes to have name and

age attributes, as well as talk, move, and
report_age methods. Let's move

all of these attributes and methods up to a new
class, which we'll call Animal.

Then, we'll declare that Dog, Bird, and Cat
are subclasses of Animal. All three subclasses
will inherit all the attributes and instance
methods from their superclass. We'll instantly
be caught up!

Animal

name
age

talk
move

report_age

Animal

name
age

talk
move

report_age

Dog

Bird

Cat

92 Chapter #

www.it-ebooks.info

http://www.it-ebooks.info/

chapter title here

Code for the Animal class and its subclasses

Here's code for the Animal class Animal
superclass, with all the old methods

from Dog moved into it... attr_reader :name, :age

def name=(value)
if value == ""
raise "Name can't be blank!"
end
@name = value
end

def age=(value)
if value < 0
raise "An age of #{value} isn't wvalid!"
end
@age = value
The exatt same end
tode that was

def talk
in the Do 5‘355!
n ¢ E puts "#{@name} says Bark!"

end

def move (destination)
puts "#{@name} runs to the #{destination}."
end

def report age
puts "#{@name} is #{Qage} years old."

end
end
And here are the other classes, class Dog < Animal We dont’ have to write any
rewritten as subclasses of Animal. end methods heve; these ctlasses will

inhevit all the methods Lrom

class Bird < Animal the Animal elass aboVC!

end

class Cat < Animal
end

you are here » 93

www.it-ebooks.info

http://www.it-ebooks.info/

page goal header

Overriding a method in the Animal subclasses

With our Dog, Bird, and Cat classes re-written as subclasses of
Animal, they don't need any methods or attributes of their own - they
inherit everything from the superclass!

whiskers = Cat.new ("Whiskers")
fido = Dog.new ("Fido")
polly = Bird.new("Polly")

polly.age = 2
polly.report age Polly is 2 years old.

fido.move ("yard") Fido runs to the yard. Wait... Whiskers
whiskers.talk Whiskers says Bark! <?’—”/isa Cat...

Looks good, except for one problem... our Cat instance is barking.

The subclasses inherited this method from Animal:
def talk

puts "#{@name} says Bark!"
end

That's appropriate behavior for a Dog, but not so much for a Cat ora Bird.

whiskers = Cat.new ("Whiskers")
polly = Bird.new ("Polly")

whiskers.talk Whiskers says Bark!
polly.talk Polly says Bark!

This code will override the talk method that was inherited from Animal:

class Cat < Animal
def talkee—————— Ovevvides the inherited
puts "#{@name} says Meow!"
end
end

m6£h0d~

class Bird < Animal))
def talke——— Overvides the inhevited method.

puts "#{@name} says Chirp! Chirp!"
end
end

Now, when you call talk on Cat or Bird instances, you'll get the overridden methods.

whiskers.talk Whiskers says Meow!
polly.talk Polly says Chirp! Chirp!

94 Chapter #

www.it-ebooks.info

http://www.it-ebooks.info/

chapter title here

We need to get at the overridden method!

Next up, Fuzzy Friends wants to add armadillos to their interactive

Animal
storybook. (Yeah, the little anteater-like critters that can roll into an
armored ball to protect themselves from predators and overly-playful hame
dogs.) We can simply add Armadillo as a subclass of Animal. age
talk
There's a catch, though; before they can run anywhere, they have to move
unroll. The move method will have to be overridden to reflect this fact. >report age

Ovevrvide -
Armadillo
class Animal The method
P) A
ve overviding.
def move (destination)<// we d
puts "#{@name} runs to the #{destination}."
end
end
)
Overvides the "move’
Our subtlass. method from the
su?cvclass-
class Armadillo < Animal
def move (destination) The new (:w(,{jonali{;\/.

puts "#{@name} unrolls!" <//

puts "#{@name} runs to the #{destination}.“j
end

end This eode is duplicated from the
su?cn‘,lass's method. (0K, it's ")us-{;
one line, but in a real-world app

there would be many move/)

This works, but it's unfortunate that
we have to replicate the code from
the move method of the Animal
class.

What if we could override the move method with new code, and still

harness the code from the superclass? Ruby has a mechanism to do just
that...

you are here » 95

www.it-ebooks.info

http://www.it-ebooks.info/

page goal header

The "super" keyword

When you use the super keyword
within a method, it makes a call to
a method of the same name on the class Person

superclass.)
def greeting

puts "Hello!"
end

"su‘?cr" makes
a ¢all heve

end

class Friend < Person

def greeting
super
puts "Glad to see you!"
end

end

If we make a call to the overriding method on the subclass, we'll see that the
super keyword makes a call to the overridden method on the superclass:

Friend.new.greeting Hello!
Glad to see you!

The super keyword works like an ordinary method call in almost every respect.

For example, the superclass method's

return value becomes the value of
. class Person
the super expression:

def greeting The method vetuen value.
"Hellolm €
end
end

class Friend < Person

def i Asﬂgns"He“oP'{p
ef greeting ; !

t reeting.
basic greeting = super<5”—’/'baﬁc 9 t 9

"#{basic greeting} Glad to see you!"
end

end

puts Friend.new.greeting Hello! Glad to see you!

96 Chapter #

www.it-ebooks.info

http://www.it-ebooks.info/

chapter title here

The "super" keyword (continved)

Another way in which using the super keyword is like a regular method
call: you can pass it arguments, and those arguments will be passed to
the superclass's method.

class Person

def greet by name (name)
"Hello, #{name}!"

end
lncludcs {')\c
end avgumcn{: n
the method
class Friend < Person eall.
def greet by name (name)
basic greeting = super (name)
"#{basic greeting} Glad to see you!"
end
end

puts Friend.new.greet by name ("Meghan")

Hello, Meghan! Glad to see you!

But here's a way that super differs from a regular method call: if you

leave the arguments ¢ff; the superclass method will automatically be

called with the same arguments that were passed to the subclass method.
Friend's greet_by_name

class Friend < Person method has to be ¢alled
with 3 "name” avguan{:...

def greet by name (name)<//

The calls super
and super () are
not the same.

basic greeting = super €—————So the "name” Watch it! .
"#{basic greeting} Glad to see you!" argumen{: will . By itself, super
end be forwarded : . calls the_
on 1o Pevson’s : overridden method with the
end greet_by_name . same argumgnts the overriding
method as well. : method received. But super ()
puts Friend.new.greet by name ("Bert") : calls the overridden method

with no arguments, even if the

Hello, Bert! Glad to see vou! : overriding method did receive
! . you- :arguments.

you are here » 97

www.it-ebooks.info

http://www.it-ebooks.info/

page goal header

A super-powered subclass

Now, let's use our new understanding of super to eliminate a little
duplicated code from the move method in our Armadillo class.

Here's the method we're inheriting from the class Animal

Animal superclass: ce
def move (destination)
puts "#{@name} runs to the #{destination}."

end
end ,
Heve's that
And here's the overridden version in the class Armadillo < Animal d“?li(‘a{:c‘i line.

Armadillo subclass:
def move (destination)

puts "#{@name} unrolls!"
puts "#{@name} runs to the #{destination}."
end

end

We can replace the duplicated code in the subclass's move method with a call to
super, and rely on the superclass's move method to provide that functionality.

Here, we explicitly pass on the destination
parameter for Animal's move method to use:

class Armadillo < Animal

def move (destination)
puts "#{@name} unrolls!"
super (destination)

end
Explieitly specify the
end argumcnfm
But we could instead leave off the arguments class Armadillo < Animal
to super, and allow the destination . .
parameter to be forwarded to the superclass's def mov?(destlnatlon) -
move method automatically: puts "#{@name} unrolls!
super
end
’Awbo—«co\rward the same a\rgumcn‘f:(s)
))
end move” was called with.
Either way, the code still works great! ~ dillon = Armadillo.new
dillon.name = "Dillon"
dillon.move ("burrow") Dillon unrolls!

Dillon runs to the burrow.

Your mastery of class inheritance has wrung the repetition out of your code like water
from a sponge. And your co-workers will thank you - less code means less bugs! Great job!

98 Chapter #

www.it-ebooks.info

http://www.it-ebooks.info/

chapter title here

Below you'll find code for three Ruby classes. The code snippets on the right use those classes,

L either directly or through inheritance. Fill in the blanks below each snippet with what you think its
EZ@RC\SQ output will be. Don't forget to take method overriding and the "super" keyword into account!
(We've filled in the First one for you)

class Robot
attr accessor :name

def activate
puts "#{@name} is powering up"
end

def move (destination)
puts "#{@name} walks to #{destination}"
end

. Your answers:

class TankBot < Robot tank = TankBot.new

tank.name = "Hugo"
attr accessor :weapon tank.weapon = "laser"
tank.activate
def attack tank.move ("test dummy")
puts "#{@name} fires #{Gweapon}" tank.attack
end

def move (destination) Mugo 1S powermg P
puts "#{@name} rolls to #{destination}"

end
end
class SolarBot < Robot sunny = SolarBot.new
sunny.name = "Sunny"
def activate sunny.activate

" 4 "
puts "#{@name} deploys solar panel" sunny.move ("tanning bed")

super
P2y o Vo P

end

you are here » 99

www.it-ebooks.info

http://www.it-ebooks.info/

page goal header

R4
oLutioN
class Robot
attr accessor :name
def activate
puts "#{@name} is powering up"
end
def move (destination)
puts "#{@name} walks to #{destination}"
end
end

class TankBot < Robot

attr_accessor :weapon

def attack
puts "#{@name} fires #{@weapon}"
end

def move (destination)
puts "#{@name} rolls to #{destination}"
end

end
class SolarBot < Robot
def activate
puts "#{@name} deploys solar panel"
super

end

end

Below you'll find code for three Ruby classes. The code snippets on the right use those classes,
o ea either directly or through inheritance. Fill in the blanks below each snippet with what you think its
E%ERC!SQ output will be. Don't forget to take method overriding and the "super" keyword into account!

tank = TankBot.new
tank.name = "Hugo"
tank.weapon = "laser"
tank.activate
tank.move ("test dummy")
tank.attack

sunny = SolarBot.new
sunny.name = "Sunny"
sunny.activate

sunny.move ("tanning bed")

Swmy dcylo\/s solar Ranc|

100 Chapter #

www.it-ebooks.info

http://www.it-ebooks.info/

Difficulties displaying Dogs

Let's make one more improvement to our Dog
class, before we declare it finished. Right now, if
we pass a Dog instance to the print or puts
methods, the output isn't too useful:

chapter title here

lucy = Dog.new
lucy.name = "Lucy"
lucy.age = 4

rex = Dog.new

rex.name = "Rex" The ou‘{:\?u{: we 3ch:
rex.age = 2
puts lucy, rex #<Dog:0x007£fb2b50c4468>

#<Dog:0x007£fb2b3902000>

We can tell that they're Dog objects, but beyond that it's very hard to tell
one Dog from another. It would be far nicer if we got output like this:

The ou{:\?u‘{: we

Lucy the dog, age 4 WISH we had...
Rex the dog,,age <

When you pass an object to the puts method, Ruby calls the to_s
instance method on it to convert it to a string for printing. We can call
to_s explicitly, and get the same result:

puts lucy.to s, rex.to s

#<Dog: 0x007£fb2b50c4468>

#<Dog:0x007£fb2b3902000>

Now, here's a question: where did that to_s instance method come from?

Indeed, where did most of these instance methods on Dog objects come
from? If you call the method named methods on a Dog instance, only
the first few instance methods will look familiar...

puts rex.methods

name
age
These are name=
inhevited age=
from Animal... talk
move
report age
Instance methods named clone, hash, eql?
inspect... We didn't define them ourselves; hash
they're not on the Dog class. They weren't But wheve giii:
inherited from the Animal superclass, either. did these to_s
But - and here's the part you may find surprising - tome from? | EERNSINEE

they were inherited from somewhere.

Theve are more than we have voom to print! —>

www.it-ebooks.info

methods
object_id

you are here » 101

http://www.it-ebooks.info/

page goal header

The Object class

Where could our Dog instances have inherited all these instance
methods from? We don't define them in the Animal superclass.
And we didn't specify a superclass for Animal...

class Dog < Animal &——The su?crdass for
end D05 is Animal.

class Animal

end No superclass speeified!

Ruby classes have a superclass method that you can call to get
their superclass. The result of using it on Dog isn't suprising:

puts Dog.superclass

...But what happens if we call superclass on Animal?

puts Animal.superclass
Woah! Where did #:at come from?

When you define a new class, Ruby implicitly sets a class called
Object as its superclass (unless you specify a superclass yourself).

So writing this:
class Animal

end

...1s equivalent to writing this:

class Animal < Object

end

102 Chapter #

www.it-ebooks.info

Animal

Object

The inheritance diagram for Dog
(that we've seen so fav):

Animal

name
age
talk

move
report_age

Dog

The actual inhevitance
diagvam for Dogt

Object

Animal

name
age
talk

move
report_age

Dog

http://www.it-ebooks.info/

chapter title here

Why everything inherits from the Object class

If you don't explicitly specify a superclass for a class you define, class Animal < Object
Ruby implicitly sets a class named Object as the superclass... e " mplieitly

end inserted by

class Dog < Animal R“‘b\/'

d 3

= \ [nhevits Lrom Animal,
Even if you do specify a superclass for your class, that superclass which means it
probably inherits from ObJject. That means almost every Ruby inhevits from Ob\)cc{:,l

object, directly or indirectly, has Object as a superclass!

Ruby does this because the Object class defines dozens of useful
methods that almost all Ruby objects need. This includes a lot of the
methods that we've been calling on objects so far:

The to_s method converts an object to a string for printing

The inspect method converts an object to a debug string

The class method tells you which class an object is an instance of
The methods method tells you what instance methods an object has

The instance variables method gives you a list of an object's instance variables

...And there are many others. The methods inherited from the Object class
are fundamental to the way Ruby works with objects.

We hope you've found this little tangent informative, but it doesn't help us with
our original problem: our Dog objects are still printing in a gibberish format.

Or does it?

you are here » 103

www.it-ebooks.info

http://www.it-ebooks.info/

page goal header

Overriding the inherited method

We specified that the superclass of the Dog class is the Animal
class. And we learned that because we didn't specify a superclass for
Animal, Ruby automatically set the Object class as its superclass.

That means that Animal instances inherita to s method from
Object. Dog instances, in turn, inherit to s from Animal.
When we pass a Dog object to puts or print,its to_ s method is
called, to convert it to a string.

Do you see where we're headed? If the to_s method is the source
of the gibberish strings being printed for Dog instances, and to_s
is an wnherited method, all we have to do is override to_s on the Dog
class!

class Dog < Animal

Ovcrridcf

Animal

name
age

talk
move
report_age

def to s
"#{@name} the dog, age #{age}" &——This veturn value is the Dog
end format we'd like 1o see.
end

Are you ready? Let's try it.

lucy = Dog.new
lucy.name = "Lucy"
lucy.age = 4

rex = Dog.new
rex.name = "Rex"
rex.age = 2

puts lucy.to s, rex.to s

Rex the dog, age 2

It works! No more "#<Dog: 0x007fb2b50c4468>". This is
actually readable!

One more tweak: the to s method is already called when printing
objects, so we can leave that off:

puts lucy, rex

This new output format will make debugging the virtual storybook
much easier. And you've gained a key insight into how Ruby objects
work - inheritance plays a vital role!

104 Chapter #

www.it-ebooks.info

Lucy the dog, age 4

Lucy the dog, age 4
Rex the dog, age 2

~to_s

therejare no
Dumb Questions

Q,: | tried this code in 1rb

instead of using the ruby

command. After | override to_s,

if [type lucy = Dog.new

into i1 rb, | still see something like
"#<Dog:0x007£fb2b50c4468>"
Why don't | see the dog's name and
age?

A: The values that 1 rb shows you
are the result of calling inspect on
an object, not to_s. You won't see the
results of to s until you set the name
and age, and pass the object to puts.

http://www.it-ebooks.info/

Your Ruby Toolbox

That's it for Chapter 3! You’ve added
inheritance to your tool box.

g&a’cwc“*" \
Con MC‘h\‘OdS \

J° ~ me Classes
ov‘k PU \“\\ ev‘-\—/av\bc

Cnb\ It {-,ancc\ ets 3
\ hex sup
ate € hods feom 3
Mc\ t:\ me ne its own
14 - ethade T
—

ska

a subtlass wherit
eve\ass:

| R subelass “;‘d:: .;,\ ko Khe

chapter here

% BULLET POINTS ———

Any ordinary Ruby class can be used as a
superclass.

= To define a subclass, simply specify a
superclass in the class definition.

m |nstance variables are not inherited
from a superclass, but the methods that
create and access instance variables are
inherited.

® The super keyword can be used within
a subclass method to call the overridden
method of the same name on the
superclass.

= |fyou don't specify arguments to the
super keyword, it takes all arguments
that the subclass method was called with,
and passes them on to the superclass
method.

= The expression value of the super
keyword is the return value of the
superclass method it calls.

= When defining a class, Ruby implicitly sets
the Object class as the superclass,
unless you specify one.

= Almost every Ruby object has instance
methods from the Object class,
inherited either directly, or through another
superclass.

® The to_s, methods,
instance variables,and
class methods are all inherited from the
Object class.

105

www.it-ebooks.info

http://www.it-ebooks.info/

page goal header

106 Chapter #

www.it-ebooks.info

http://www.it-ebooks.info/

4 initializing instances

Off to a Great Start

That guy Jenkins sent out a

new car with a missing timing belt

last week. Whole thing fell apart!

Not me, though. T make sure all
the parts are there!

Right now, your class is a time bomb. Every instance you create starts out
as a clean slate. If you call certain instance methods before adding data, an error will be

raised that will bring your whole program to a screeching halt.

We’re going to show you a couple ways to create objects that are safe to use right away.
We'll start with the initialize method, which lets you pass in a bunch of arguments to
set up an object’s data at the time you create it. Then we’ll show you how to write class

methods, which you can use to create and set up an object even more easily.

this is a new chapter 107

www.it-ebooks.info

http://www.it-ebooks.info/

page goal

Payroll at Chargemore

You've been tasked with creating a payroll system for Chargemore, a new
chain of department stores. They need a system that will print pay stubs for

their employees.

Chargemore employees are paid for two-week pay periods. Some employees
are paid a two-week portion of their annual salary, and some are paid for the
number of hours they work within a two-week period. For starters, though,

we're just going to focus on the salaried employees.
A pay stub needs to include the following information:

e The employee name

e The amount of pay an employee received during a two-week pay period

So... here's what the system will need to krow for each employee:

. Employee name
. Employee salary
And here's what it will need to do:

e Calculate and print pay for a two-week period

This sounds like the ideal place to
create an Employee class! Let's try
it, using the same techniques that we
covered back in Chapter 2.

We'll set up attribute reader methods
for @name and @salary instance
variables, then add writer methods
(with validation). Then we'll add
aprint pay stub instance
method that prints the employee's
name, and their pay for the period.

Employee
name
salary

print_pay_stub

@name = "Kara Byrd"
@salary = 45000

108

@name = "Ben Weber"
@salary = 50000

@name = "Amy Blake
@salary = 50000

www.it-ebooks.info

http://www.it-ebooks.info/

chapter title here

An Employee class

Here's some code to implement our Employee class...
’ o We need 4o treate attribute
weiter methods manually, se
we tan validate the data. We

class Employee can treate veader methods
au{;oma{:icall\/, though.

attr reader :name, :salary<//

def name= (name) Rc\?or{: an evvror if the
if name == "" name is blank.

raise "Name can't be blank! "<//

end
@name = name &—— Store the name in an

end instante vaviable.

def salary=(salary)
if salary < 0

raise "A salary of #{salary} isn't valid!" &——Rcyor{: an evvror 'r(: the

end salary is negative.
@salary = salary &——Store the salar\/ in an

end instante vaviable.

def print pay stub Print the employee name.

puts "Name: #{@name} "</'/ Caleulate a l‘\‘—da\/ portion
)
pay for period = (@salary / 365) * 146//04‘{')\: employee's salary.
puts "Pay This Period: S$#{pay for period}"
end

Print the amount paid.

end

(Yes, we realize that this doesn't account for leap years and holidays
and a host of other things that real payroll apps must consider. But we
wanted a print pay stub method that fits on one page.)

you are here » 109

www.it-ebooks.info

http://www.it-ebooks.info/

page goal header

Creating new Employee instances

Now that we've defined an Employee class, we can create new
instances, and assign to their name and salary attributes.

amy = Employee.new
amy.name = "Amy Blake"
amy.salary = 50000

Thanks to validation code in our name= method, we have protection
against the accidental assignment of blank names.

kara = Employee.new

. : Name can't be
kara.name =

(RuntimeError)

Our salary=method has validation to ensure negative numbers
aren't assigned as a salary.

ben = Employee.new

ben.salary - -246 | aieayd in salary=: A salary

of -246 isn't valid!

(RuntimeError)

And when an Employee instance is properly set up, we can use the
stored name and salary to print a summary of the employee's pay
period.

amy.print pay stub Name: Amy Blake
Pay This Period: $1904 [ANglPrraegmw e
are the tents?

Hmmm... It's typical to display two decimal places when showing
currency, though. And did that calculation really come out to an even
dollar amount?
Creating our elass

Before we go on to perfect our Employee class, it looks like we have pd (You are here])
a bug to fix. And that will require us to go on a couple brief detours.
(But you'll learn some number formatting skills that you'll need later, A RUIJY Detour

promise!) Float and
1. Our employee pay is getting its decimal places chopped off. To fix Fixnum
this, we'll need to look at the difference between Ruby's Float
and Fixnum numeric classes. Formatting
numbers

2. We don't want to display too many decimal places, either, so we'll

need to look at the format method to format our numbers inikial
mitiahze

properly. (Back on track))

110 Chapter #

www.it-ebooks.info

http://www.it-ebooks.info/

chanfnré fitlo ha -i'\

A Ruby Detour

A division problem

We're working to make the perfect Employee class to help us
calculate payroll for the Chargemore department store. But there's a
little detail we have to take care of, first...

Name: Amy Blake

Pay This Period: $1904 Woah, hold up. This
is close, but where
are the cents? In
fact, this is of f by

several dollars!

That's true. Doing the math on paper (or launching a calculator app,
if that's your thing) can confirm that Amy should be earning $1917.81,
rounded to the nearest cent. So where did that other $13.81 go?

To find out, let's launch irb and do the math ourselves, step by step.
First, let's calculate a day's pay.

[n ivb: >> 50000 / 365 Remmmtiolrl sala\r\/, divided b\/
=> 136 number of days in a year.

That's nearly a dollar a day missing, compared to doing the math by
hand:

50,000 & 3b5 = |3b6.98b3...

This error is then compounded when we calculate fourteen days' pay:

>> 136 * 14
=> 1904

Compare that to the answer we'd get if we multiplied the full daily pay...

136.9863 x 14 = [917.8081..

So, we're nearly $14 off. Multiply that by many paychecks and many
employees, and you've got yourself an angry workforce. We're going to
have to fix this, and soon...

you are here » 111

www.it-ebooks.info

http://www.it-ebooks.info/

panoézfrnal hsﬂ'-der

A Riby Detour -
Division with Ruby's Fixnum class

The result of our Ruby expression to calculate 2 weeks of an employee's pay doesn't
match up with doing the math by hand...

The problem here 1s that when dividing instances of the Fixnum class (a Ruby class that
represents integers), Ruby rounds fractional numbers down to the nearest whole number.

> 1/ 2
=>0

It rounds the number because Fixnum instances aren't meant to store numbers with
decimal places. They're intended for use in places where only whole numbers make sense,
like counting employees in a department or the number of items in a shopping cart.
When you create a Fixnum, you're telling Ruby: "I expect to only be working with whole
numbers here. If anyone does math with you that results in a fraction, I want you to throw
those pesky decimal places away."

How can we know whether we're working with Fixnums? We can call the class instance
method on them. (Remember we talked about the Object class back in Chapter 3? The
class method is one of the instance methods inherited from Object.)

>> salary = 50000
=> 50000

>> salary.class
=> Fixnum

O, if you'd rather save yourself the trouble, just remember that any number in your code
that doesn't have a decimal point in it will be treated as a Fixnum by Ruby.

Any number in your code that does have a decimal point in it gets treated as a Float (the
Ruby class that represents floating-point decimal numbers):

>> salary = 50000.0 If it's got a decimal point, it's a Float.

=> 50000.0 = v =g .

S5 Eeleran@iloe If it doesn't, it's a Fixnum.

=> Float 273 273.4
Fixnum Float

112 Chapter #

www.it-ebooks.info

http://www.it-ebooks.info/

chanfnré titla hao -ia

A Ruby Detour
s 8 8 s]
Division with Ruby's Float class
We loaded up irb, and saw that if we divide one Fixnum (integer) instance by another
Fixnum, Ruby rounds the result down.
>> 50000 / 365
Should be 136.9863.. => 136
The solution, then, is to use Float instances in the operation, which we can get by including
a decimal point in our numbers. If you do, Ruby will give you a Float instance back:
>> 50000.0 / 365.0
=> 136.986301369863
>> (50000.0 / 365.0) .class
=> Float
It doesn’t even matter whether both the dividend and divisor are F1loat instances; Ruby will
give you a Float back as long as either operand is a Float.
>> 50000.0 / 365
=> 136.986301369863
It holds true for addition, subtraction, and multiplication as well: Ruby will give
you a Float if either operand is a Float:
When the fivst | And the second | The vesult
operand is a... operand is a... is 3.
Fixnum Fixnum Fixnum
Fixnum Float Float
Float Fixnum Float
Float Float Float
And of course, with addition, subtraction, and multiplication, it doesn't matter whether both
operands are Fixnum instances, because there's no fractional number to lose in the result.
The only operation where it really matters is division. So, remember this rule:
When doing division, make sure
at least one operand is a Float.
Let's see if we can use this hard-won knowledge to fix our Employee class.
you are here » 113

www.it-ebooks.info

http://www.it-ebooks.info/

panoéﬁnﬂlﬁh”"der

A Tuby Tefour : :
Fixing the salary rounding error in Employee

As lf)ng as one of tht? (?perands isa Float, Ruby won't truncate the >> 50000 / 365.0
decimals from our division operation. => 136.986301369863

With this rule in mind, we can revise our Employee class to stop
truncating the decimals from employees' pay:

class Employee

We've omitting the attribute
e € veader/writer tode for brevity.
Now, whether or not @salar\/ is a

def print pay stub Float, we'll get a Float vesult.
puts "Name: #{@name}"
pay for period = (@salary / 365.0) * 14
puts "Pay This Period: $#{pay_for_period}"<?————Pﬁwt{hcamoqu?&d-
end
end

employee = Employee.new
employee.name = "Jane Doe" o -
employee.salary = 50000 €——WUsing a Fixnum heve is \)us{: Line!
employee.print pay stub

Now we have a new problem, though: look what happens to the
output!

Name: Jane Doe
Pay This Period: $1917.8082191780823

Cvca{:ing our ¢tlass

We're showing a little to0 much precision! Currency is generally
expected to be shown with just two decimal places, after all. So, before 4
we can go back to building the perfect Employee class, we need to A RUby Dietour

go on one more detour... Float and

\/ou are herel —— Fivnum

F%rmafﬁng
numbers
nitialize
(Back on track_’)
114 Chapter #

www.it-ebooks.info

http://www.it-ebooks.info/

.. ulayD@ur
Formatting Numbers for Printing

Our print pay stub method is displaying too many decimal
places. We need to figure out how to round the displayed pay to the
nearest penny (2 decimal places).

Name: Jane Doe

Pay This Period: $1917.8082191780823

To deal with these sort of formatting issues, Ruby provides the
format method.

Here's a sample of what this method can do. It may look a little
confusing, but we'll explain it all on the next few pages!

result = format ("Rounded to two decimal places: %0.2f", 3.14159265)
puts result

Rounded to two decimal places: 3.14

So, it looks like format can help us limit our
displayed employee pay to the correct number of
places. The question is, fow? To be able to use this
method effectively, we'll need to learn about two

features of foxmat: R,gla'x We'll explain exactly what

1. Format sequences (the little $0 . 2£ above is a those arguments to format :
format sequence) mean on the next few pages. :

2. Format sequence widths (that's the 0. 2 in the We know, those method calls look a little
middle of the format sequence) : confusing. We have a ton of examples

that should clear that confusion up. We're
: going to focus on formatting decimal numbers,
: because it's likely that will be the main thing you use
i format for in your Ruby career.

P {

down arrows
downwardﬁarrow<//
right arrow

upward arrow

—> left arrow

Up arrows

you are here » 115

www.it-ebooks.info

http://www.it-ebooks.info/

pannﬁ:fm:lﬁh""der

A Ruby Detour
Format sequences

The first argument to format is a string that will be used to format
the output. Most of it is formatted exactly as it appears in the string.
Any percent signs (%), however, will be treated as the start of a format
sequence, a section of the string that will be substituted with a value
in a particular format. The remaining arguments are used as values
for those format sequences.

Forma‘{: Forma£

scqucncc- scl\uchc-

puts format ("The 3s cost %1 cents each.", "gumballs", 23)
puts format ("That will be $°3£ please.", 0.23 * 5)

The gumballs cost 23 cents each.
That will be $1.150000 please.

Foma’c
T

scﬂ\ucncc.

We'll show how to fix this shortly.

Format sequence types

The letter following the percent sign indicates the type of value that's expected.
The most common types are:

5S string

oi integer puts format ("A s‘.cring: %s",l "hello") A st_:ring: hello

.))) puts format ("An integer: %i", 15) An integer: 15
st floating-point decimal puts format ("A float: %f", 3.1415) A float: 3.141500

So % £ is for floating-point decimal numbers... We can use that sequence type to
format the currency in our pay stubs.

By itself, though, the $ £ sequence type won't help us. The results still show too
many decimal places.

puts format ("$%f", 1917.8082191780823) $1917.808219

Up next, we'll look at a fix for that situation: the format sequence width.

116 Chapter #

www.it-ebooks.info

http://www.it-ebooks.info/

chanfnré titla hao -ia

. A Ruby Detour
Format sequence width

Here's the useful part of format sequences: they let you specify the width of the
resulting field.

Let's say we want to format some data in a plain-text table. We need to ensure the
formatted value fills a minimum number of spaces, so that the columns align properly.

You can specify the minimum width after the percent sign in a format sequence. If
the argument for that format sequence is shorter than the minimum width, it will be
padded with spaces until the minimum width is reached.

The first field will
have 3 minimum width No minimum width for
of 12 thavacters. +his setond field.

Print eolumn hcadingi‘%puts format ("%12s | %s", "Product", "Cost in Cents")

Print a heading divider.
puts "-" * 30<// "
Minimum width of 12 a0ain. Minimum width of 2.

puts format ("$12s | %2i", "Stamps", 50)
puts format ("%$12s | %2i", "Paper Clips", 5)
puts format ("%$12s | %2i", "Tape", 99)

\C Padding!

Product | Cost in Cents

No padding; the value alveady
Lills the minimum width.

Paper Clips
Tape Padding/

And now we come to the part that's important for today's task: you can use format sequence
widths to specify the precision (the number of displayed digits) for floating point numbers.
Here's the format:

Minimum width O‘('\ Width a«c-l:cr

entive number. detimal ?oin{}
SJCAY{', 0‘(: {')\C Fo\rma{:
format sequente. sequente {:\/YC-

4] . BIf]

The minimum width of the entire number includes decimal places. If it's included, shorter
numbers will be padded with spaces at the start until this width is reached. If it's omitted, no
spaces will ever be added.

The width after the decimal point is the maximum number of digits to show. If a more precise
number is given, it will be rounded (up or down) to fit in the given number of decimal places.

you are here » 117

www.it-ebooks.info

http://www.it-ebooks.info/

panoéﬁnﬂlﬁh”"der

A Ruby Detour
Format sequence width with floating-point numbers

So when working with floating-point numbers, format sequence widths let us specify the number of
digits displayed before and after the decimal point. Could this be the key to fixing our pay stubs?

Here's a quick demonstration of various width values in action:

def test format (format string)
print "Testing '#{format string}': "
puts format (format string, 12.3456)
end

test format "$7.3f" [RUNASTEEEYNCVUMBEPREITE - Rounded to 3 places.

test format "$7.2f" LRy IS A 12,35 [N 4o 2 places.

test format "%$7.1f" [EENEYRskBeTe MY NN K SR 12.3 &f—ROW\dCd to I place.)
test format "S.1f" [RECISETERETSEANE Pk Rounded to | place, no padding.
test format "s.2f" [RCERERYC BRSPS AR V] &———Rounded to 2 plates, no padding,

That last format, "% . 2£", will let us take floating-point numbers of
any precision and round them to two decimal places. (It also won't do
any unnecessary padding.) This format is ideal for showing currency,
and it's just what we need for our print pay stub method!

puts format ("$%.2f£", 1917.8082191780823) $1917.81 All vounded 4o 2 places!
puts format ("$%.2f", 1150.6849315068494) $1150.68

puts format ("$%.2f", 3068.4931506849316) $3068.49

Previously, our calculated pay for our Employee class's print pay stub
method was displayed with excess decimal places:

salary = 50000
puts "$#{ (salary / 365.0) * 14}" $1917.8082191780823

But now, we finally have a format sequence that will round a floating-point
number to two decimal places:

puts format ("$%.2f", (salary / 365.0) * 14) $1917.81

Let's try using format in the print pay stub method.
class Employee

def print pay stub
puts "Name: #{@name}"
pay for period = (@salary / 365.0) * 14
forﬁattgd_pay = format ("%.2f", pay for period) &——Qet a string with the pay amount
puts "Pay This Period: $#{formatted_pay}"<%~\\\ vounded to 2 detimal places.

enznd Print the formatted
amount s‘f‘,\ring.

118 Chapter #

www.it-ebooks.info

http://www.it-ebooks.info/

A Ruby Dour

Using "format” to fix our pay stubs

We can test our revised print pay stub using the same values as before:

amy = Employee.new

amy.name = "Amy Blake"
amy.salary = 50000
amy.print pay stub Name: Amy Blake

Pay This Period: $1917.81

Excellent! No Creating our tlass

more extra decimal places!
(And more importantly, no
more missing money!)

Float and\/

Fixnum

We had to make a couple of detours, but we've CC %
finally got our Employee class printing pay End (,F Ruby Detoup Formatting

‘ stubs as it should! Let's do a quick exercise to Vou ave herel mumbers

| review what we've learned, and then we can get : E
back to the business of perfecting our class... initialize

q i (Batk on track!

Look at each of these Ruby statements, and write down what you think the result will be.
Consider the result of the division operation, as well as the formatting that will be applied to it.

e
EZQRC\S@ We've done the first one for you.

format "%.2f", 3 / 4.0 format "%$.1f", 3 / 4.0
0.5
format "$%.2f", 3 / 4.0 format "%i", 3 / 4.0

format "%.2f", 3 / 4

you are here » 119

www.it-ebooks.info

http://www.it-ebooks.info/

page goal header

Look at each of these Ruby statements, and write down what you think the result will be.
Consider the result of the division operation, as well as the formatting that will be applied to it.

Exercise

SoLution
format "%.2f", 3 / 4.0 format "%$.1f", 3 / 4.0
&__The format sequente Value won't fit into s?cci-(:icd
075 SPC{’i'CiCS to diSYla\/ Oeé_ number O‘C detimal ?laécs, so
two detimal places. it gets vounded.

format "$%.2f", 3 / 4.0
) Parts of the sbring not
0715 < part of a format sequente 0 <—

........... ave oubput literally

format "%i", 3 / 4.0

%i format sequente prints
an integer, so the argument
gets vounded down.

format "%$.2f", 3 / 4
Both division operands ave integers. Result
0.00 < gets vounded DOWN 4o an integer (0).

When we forget to set an object's atfributes

Now that you have the employee pay printing in the correct format,

you're puttering along, happily using your new Employee class to

process payroll. Until, that is, you create a new Employee instance,

and forget to set the name and salary attributes before calling

print pay stub:

- \g— Not an error, but i's blank/

employee = Employee.new
employee.print pay stub

Name:
in ‘print pay stub': undefined method Evvor!

/' for nil:NilClass

Woah! What happened? It's only natural that the name is empty; we forgot to set it.
But what's this "undefined method for nil" error? What the heck is this nil thing?

This sort of error is pretty common in Ruby, so let's take a few pages to understand it.

Let's alter the print pay stub method to print the
values of @name and @salary, so we can figure out
what's going on.

class Employee

def print pay stub Print the values.

end

pués\@name, @salary<//

We'll vestore the vest of
end the tode later-.

120 Chapter #

www.it-ebooks.info

http://www.it-ebooks.info/

chapter title here

"nil" stands for nothing

Now, let's create a new Employee instance, and call the revised method:

employee = Employee.new

employee.print pay stub < Two Cm\?{:\/

lines!

Well, that wasn't very helpful. Maybe we're missing something, though.

Back in Chapter 1, we learned that the inspect and p methods can reveal
information that doesn't show up in ordinary output. Let's try again, using p:

class Employee

def print pay stub
p @name, @salary &f—P\rinf the values in dcbug l:ovma‘{:-
end
end

We create another new instance, make another call to the instance method, and...

employee = Employee.new
employee.print pay stub nil

Ruby has a special value, nil, that represents nothing. That is, it
represents the absence of a value.

Just because nil represents nothing doesn't mean
it's actually nothing, though. Like everything else

in Ruby, it's an object, and it has its own class: puts nil.class NilClass

But if there's actually something there, how come we didn't see
anything in the output?

It's because the to s instance method from

NilClass always returns an empty string. puts nil.to s -e__ Em‘;{:\/ s{y‘maf

The puts and print methods automatically call to s on an object to
convert it to a string for printing. That's why we got two blank lines when
we tried to use puts to print the values of @name and @salary; both
were set to nil, so we wound up printing two empty strings.

Unlike to_s, the inspect instance method
from NilClass always returns the string "nil". puts nil.inspect nil

You may recall that the p method calls inspect on each object
before printing it. That's why the nil values in @name and €salary
appeared in the output once we called p on them.

you are here » 121

www.it-ebooks.info

http://www.it-ebooks.info/

page goal header

"/" is a method

So, when you first create an instance of the Employee class, its @name
and @salary instance variables have a value of nil. The @salary
variable, in particular, causes problems if you call the print pay stub
method without setting it first:

Brvor: — RS ‘print_pay stub': undefined method */' for nil:NilClass

It's obvious from the error that the problem is related to the nil value. But t

| i "l vl
it says undefined method '/'...Isdivision really a method?

In Ruby, the answer is yes; most mathematical operators are implemented
as methods. When Ruby sees something like this in your code:

6 + 2

...It converts it to a call to a method named + on the Fixnum object The other oycrand is
6, with the object on the right of the + (that is, 2) as an argument: A method ealll -)/ \C passed as an arguan{:.

6.+(2)

Both forms are perfectly valid Ruby, and you can try running them yourself:

puts 6 + 2 8
puts 6.+ (2) 8

The same is true for most of the Even comparison operators are
other mathematical operators. implemented as methods.

puts 7 - 3 puts 9 < 7

puts 7.-(3) puts 9.<(7)

puts 3.0 * 2 puts 9 > 7

puts 3.0.%*(2) puts 9.>(7)

puts 8.0 / 4.0

puts 8.0./(4.0)

But while the Fixnum and Float classes define these operator
methods, Ni1Class does not.

puts nil./(365.0) I ey undefined method /' for nil:NilClass

In fact, nil doesn't define most of the instance methods you see on other Ruby objects.

And why should it? If you're doing mathematical operations with nil, it's almost certainly
because you forgot to assign a value to one of the operands. You want an error to be raised,
to bring your attention to the problem.

It was a mistake when we forgot to set a salary for an Employee, for example. And now
that we understand the source of this error, it's time to prevent it from happening again.

122 Chapter #

www.it-ebooks.info

http://www.it-ebooks.info/

chapter title here

The "initialize" method

We tried to call print pay stub on an instance of our

, ; Employee
Employee class, but we got ni1 when we tried to access the @name
and @salary instance variables. name

salary

employee = Employee.new

, print_pay_stub
employee.print pay stub

Chaos ensued. \g— Not an ervor, but i's blank/

Name :
in ‘print pay stub': undefined method Evvor!

/' for nil:NilClass

Here's the method where the nil values caused so much trouble:

RCSuH:s in eall to ‘{:o__s on @namc-.
def print_pay_stub Sinte it's wil, prints an empty string.
puts "Name: #(@name}” € Results in call +o ”/”

pay_for period = (€salary / 365.0) * 14 (ac{:uall\/ an instante mc{‘)\od)
£ tted = f t("$%.2€£", £ iod . . .
ormatted pay ormat (pay for period) on @salar\/. Since |‘[:’s ml,

puts "Pay This Period: #{formatted pay}" .
end - vaises an ervovr.

Here's the key problem... At the time we create an Employee instance,
it's in an invalid state; it's not safe to call print pay stub until you set
its @name and @salary instance variables.

If we could set @name and @salary at the same time as we create an
Employee instance, it would reduce the potential for errors.

Ruby provides a mechanism to help with this situation: the initialize
method. The initialize method is your chance to step in and make
the object safe to use, before anyone else attempts to call methods on it.

class MyClass
def initialize
puts "Setting up new instance!"
end
end

When you call MyClass . new, Ruby allocates some memory to hold
anew MyClass object, then calls the initialize instance method
on that new object.

MyClass.new Setting up new instance!

you are here » 123

www.it-ebooks.info

http://www.it-ebooks.info/

page goal header

Employee safety with “initialize"

Let'sadd an initialize method that class Employee
will set up @name and @salary for
new Employee instances before any attr reader :name, :salary

other instance methods are called.
def name= (name)

if name == ""
raise "Name can't be blank!"
end
@name = name
end

def salary=(salary)
if salary < O
raise "A salary of #{salary} isn't valid!"

end
@salary = salary
end
def initialize Set the @name instante variable.

Our new method. €name = "Anonymous <//
@salary = 0.0
end

Set the @salary instante vaviable.

def print pay stub
puts "Name: #{@name}"
pay for period = (€salary / 365.0) * 14
formatted pay = format ("$%.2f", pay for period)
puts "Pay This Period: #{formatted pay}"

end

end

Now that we've set up an initialize method, @name and @salary
will already be set for any new Employee instance. It'll be safe to call
print pay stub on them immediately!

employee = Employee.new

employee.print pay stub Name: Anonymous
Pay This Period: $0.00

124 Chapter #

www.it-ebooks.info

http://www.it-ebooks.info/

chapter title here

Arguments to "initialize"

Our initialize method now sets a default @name of "Anonymous" and a default @salary
of 0.0. It would be better if we could supply a value other than these defaults.

It's for situations like this that any arguments to the new method are passed on to initialize.

class MyClass
def initialize (my param)

puts "Got a parameter from 'new': #{my param}"
end N E N)
end Forwarded to "initialize !

MyClass.new ("hello") Got a parameter from 'new': hello

We can use this feature to let the caller of Employee . new specify what the initial name
and salary should be. All we have to do is take name and salary parameters, and use
them to set the @name and @salary instance variables.

class Employee

def initialize (name, salary)

_ »n »n
Gname = name € Use the "name” parameter 4o set the "@name” instancte vaviable.

@salary = salary
end

Use the "salary” parameter to set the "Bsalary” instance variable.

end

And just like that, we can set @name and @salary via arguments to Employee.new!

employee = Employee.new ("Amy Blake", 50000)
employee.print pay stub /‘ Name: Amy Blake

Forwarded to "ini*{;ialiu"_’

Pay This Period: $1917.81

Of course, once you set it up this way, you'll need to be careful. If you don't pass any
arguments to new, there will be no arguments to forward on to initialize. At that

point, you'll get the same result that happens any time you call a Ruby method with the
wrong number of arguments: an error.

employee = Employee.new I almeyd in “initialize': wrong number
of arguments (0 for 2)

We'll look at a solution for this in a moment.

you are here » 125

www.it-ebooks.info

http://www.it-ebooks.info/

page goal header

Using optional parameters with "initialize"

We started with an initialize class Employee
method that set default values for our

! : ' e instante vaviable.
instance variables, but didn't let you def initialize — Set the @name instan
. @name = "Anonymous"
specify your own... @salary = 0.0
end

Set the @salar\/ instance variable.

end

Then we added parameters to initialize, which meant that you
had to specify your own name and salary values, and couldn't rely on
the defaults...

class Employee

def initialize (name, salary)
_ n »
gnarlne = name l&—— Use the “name” parameter to set the "@name” instante variable.
salary = salary
end

Use the "salary” pavameter to set the "@salary” instance vaviable.

end
Can we have the best of both worlds?

Yes! Since initialize is an ordinary method, it can utilize all the
features of ordinary methods. And that includes optional parameters.
(Remember those from Chapter 2?)

We can specify default values when declaring the parameters. When
we omit an argument, we'll get the default value. Then, we just assign
those parameters to the instance variables normally.

class Employee

def initialize(name = "Anonymous", salary = 0.0)
@name = name
@salary = salary

end

end

With this change in place, we can omit one or both arguments, and get the appropriate defaults!

Employee.new ("Jane Doe", 50000) .print pay stub
Employee.new ("Jane Doe") .print pay stub Name: Jane Doe

Employee.new.print pay stub Pay This Period: $1917.81
Name: Jane Doe

Pay This Period: $0.00
Name: Anonymous
Pay This Period: $0.00

126 Chapter #

www.it-ebooks.info

http://www.it-ebooks.info/

chapter title here

Poo] Puzzle
/\ Your job is to take code snippets from the pool and place them into the blank lines in the
code. Don't use the same snippet more than once, and you won’t need to use all the
\ snippets. Your goal is to make code that will run and produce the output shown.
y

class Car

def ()
= engine

end
def rev engine
@engine.make sound
end
end
class Engine
def initialize(=)

@sound = sound
end

def make sound Output:
puts @sound
end

File Edit Window Help

end

engine = Engine.
car = Car.new ()
car.rev_engine

Note: each thing from
the pool can only be
used once!

initialize i
@engine

SR @sound

engine .
E engine "Vrxoom!!"

create

st

you are here » 127

www.it-ebooks.info

http://www.it-ebooks.info/

page goal header

Poo] Puzzle e o

Selutien

def initialize (engine)
@engine = engine
end

def rev _engine
@engine.make sound
end

end
engine = Engine.new
car = Car.new(engine)

class Engine

def initialize(sound = "Vroom!!")
@sound = sound
end

def make sound
puts @sound
end

end

car.rev_engine

. What's the difference between
initialize methodsin Ruby and
constructors from other object-oriented
languages?

AZ They both serve the same basic
purpose - to let the class prepare new
instances for use. Whereas constructors are
a special structure in most other languages,
though, Ruby's initializeisjustan
ordinary instance method.

Q: Why do | have to call
MyClass.new? Can'tljust call

initialize directly?

A: The new method is needed to actually
create the object; initialize just

sets up the new object's instance variables.
Without new, there would be no object to
initialize! For this reason, Ruby doesn't allow
youtocallthe initialize method
directly from outside an instance. (So, we
oversimplified a little bit; initialize
does differ from an ordinary instance method
in one respect.)

128 Chapter #

tbere are no °
Dumb Questions

Q: Does MyClass .new always call
initialize onthe new object?

A: Yes, always.

- Then how have we been calling new
on the classes we've made so far? They
didn'thave initialize methods!

A: Actually, they did have one... All Ruby
classes inheritan initialize method
from the Object superclass.

Q: But if Employee inherited an
initialize method, why did we have
to write our own?

AZ The initialize fromObject
takes no arguments, and basically does
nothing. It won't set up any instance
variables for you; we had to override it with
our own version in order to do that.

www.it-ebooks.info

Output: ‘ File Edit Window Help \

- Can | return a value from an
initialize method?

A: You can, but Ruby will ignore it. The
initialize method is intended solely
for setting up new instances of your class,
so if you need a return value, you should do
that elsewhere in your code.

The new method is

needed to actually
create the oLject;
initialize just
sets up the new
ol)ject’s instance
variables.

http://www.it-ebooks.info/

chapter title here

"initialize" does an end-run around our validation

This new initialize method is great. It
lets us make sure that an employee's name
and salary are always set to something. But
remember the validation in our accessor

methods? The initialize method skips it
entirely, and we're seeing bad datal

@name = "Steve Wilson (HR Manager)"
@salary = 80000

You remember our name= attribute writer
method, which prevents the assignment of an
empty string as an Employee name:

ben = Employee.new

ben.name = ""
|25 slkmmyd in "name=': Name can't be blank! (RuntimeError)

There's also our salary= attribute writer method, which ensures that
negative numbers aren't assigned as a salary:

kara = Employee.new
kara.salary = -246

e 10 salary=': A salary of -246 isn't valid! (RuntimeError)

We have bad news for you... Since your initialize method
assigns directly to the @name and @salary instance variables, bad
data has a new way to sneak in!

Blank name in
youv ou{?ufl

employee = Employee.new ("", -246)
employee.print pay stub

Name : Negative |
Pay This Period: $-9.44 [SemlZ)ELEEX

you are here » 129

www.it-ebooks.info

http://www.it-ebooks.info/

page goal header

"initialize" and validation

We could get our initialize class Employee
method to validate its

parameters by adding the def name=(name)

same validation code to the i name == n
C e . raise "Name can't be blank!"
initialize method... ond
@name = name
end

def salary=(salary)
if salary < 0

DuﬂMﬂ{cd raise "A salary of #{salary} isn't valid!™"
COdd end
@salary = salary
end
def initialize (name = "Anonymous", salary = 0.0) Du?héade
if name == "" code!
raise "Name can't be blank!" ’
end
@name = name

if salary < 0
raise "A salary of #{salary} isn't valid!"
end
@salary = salary
end

end

But duplicating code like that is a problem. What if we changed the
initialize validation code later, but forgot to update the name=
method? Rubyists try to follow the DRY principle, where DRY stands for
Don't Repeat Yourself. It means that you should avoid duplicating code
wherever possible, as it's likely to result in bugs.

What if we called the name= and salary= methods from within the
initialize method? That would let us set the @name and @salary
instance variables. It would also let us run the validation code, without
duplicating it!

130 Chapter #

www.it-ebooks.info

http://www.it-ebooks.info/

chapter title here

Calls between methods on the same instance with "self"

We need to call the name= and salary= attribute writer methods
from within the initialize method of the same object. That will let
us run the writer methods' validation code before we set the @name
and @salary instance variables.

Unfortunately, code like this won't work...

class Employee

def initialize(name = "Anonymous", salary = 0.0)
name = name &——Doesn't work — Rub\/ thinks

salary = salary \/ou'rc assigning toa vaviable_’
end

end

@name and @salar\/ ave nil aga'm!
amy = Employee.new ("Amy Blake", 50000)

amy.print pay stub

Name:

in ‘print pay stub': undefined method
/' for nil:NilClass (NoMethodError)

The code in the initialize method treats name= and salary= not as calls to the
attribute writer methods, but as re-setting the name and salary local variables to the
same values they already contain! (If that sounds like a useless and nonsensical thing to do,
that's because it is.)

What we need to do is make it clear to Ruby that we intend to call the name= and
salary= instance methods. And to call an instance method, we usually use the dot
operator.

But we're inside the initialize instance method... what would we put to the left of
the dot operator?

We can't use the amy variable; it would be silly to refer to one instance of the class within
the class itself. Besides, amy is out of scope within the initialize method.

class Employee

def initialize (name = "Anonymous", salary = 0.0)

Not in stope ——>amy.name = name
heve! amy.salary = salary
end
end

amy = Employee.new ("Amy Blake", 50000)

I sl in ‘initialize': undefined local variable or method “amy'

you are here » 131

www.it-ebooks.info

http://www.it-ebooks.info/

page goal header

Calls between methods on the same instance with "self" (cont.)

We need something to put to the left of the dot operator, so that we can call
our Employee class's name= and salary= attribute accessor methods
within our initialize method. The problem is, what do we put there?
How do you refer to the current instance from inside an instance method?

class Employee

def initialize (name = "Anonymous", salary = 0.0)

Not in stope ———>amy.name = name
hercl amy.salary = salary
end
end

amy = Employee.new ("Amy Blake", 50000)

Ruby has an answer: the self keyword. Within instance methods,
self always refers to the current object.

We can demonstrate this with a simple class:

class MyClass
def first method
puts "Current instance within first method: #{self}"
end
end

If we create an instance and call first method on it, we'll see that
mnside the instance method, self refers to the object the method is
being called on.

my object = MyClass.new
puts "my object refers to this object: #{my object}"
my object.first method

my object refers to this object: #<MyClass:0x007£91fb0ae508> Same
Current instance within first method: #<MyClass:0x007£91fb0ae508> ob\')c«‘.’c"

The string representations of my obJject and self include a
unique identifier for the object. (We'll learn more about this much
later, in the chapter on references.) The identifiers are the same, so it's
the same object!

132 Chapter #

www.it-ebooks.info

http://www.it-ebooks.info/

chapter title here

Calls between methods on the same instance with "self" (cont.)

We can also use self with the dot operator to call a second instance
method from inside the first one.

class MyClass
def first method
puts "Current instance within first method: #{self}"
self.second method Cb”shcrd
end

def second method
puts "Current instance within second method: #{self}"
end
end

my object = MyClass.new
my object.first method

Current instance within first method: #<MyClass:0x007££d4b077510> Same
Current instance within second method: #<MyClass:0x007££d4b077510> e—/ob\')cc‘t’

Now that we have self to use the dot operator on, we can make it
clear to Ruby that we want to call the name= and salary= instance
methods, not to set the name and salary variables...

class Employee

def initialize (name = "Anonymous", salary = 0.0)

self.name = name &——DEF’N,TELY a eall to the "namc=" method.

self.salary = salary

end DEFINITELY a eall 4o
.. the "salar\lz" method.

end

Let's try calling our new constructor and see if it worked!

amy = Employee.new ("Amy Blake", 50000)
amy.print pay stub

Name: Amy Blake

Pay This Period: $1917.81

you are here » 133

www.it-ebooks.info

http://www.it-ebooks.info/

page goal

Calls between methods on the same instance with "self" (cont.)

Success! Thanks to self and the dot operator, it's now clear to Ruby
(and everyone else) that we're making calls to the attribute writer
methods, not assigning to variables.

And since we're going through the accessor methods, that means the
validation works, without any duplicated code!

employee = Employee.new ("", 50000)
|22 sibmmmedl in "name=': Name can't be blank!
employee = Employee.new ("Jane Doe", -99999)

IR alemmeed in “salary=': A salary of -99999 isn't valid!

No more blank names
and negative salaries for
our new employees? And
it won't delay the payroll
project? Nice job!

134

www.it-ebooks.info

http://www.it-ebooks.info/

chapter title here

When "self" is optional

Right now, our print pay stub method accesses the @name and
@salary instance variables directly:

class Employee

def print pay stub
puts "Name: #{@name}"
pay for period = (@salary / 365.0) * 14
formatted pay = format ("$%.2f", pay for period)
puts "Pay This Period: #{formatted pay}"

end

end

But we defined name and salary attribute reader methods in our
Employee class; we could use those instead of accessing the instance
variables directly. (That way, if you ever change the name method to
display last name first, or change the salary method to calculate
salary according to an algorithm, the print pay stub code won't
need to be updated.)

We can use the self keyword and the dot operator when calling
name and salary, and it will work just fine:

class Employee

attr reader :name, :salary

def print pay stub
puts "Name: #{self.name}"
pay for period = (self.salary / 365.0) * 14
formatted pay = format ("$%.2f", pay for period)
puts "Pay This Period: #{formatted pay}"

end

end

Employee.new ("Amy Blake", 50000).print pay stub Name: Amy Blake

Pay This Period: $1917.81

you are here » 135

www.it-ebooks.info

http://www.it-ebooks.info/

page goal header

When "self" is optional (cont.)

But Ruby has a rule that can save us a little typing when calling from
one instance method to another... If you don't specify a receiver using
the dot operator, the receiver defaults to the current object, self.

class Employee "self” omitted, still works!

def print pay stub\/ "scl‘c" omiH‘,Cd, S{fl” onkS!
puts "Name: #{name}"
pay for period = (salary / 365.0) * 14
formatted pay = format ("$%.2f", pay for period)

puts "Pay This Period: #{formatted pay}"
end

end

Sill wovks!

Employee.new ("Amy Blake", 50000).print pay stub Name: Amy Blake
Pay This Period: $1917.81

As we saw in the previous section, you Aave to include the self
keyword when calling attribute writer methods, or Ruby will mistake
the = for a variable assignment. But for any other kind of instance
method call, you can leave self off; if you want.

136 Chapter #

www.it-ebooks.info

http://www.it-ebooks.info/

chapter title here

Implementing hourly employees through inheritance

The Employee class you've created for Chargemore is working great!
It prints accurate pay stubs that are formatted properly, and thanks

to the initialize method you wrote, it's really easy to create new
Employee instances.

But, at this point, it only handles salaried employees. It's time to look
at adding support for employees that are paid by the hour.

The requirements for hourly employees are basically the same as for (sala\r\/ / 365.0) * |4
salaried ones; we need to be able to print pay stubs that include their
name and the amount paid. The only difference is the way that we
calculate their pay. For hourly employees, we multiply their hourly

wage by the number of hours they work per week, then double that hourly_wage * hours_per_week * 2
Hourly employee pay calculation formula

Salaried employee pay calculation formula

amount to get two weeks' worth.

Since salaried and hourly employees are so similar, it makes sense to
put the shared functionality in a superclass. Then, we'll make two
subclasses that hold the different pay calculation logic.

Both subelasses will inhevit Employee
the "namc" a'H:ribchc. + name

Both subclasses will
inhevit this method.

print_name

SalariedEmployee HourlyEmployee

salary hourly_wage
hours_per_week

Will print the name ———pprint_pay_stub print_pay_stub Will print the name
using "Frin{:__namc", us'm3 "?rin{:_namc',

then print 2 weeks’ then print 2 weeks’
worth of salary. worth of hourly wages.

you are here » 137

www.it-ebooks.info

http://www.it-ebooks.info/

page goal header

Implementing hourly employees through inheritance (cont.)

Let's start by ensuring the common logic between
SalariedEmployee and HourlyEmployee stays in the

Employee superclass.

Since pay stubs for both salaried and
hourly employees need to include
their names, we'll leave the name
attribute in the superclass, for the
subclasses to share. We'll move

the code that prints the name into
the print name method in the
superclass.

We'll move the logic to calculate

pay for salaried employees to the
SalariedEmployee class, but
we'll call the inherited print name
method to print the employee name.

This tode is the same as

class Employee
attr reader :name

def name=(name)) gL I
Code to validate and set @name &’—WC Il be °""££m58
end attribute aceessor

tode for brevity.
def print name
puts "Name: #{name}"
end
Remember, this is the same
end as a eall 4o self.name.

class SalariedEmployee < Employee
attr reader :salary

def salary=(salary)
Code to validate and set @salary
end

def print pay stub Calls print_name method

print name &—-——— inherited from supevclass.
pay for period = (salary / 365.0) * 14

we had in the old EMPlo‘/CC formatted pay = format ("$%.2f", pay for period)

print_pay_stub method.

puts "Pay This Period: #{formatted pay}"
end

end

With those changes in place, we can create a new
SalariedEmployee instance, set its name and salary, and print a

pay stub as before:

salaried employee = SalariedEmployee.new
salaried employee.name = "Jane Doe"

salaried employee.salary
salaried employee.print pay stub

138 Chapter #

= 50000

Name: Jane Doe
Pay This Period: $1917.81

www.it-ebooks.info

http://www.it-ebooks.info/

chapter title here

Implementing hourly employees through inheritance (cont.)

Now, we'll build a new HourlyEmployee class. It's just like
SalariedEmployee, except that it holds an hourly wage and
number of hours worked per week, and uses those to calculate pay
for a two-week period. As with SalariedEmployee, storing and
printing the employee name is left up to the Employee superclass.

class HourlyEmployee < Employee

attr reader :hourly wage, :hours per week

def hourly wage=(hourly wage)
Code to validate and set QRhourly wage
end

def hours per week=(hours per week)
Code to validate and set Q@hours per week
end

def print pay stub
print name
pay for period = hourly wage * hours per week * 2
formatted pay = format ("$%.2f", pay for period)
puts "Pay This Period: #{formatted pay}"

end

end

And now we can create an HourlyEmployee instance. Instead of
setting a salary, we set an hourly wage and number of hours per week.
Those values are then used to calculate the pay stub amount.

hourly employee = HourlyEmployee.new
hourly employee.name = "John Smith"
hourly employee.hourly wage = 14.97
hourly employee.hours per week = 30
hourly employee.print pay stub Name: John Smith

Pay This Period: $898.20

That wasn't bad at all! Through use of inheritance, we've implemented pay stubs
for hourly employees, kept pay stubs for salaried employees, and minimized code
duplication between the two.

We've lost something in the shuffle, though—our initialize method. We used
to be able to set up an Employee object's data at the time we created it, and these
new classes won't let us do that. We'll have to add initialize methods back in.

you are here » 139

www.it-ebooks.info

http://www.it-ebooks.info/

page goal header

Restoring "initialize" methods

To make SalariedEmployee and HourlyEmployee objects
that are safe to work with as soon as they're created, we'll need to add

initialize methods to those two classes.

As we did with the Employee class before, our
initialize methods will need to accept a
parameter for each object attribute we want to set. The
initialize method for SalariedEmployee

will look just like it did for the old Employee class
(since the attributes are the same), but initialize
for HourlyEmployee will accept a different set of
parameters (and set different attributes).

class SalariedEmployee < Employee

def initialize (name = "Anonymous", salary

Employee

name

print_name

SalariedEmployee HourlyEmployee
salary hourly_wage
hours_per_week
initialize ¢— New/ initialize €— New/
print_pay_stub print_pay_stub

This is \')us{: like the
initialize method for
the old Employee tlass.

— 0.0
self.name = name
self.salary = salary
end
end AS"*‘“' we make
parameters optional by
class HourlyEmployee < Employee \C_ providing defaults.
1 S s : —_n " —
- ’ - . r - .
This method —> def initialize (name Anonymous hourly wage 0.0, hours per week 0.0)
needs 'bo self.name = name
au,q:{; 2 self.hourly wage = hourly wage
Paramc{:crs, self.hours per week = hours per week
and set 3 end
attributes. e
end
With our initialize methods
added. we can once again pass salaried employee = SalariedEmployee.new ("Jane Doe", 50000)
] . - .
arguments to the new method for salaried employee.print pay stub
cach class. Our ObJeCts will be ready hourly employee = HourlyEmployee.new ("John Smith", 14.97, 30)

to use as soon as they're created.

140 Chapter #

hourly employee.print pay stub

Name: Jane Doe
Pay This Period: $1917.81

Name: John Smith
Pay This Period: $898.20

www.it-ebooks.info

http://www.it-ebooks.info/

chapter title here

Inheritance and "initialize"

There's one small weakness in our new initialize methods, though: the
code to set the employee name is duplicated between our two subclasses.

class SalariedEmployee < Employee

def initialize (name = "Anonymous", salary = 0.0)

self.name = name
self.salary = salary
end
end

class HourlyEmployee < Employee

def initialize(name = "Anonymous", hourly wage = 0.0, hours per week = 0.0)
self.name = name €—— Duplicated in SalaviedEmployee! ¥
self.hourly wage = hourly wage
self.hours per week = hours per week

end

end

In all other aspects of our subclasses, we

delegate handling of the name attribute class Employee
to the Employee superclass. We define \ds th
the reader and writer methods there. We attr_reader :name "g“\’",f‘la;chz E ¢
even print the name via the name attribute.

p def name= (name) <//

print name method, which the
subclasses call from their respective
print pay stub methods.

Code to validate and set @name
end

def print name
puts "Name: #{name}" &——Su‘?crclass holds shaved
end tode to print the name.

end

...But we don't do this for initialize. Could we?

Yes! We've said it before, and we'll say it again, initialize isjust
an ordinary instance method. That means that it gets inherited like any
other, that means it can be overridden like any other, and it means
that overriding methods can call it via super like any other. We'll
demonstrate on the next page.

*0kay, we vealize it's just one line of duplicated code. But the technique
we've about to show Yyou will work for much |ar5er amounts of du?lica{ion-

you are here » 141

www.it-ebooks.info

http://www.it-ebooks.info/

page goal header

"super” and "initialize"

To eliminate the repeated name setup code in our Employee
subclasses, we can move the name handling to an initialize
method in the superclass, then have the subclass initialize name
mthods call it with super. SalariedEmpl.oyee will keep the initialize €— Newl
logic to set up a salary, HourlyEmployee will keep the logic to print_name
set up an hourly wage and hours per week, and the two classes can —
delegate the shared logic for name to their shared superclass.

Employee

SalariedEmployee HourlyEmployee
salary hourly_wage
hours_per_week
initialize initialize
First, let's try moving the name handling from the print_pay_stub print_pay_stub

initialize methodin SalariedEmployee to
the Employee class.

class Employee

def initialize (name = "Anonymous") &—— New initialize method that

self.name = name handles onl\/ U\c namc,’
end

end
class SalariedEmployee < Employee

def initialize (name = "Anonymous", salary =, 0.0)
e A » .
super €———— Attempt to eall "initialize” in

self.salary = salary Emylo\/ec {0 set up the name.
end

end

Trying to use this revised initialize method reveals a problem,
though...

salaried employee = SalariedEmployee.new ("Jane Doe", 50000)
salaried employee.print pay stub

|2 mmmyd in initialize: wrong number of arguments (2 for 0..1)

142 Chapter #

www.it-ebooks.info

http://www.it-ebooks.info/

chapter title here

"super” and "initialize" (cont.)

Oops! We forgot a key detail about super that we learned earlier—if you don't specify
a set of arguments, it calls the superclass method with the same set of arguments that

the subclass method received. (This is true when using super in other instance methods,
and it's true when using super within initialize.) The initialize methodin
SalariedEmployee received fwo parameters, and super passed them both on to the
initialize method in Employee. (Even though it only accepts one argument.)

The fix, then, is to specify which parameter we want to pass on: the name parameter.

class SalariedEmployee < Employee

def initialize (name = "Anonymous", salary = 0.0)
super (name) &—————— (3|l "initialize” in Employee,

(sjelf. salary = salary ?assing on|\/ Jchc name.
en

end

Let's try to initialize a new SalariedEmployee again...
salaried employee = SalariedEmployee.new ("Jane Doe", 50000)
salaried employee.print pay stub

Name: Jane Doe
Pay This Period: $1917.81

It worked! Let's make the same changes to the HourlyEmployee class...

class HourlyEmployee < Employee

def initialize(name = "Anonymous", hourly wage = 0.0, hours per week = 0.0)
super (name)<— Call "initialize” in Employee,
self.hourly wage = hourly wage FaSSi“S onl\/ the name.
self.hours per week = hours per week

end

end

hourly employee = HourlyEmployee.new ("John Smith", 14.97, 30)

hourly employee.print pay stub
Name: John Smith
Pay This Period: $898.20

Previously, we used super within our print pay stub methodsin SalariedEmployee
and HourlyEmployee to delegate printing of the employee name to the Employee
superclass. Now, we've just done the same thing with the initialize method, allowing the
superclass to handle setting of the name attribute.

Why does it work? Because initialize is an instance method just like any other. Any feature
of Ruby that you can use with an ordinary instance method, you can use with initialize.

you are here » 143

www.it-ebooks.info

http://www.it-ebooks.info/

page goal

there qre no °
b Questions

Dum

Q- If l override initialize inasubclass, does the
superclass's initialize method run when the overriding
initialize method runs?

A: Not unless you explicitly call it with the super keyword, no.
Remember, in Ruby, initialize isjustan ordinary method,
like any other. If you call the move method on a Dog instance,
does move from the Animal class get run as well? No, not
unless you use super. It's no different with the initialize
method.

Ruby is not the same as many other object-oriented languages,
which automatically call the superclass's constructor before calling
the subclass constructor.

Q: If I use super to call the superclass's initialize
method explicitly, does it have to be the first thing | do in the
subclass's initialize method?

A: If your subclass depends on instance variables that are set up
by the superclass's initialize method, then you may want to
invoke super before doing anything else. But Ruby doesn't require
it. As with other methods, you can invoke super anywhere you
wantwithin initialize.

144

Qj You say the superclass's initialize method doesn't
get run unless you call super... If that's true, then how does
@last name get set in this sample?

class Parent
attr accessor :last name
def initialize (last name)
@last name = last name
end
end

class Child < Parent
end

child = Child.new("Smith")
puts child.last name

A: Because initialize is inherited from the Parent
class. With Ruby instance methods, you only need to call super
to invoke the parent class's method if you want it to run, and
you've overridden it in the subclass. If you haven't overridden it,
then the inherited method is run directly. This works the same for
initialize asitdoes for any other method.

www.it-ebooks.info

http://www.it-ebooks.info/

225) Code Magnets

A Ruby program is all scrambled up on the fridge. Can you
reconstruct the code snippets to make a working superclass and
subclass, so the sample code below can execute and produce the
S’ given output?

Boat initialize '
PowerBoat < Boat initialize '

def I super ' I (name) '

[ﬂ [ﬂ end

(name) I (name, motor_type) ' info

@motor_type = motor_type ' I puts "Name: #{@name}n'

@name = name ' puts "Motor Type: #{@motor_type}"

Sample code:

0
=
V]
[
0

def def

Al
B

boat = PowerBoat.new ("Guppy", "outboard")
boat.info

www.it-ebooks.info

chapter title here

Output:

File Edit Window Help

Name: Guppy
Motor Type: outboard

you are here »

145

http://www.it-ebooks.info/

page go

/4

al header

d .
255 | Code Magnets Solution
= g
b A Ruby program is all scrambled up on the fridge. Can you
reconstruct the code snippets to make a working superclass and
subclass, so the sample code below can execute and produce the

given output?

l class ' I PowerBoat < Boat '

def

initialize

| initialize 'I (name, motor_type) '
super (name) i

@motor_type = motor_type

146

puts "Name: #{Q@name}"

puts "Motor Type: #{@motor_typel}"

Sample code: Output:

boat = PowerBoat.new ("Guppy", "outboard") File Edit Window Help

boat.info Name: Guppy
Motor Type: outboard

Chapter #

www.it-ebooks.info

http://www.it-ebooks.info/

Sawe class, same attribute values

With your HourlyEmployee class complete, Chargemore is
ready to begin a hiring blitz to staff its new stores. Here's the set of

employees they need created for their first store

ivan = HourlyEmployee.
harold = HourlyEmployee.
tamara = HourlyEmployee.
susie = HourlyEmployee.
edwin = HourlyEmployee.
ethel = HourlyEmployee.
angela = HourlyEmployee.

stewart = HourlyEmployee.

downtown:

chapter title here

Rub\/ |c+,$ us use as mah\/
spate tharatters as we
want, so we've aligned this

\C- tode for easier veading.

new ("Ivan Stokes", 12.
new ("Harold Nguyen", 12.
new ("Tamara Wells", 12.
new ("Susie Powell", 12.
new ("Edwin Burgess", 10.
new ("Ethel Harris", 10.
new ("Angela Matthews", 19.

new ("Stewart Sanchez", 19.

If you look at the above code, you'll probably notice there are large

groups of objects where similar arguments are passed to the new

method. There's a good reason for this: the first

group are cashiers for

the new store, the second group are janitors, and the third group are

security guards.

Chargemore starts all new cashiers off at the same base pay and

number of hours per week. Janitors get a different rate and number of

hours than cashiers, but it's the same for all janitors. And the same is

true for security guards. (Individuals may get raises later, depending on

performance, but they all start out the same.)

The upshot is that there's a lot of repetition of arguments in those

calls to new, and a lot of chances to make a typo. And this is just the

first wave of hiring, for the first Chargemore store, so things can only

get worse. Seems like we can make this easier.

www.it-ebooks.info

75,
75,
75,
75,

50,
50,

25,
25,

25)
25)
25)
25)

you are here »

147

http://www.it-ebooks.info/

page goal header

An inefficient factory method

When we need to make many instances of a class that have similar data, you can often save
some repetition by making a factory method to create objects pre-populated with the needed
attribute values. (Factory methods are a programming pattern that can be used in any
object-oriented language, not just Ruby.)

But using only the tools we have now, any factory method we make will be inefficient at best.

To demonstrate what we mean, class HourlyEmployee

let's try making a method to set s ‘ .

up new HourlyEmployee def turn into cashier

objects with the default pay and self.hourly wage = 12.75&——Set hourly wage.
. self.hours per week = 25

hours per week for cashiers. end —Per_ é\

Set hours per week.

end
ivan = HourlyEmployee.new ("Ivan Stokes")

ivan.turn into cashier
ivan.print pay stub Name: Ivan Stokes
Pay This Period: $637.50

This works, yes. So what's so inefficient about it? Let's look at our initialize
method (which of course has to run when we create a new HourlyEmployee) again...

class HourlyEmployee

def initialize (name = "Anonymous", hourly wage = 0, hours per week = 0)
super (name)
self.hourly wage = hourly_wage&——gc{: howl\/ wage.

self.hours per week = hours per week
end é\

Set hours per week.
end
We're setting the hourly wage and hours per week attributes within

initialize, then immediately turning around and setting them again within
turn into cashier!

This 1s inefficient for Ruby, but there's potential for it to be inefficient for us, too. What
if we didn't have default parameters for hourly wage and hours per week on
initialize? Then, we'd have to specify the arguments we're throwing away!

) .
ivan = HourlyEmployee.new("Ivan Stokes", 0, 0)<&——We won't use either
ivan.turn_into cashier of these values/

That's the problem with writing factory methods as instance methods: we're trying
to make a new instance of the class, but there has to already be an instance to run the
methods on! There must be a better way...

Fortunately, there is! Up next, we're going to learn about class methods.

148 Chapter #

www.it-ebooks.info

http://www.it-ebooks.info/

Class methods

You don't have an instance of a class, but you need one. And you need a
method to set it up for you. Where do you put that method?

You could stick it off by itself in some little Ruby source file, but it would
be better to keep it together with the class that it makes instances of. You
can't make it an instance method on that class, though. If you /ad an
instance of the class, you wouldn't need to make one, now would you?

It's for situations like this that Ruby supports class methods—methods
that you can invoke directly on a class, without the need for any instance
of that class. You don't have to use a class method as a factory method, but
they're perfect for the job.

A class method definition is very similar to any other method definition in

Ruby. The difference: you specify that you're defining it on the class itself.

Specifies that the

method is bcin5 class MyClass Method name.
defined on the ¢lass.

def MyClass.my class method(pl, p2) &— Parameters.

puts "Hello from MyClass!"
Method bc’d\/'{puts "My parameters: #{pl}, #{p2}"
end

End of definition.

end

Within a class definition (but outside any instance method definitions),
Ruby sets self to refer to the class that's being defined. So, many
Rubyists prefer to replace the class name with self:

Also vefers class MyClass
to M\/Class!
def self.my class method(pl, p2)
puts "Hello from MyClass!"
puts "My parameters: #{pl}, #{p2}"
end

end

In most ways, class method definitions behave just like you're used to:
* You can put as many Ruby statements as you like in the method body.

* You can return a value with the return keyword. If you don't, the value
of the last expression in the method body is used as the return value.

* You can optionally define one or more parameters that the method
accepts, and you can make the parameters optional by defining defaults.

www.it-ebooks.info

chapter title here

you are here »

149

http://www.it-ebooks.info/

page goal header

Class methods (cont.)

We've defined a new class, MyClass, with a single class MyClass
class method:

def self.my class method(pl, p2)

puts "Hello from MyClass!"
puts "My parameters: #{pl},

end
end
Once a class method is defined, you can call it directly on the class:
MyClass.my class method(l, 2) Hello from MyClass!

My parameters: 1, 2

Perhaps that syntax for calling a class method looks familiar to you...
MyClass.new

That's right, new is a class method! If you think about it, that makes sense; new
can't be an mstance method, because you're calling it to get an instance in the first
place! Instead, you have to ask the class for a new instance of itself.

Now that we know how to create class methods, let's see if we can write some
factory methods that will create new HourlyEmployee objects with the pay
rate and hours per week already populated for us. We need methods to set up
predefined pay and hours for three positions: cashier, janitor, and security guard.

Accept the employee

class HourlyEmployee < Employee name as a ‘varamc{cr-

def self.security guard(name)
HourlyEmployee.new (name, 19.25, 30)¢—- Use ?rcdcfincd howl\/__WQSC
end and hours_per_week tor

R Use the given name to
eath employee type.

. tonstrul .
def self.cashier (name) truct an Cmyloycc

HourlyEmployee.new (name, 12.75, 25) &——Same for the
end tashievs.

def self.janitor (name)
HourlyEmployee.new (name, 10.50, 20) &——Same for the
end \')ani{:owrs.

end

We won't know the name of the employee in advance, so we accept that as a parameter to each of
the class methods. We do know the values for hourly wage and hours per week for each
employee position, though. We pass those three arguments to the new method for the class, and get
anew HourlyEmployee object back. That new object is then returned from the class method.

150 Chapter #

www.it-ebooks.info

http://www.it-ebooks.info/

chapter title here

Class methods (cont.)

Now, we can call the factory methods directly on the class, providing
only the employee name.

angela = HourlyEmployee.security guard("Angela Matthews")
edwin = HourlyEmployee.janitor ("Edwin Burgess")
ivan = HourlyEmployee.cashier ("Ivan Stokes")

The HourlyEmployee instances returned are fully configured with
the name we provided, and the appropriate hourly wage and
hours_per week for the position. We can begin printing pay stubs
for them right away!

angela.print pay stub

edwin.print pay stub

ivan.print pay stub Name: Angela Matthews
Pay This Period: $1155.00
Name: Edwin Burgess

Pay This Period: $420.00
Name: Ivan Stokes
Pay This Period: $637.50

In this chapter, you've learned that there are some pitfalls when
creating new objects. But you've also learned techniques to ensure your
objects are safe to use as soon as you make them. With well-designed
initialize methods and factory methods, creating and configuring
new objects is a snap!

you are here » 151

www.it-ebooks.info

http://www.it-ebooks.info/

page goal header

Our complete source code

class Employee The "name’ attribute is inhevited by both
— SalaviedEmployee and HourlyEmployee:

attr reader :name

def name= (name) employees.rb
if name == ""
raise "Name can't be blank!"
end

@name = name The "initialize” methods of both
=nd SalariedEmployee and Horrl\/Ev;‘?lo\/cc
will call this method via “super .
def initialize (name = "AnonymOus")<§—’—"’

self.name = name The "\7\""\‘{', ya\/_d:ub" methods o‘c both Salavichm\’lo\/cc

end
d HourlyEwployee will call this method.
def print_name/ an ourly ploy

puts "Name: #{name}"
end

end
class SalariedEmployee < Employee

This attribute is specific to salavied employees.
attr reader :salary<?”_’_’ ‘

def salary=(salary)
if salary < 0
raise "A salary of #{salary} isn't wvalid!"

end
@salary = salary . »
end Called when we ¢all "SalaviedEmployee-new.
def initialize(name = "Anonymous", salary = 0.0)

super (name) €——Call the superelass’s "initialize” method, passing only the name.
self.salary = salary &——Set the salary ourselves, sinte it's s\?cci‘FiC to this ¢elass.
end

def print pay stub
print_name &——Have the supertlass print the name. Caleulate 2 weeks’ pay:
pay for period = (salary / 365.0) * l4<?”—’_’
foraattgd_pay = format ("$%.2f", pay for period) &—Forma{: the pay with
puts "Pay This Period: #{formatted pay}" 2-dcdw@|?h£c&
end

end

Continued on next Pagc!

152 Chapter #

www.it-ebooks.info

http://www.it-ebooks.info/

chapter title here

class HourlyEmployee < Employee
Define a new ¢lass method:
def self.security guard(name)<§”~’~/
HourlyEmployee.new (name, 19.25, 30) &——Create a new instante with the
end specified name, and a predefined

) employees.rb
def self.cashier(name) hou\rl\/ wage and hours per week. (C(F))n‘l')ilnued)
HourlyEmployee.new (name, 12.75, 25)
end Do the same as above for the
other hourly employee types.

def self.janitor (name)<&
HourlyEmployee.new (name, 10.50, 20)
end
These attributes are SVCLi‘c“ to hourly employees.
attr reader :hourly wage, :hours_per_week<?”_’—/

def hourly wage=(hourly wage)
if hourly wage < 0O
raise "An hourly wage of #{hourly wage} isn't valid!"
end
@hourly wage = hourly wage
end

def hours per week=(hours per week)
if hours per week < 0
raise "#{hours per week} hours per week isn't valid!"
end
@hours_per_week = hours_per week

end Called when we eall "Howl\/Emon\/ce.ncw".

def initialize (name = "Anonymous", hourly wage = 0.0, hours per week = 0.0)
super (name) &—— Call the suycrclass's "initialize” method, passing onl\/ the name.
self.hourly wage = hourly wage &—— Sc{; these oursclVCS, sinte

el'lzelf.hours_per_week = hours_per_weeké/ﬂ\cy,‘rc s?cci‘cic o this elass.

def print pay stub
print_name &——Have the supertlass print the name. Caleulate 2 weeks’ pay:
pay for period = hourly wage * hours per week * 2<5”_’—/
foraattgd_pay = format(:$%.2f", pay_for_geriod) é————-F%rmaﬁfthAY\M£h
puts "Pay This Period: #{formatted pay}" 2 detimal places.
end

end

jane = SalariedEmployee.new ("Jane Doe", 50000)
jane.print pay stub

angela = HourlyEmployee.security guard("Angela Matthews")
ivan = HourlyEmployee.cashier ("Ivan Stokes")
angela.print pay stub

ivan.print pay stub

you are here » 153

www.it-ebooks.info

http://www.it-ebooks.info/

page goal

Your Ruby Toolbox

That's it for Chapter 4! You’ve added
the initialize method and class
methods to your tool box.

\
en ent ‘P“ b calls Lhe "iialt o \(ov
3 P\u N B ey
Me n new instances Lo ko seb W a nev
ed 4 " wikialize
‘\ VM n use e va‘(\a\)\cs
ve | C\Zs \V\S'ta d
- 4 thods tan be NS
- P‘ Class me 3 tlass hee {:\\an,
wt diveetly on . They

154

www.it-ebooks.info

Q BULLET POINTS ——————

Number literals with a decimal point will
be treated as F1oat instances. Without
a decimal point, they'll be treated as
Fixnum instances.

If either operand in a mathematical
operation is a F1oat, the result will be a
Float.

The format method uses format
sequences to insert formatted values into
a string.

The format sequence type indicates the
type of value that will be inserted. There
are types for floating-point numbers,
integers, strings, and more.

The format sequence width determines the
number characters a formatted value will
take up within the string.

The value ni1 represents nothing - the
absence of a value.

Operators such as +, —, *, and / are
implemented as methods in Ruby. When
an operator is encountered in your code,
it's converted into a method call.

Within instance methods, the se1f
keyword refers to the instance that the
method is being called on.

If you don't specify a receiver when calling
an instance method, the receiver defaults
to self.

Within a class body, you can use either
def ClassName.method name
ordef self.method nameto
define a class method.

http://www.it-ebooks.info/

5 arrays and blocks

It's Already Written

"index = 0". "while index <
guests.length". Why do I have

to mess with this "index" stuff?
Can't T just check in each guest?

A whole lot of programming deals with lists of things. Lists of
addresses. Lists of phone numbers. Lists of products. Matz, the creator of Ruby, knew this.
So he worked really hard to make sure that working with lists in Ruby is really easy.

First, he ensured that arrays, which keep track of lists in Ruby, have lots of powerful
methods to do almost anything you might need with a list.

Second, he realized that writing code to loop over a list to do something with each item,
although tedious, is something developers were doing a /lot. So he added blocks to the
language, and removed the need for all that looping code. What is a block, exactly? Read
on to find out...

this is a new chapter 155

www.it-ebooks.info

http://www.it-ebooks.info/

page goal header

Arrays

Your new client is working on an invoicing program for an online store.
They need three different methods, each of which works with the prices on
an order. The first method needs to add all the prices together to calculate
a total. The second will process a refund to the customer's account. And
the third will take 1/3 off each price, and display the discount.

Eath order
will have a list
of item prices.

Hmm, so you have a list of prices (a collection of them, if you will), and
you don't know in advance how many there will be... That means you
can't use variables to store them - there's no way to know how many

variables to create. You're going to need to store the prices in an array.

An array is used to hold a collection of objects. The collection can be
any size you need.

Start of the awa\/-“%['a', 'b', 'c']Je——End of the array.

J

Objecets the arvay Objects are
eontains go heve. separated by

Commas.

Let's create an array to hold the prices from our first order now.

prices = [2.99, 25.00, 9.99]

You don't have to know an array's entire contents at the time you
create it, though. You can also manipulate arrays afler creating them...

156 Chapter #

www.it-ebooks.info

http://www.it-ebooks.info/

chapter title here

Accessing arrays

So now we've got a place to store all our item prices. To retrieve the prices
we stored in the array, we first have to specify which one we want.

Items in an array are numbered from left to right,
starting with 0. This is called the array index. [2.99, 25.00, 9. T9 9]
[ndex: 0 | yA ete...

To retrieve an item, you specify the integer index
of the item you want within square brackets: Fivst item.

prices[0]<—

prices[1] e&——Setond item

prices|[2]
So we can print out elements Thivd item.
from our array like this.

puts prices([0] 3.99
puts prices[2] 25.0
puts prices[1] 8.99

You can assign to a given array index

with =, much like assigning to a variable. »o» . » prices[0] = 0.99
(The "p" and "mspect” Lricesi1] = 1.99
methods ave useful prices[2] = 2.99

for aveays, tool) ——>p prices [0.99, 1.99, 2.99]

If you assign to an index that's beyond the end
of an array, the array will grow as necessary. \C- Heve's the new element.

prices[3] = 3.99

p prices [0.99, 1.99, 2.99, 3.99]

If you assign to an element that's way beyond the end of
an array, it will still grow to accommodate your assignment.

))
There just won't be anything at the intervening indexes. "nil” means "ﬂ\c’\’rc s Heve's {-).\c element
nothing heve ’-)/ \C we assigned to.
prices([6] = 6.99
P prices [0.99, 1.99, 2.99, 3.99, nil, nil, 6.99]

Here, Ruby has placed nil (which, you may recall, represents the
absence of a value) at the array indexes you haven't assigned to yet.

You'll also get nil back if you access an element that's p prices[7]€——The arvay only extends nil
beyond the end of an array. through index bl

you are here » 157

www.it-ebooks.info

http://www.it-ebooks.info/

page goal header

Arrays are objects, too!

Like everything else in Ruby, arrays are objects:

prices = [7.99, 25.00, 3.99, 9.99]
puts prices.class Array

That means they have lots of useful methods attached directly to the
array object. Here are some highlights...

like prices [0], there are easy-

to-read methods you can use: puts prices.last

Instead of using array indexes puts prices.first

There are methods to find out an puts prices.length n
array's size:

There are methods to let you puts prices.include? (25.00)
search for values within the array:

puts prices.find index(9.99)

There are methods that will let you prices.push (0.99)

insert or remove elements, causing the p prices [7.99, 25.0, 3.99, 9.99, 0.99]
array to grow or shrink:
prices.pop

p prices [7.99, 25.0, 3.99, 9.99]
prices.shift
p prices [25.0, 3.99, 9.99]
The << operator (which, like most prices << 5.99
operators, is actually a method behind ~ prices << 8.99
the scenes) also adds elements: p prices [25.0, 3.99, 9.99, 5.99, 8.99]
Arrays have methods that can puts ["d", "o", "g"].join dog
convert them to strings: puts ["d", "o", "g"].join("-") d-o-g
And strings have methods that P "d—o—g" .chars [Hd" , w_mn , "o , w_mn , Hgn]
can convert them to arrays:
p "d_o_gll'split("_") ["d", "0", llg"]

158 Chapter #

www.it-ebooks.info

http://www.it-ebooks.info/

chapter title here

mix = ["one", 2, "three", Time.new]

Open a new terminal or command prompt, type "irb" and hit the Enter/Return key. For each of the
Ruby expressions below, write your guess for what the result will be on the line below it. Then try
typing the expression into irb, and hit Enter. See if your guess matches what i rb returns!

letters = ["b", "c", "b", "a"]

letters.shift

letters

letters.join ("/")

letters.pop

letters

you are here » 159

www.it-ebooks.info

http://www.it-ebooks.info/

page goal header

Exercise
oLution

mix = ["one", 2, "three", Time.new]

[one”, 2, "theee”, 2014-01-0I 11:11:11]

(\\ You ean have instantes of diffevent

tlasses in the same arvay!

mix.length

You ean call methods
divectly on the ob\')cc{:s

ou vetrieve.
mix[0] .capitalize<//\/

H: You mix classcs, wateh
what methods You call,’

Open a new terminal or command prompt, type "irb" and hit the Enter/Return key. For each of the
Ruby expressions below, write your guess for what the result will be on the line below it. Then try
typing the expression into irb, and hit Enter. See if your guess matches what i rb returns!

letters = ["b", "c", "b", "a"]
N NN mn N_n
’b”, 7", b, "a"3

letters.shift

"b” "shiﬁ{:" removes {.)m ‘(—‘i\rs{: eICmcn{:

"oibt” ?c\rmancnﬂy
modifies the arvay.

letters

E" C”, "b”, »a»J <//

letters ” 0 ! also CVmanan\/
poy P

modifies the arvay.

E" C”, "b” J <//

160 Chapter #

www.it-ebooks.info

http://www.it-ebooks.info/

chapter title here

Looping over the items in an array

Right now, we can only access the particular array
indexes that we specify in our code. Just to print
all the prices in an array, we have to write this: prices = [3.99, 25.00, 8.99]

Fiest item.
puts prices[0] _
puts prices[1]€—Setond item.
puts prices[2]

Thivd item.

That won't work when the arrays get very large, or when we don't
know their size beforehand.

But we can use a while loop to process all of an array's elements, one
ata time.

index = 0 <//
while index < prices.length<//

puts prices|[index]&E—— A{,t,css the element at

Start with index 0. LOOY until we veath the
end of the arvay.

index += 1 é\ the turrent index.
3.99
end Move to the next 25.0
array element. 8.99

Calling the length instance method on an array gets you the number of
elements it holds, not the index of the last element.
Wﬂt(?}l lt' So this code won't get you the last element:
: p prices[prices.length] nil

But this code wiill:
p prices|[prices.length - 1] 8.99

Likewise, a loop like this will go beyond the end Because indexes start with zero, you need to
of the array: ensure you're working with index numbers less
than prices.length:

We don't want an index We want indexes LESS
index = 0 f cqual to the lmg{‘)\.’ index = 0 than the |cn5{‘)\.
while index <= prices.length while index < prices.length
puts prices|[index] puts prices|[index]
index += 1 index +=1
end end
you are here » 161

www.it-ebooks.info

http://www.it-ebooks.info/

page goal header

The repeating loop

Now that we understand how to store the prices from an order in an
array, and how to use a while loop to process each of those prices,
it's time to work on the three methods your client needs:

i ther
D Given an array of prices, add them all toge
tal.
and return the to .
prices, subtract each price from

‘ 1 i £
Given an array o
(he customer's account balance. ket
‘ l 1 $
Given an array of prices, reduce each 1tem's P
by 1/3, and print the savings-

The first requested feature is the ability to take these prices and total
them. We'll create a method that keeps a running total of the amounts
in an array. It will loop over each element in the array, and add it

to a total (which we'll keep in a variable). After all the elements are
processed, the method will return the total.

def total (prices) The total starts at O.
amount = 0€— _ ¢ Shart at the fivst avvay index.
S

index = 0 While we've still within the array...
while index < prices .length<//
amount += prices[index] €——Add the eurrent price

index += 1 %o +he 4otal.
. mc to the next price.
amount |
end Return the total. Create an array holding

vices -(:y-om our o\rdCV~
i !
prices = [3.99, 25.00, 8.99]«/

puts format ("%$.2f", total (prices))é\ 37.98

Pass our arvra i
Ensure the corvett number y of prices

of decimal plates ave shown. to the method, and
format the vesult.

162 Chapter #

www.it-ebooks.info

http://www.it-ebooks.info/

chapter title here

The repeating loop (cont.)

We need a second method that can process a refund for orders. It needs
to loop through each item in an array, and subtract the amount from the
customer's account balance.

def refund(prices) _The total starts at O.
amount = O<// Start at the Liest arvay index.
index = 0<// While we've still within the array...
while index < prices. length<//
amount -= prices[index] &——Sub{‘xac{: the current
index += 1 Fricc.

irrrllgunt Move to the next price.
Return the total vefund.

end

puts format ("%.2f", refund(prices))é\ -37.98
Pass our array of prices
to the method, and
format the vesult.

Lastly, we need a third method that will reduce each item's price by 1/3 and print the savings.

) Shavt at the fivst arvay index.

def show discounts (prices
index = Oe——‘—/ While we've still within the arvay...
while index < prices.length<//
amount off = prices[index] / 3.0 €——Determine distount for the curvent price.
puts format ("Your discount: $%.2f", amount off)
index +=1
end
end

Format the distount..
Move to the next price.

show discounts (prices) &—— Pass our array of prices Your discount: $1.33
+o the method. Your discount: $8.33
Your discount: $3.00

That wasn't so bad! Looping over the items in the array let us
implement all 3 of the methods your client needs!

g Given an array of prices, add them all together

and return the total.
ray of prices, subtract each p

‘ a Given an ar
the customer's account balance.

‘ a Given an array of prices, reduce each item's price
l .
by 1/3, and print the savings.

rice from

you are here » 163

www.it-ebooks.info

http://www.it-ebooks.info/

page goal header

The repeating loop (cont.)

If we look at the three methods together, though, you'll notice there's a
lot of duplicated code. And it all seems to be related to looping through
the array of prices. We've highlighted the duplicated lines below.

Highlighted lines ave duplicated eamozni :(PglCeS)

among the 3 methods. ~— s

while index < prices.length
This line in the middle ——Samount += prices[index]
di‘(:-("crs, {‘)\ough... index += 1
end
amount
end

def refund(prices)
amount = 0
index = 0
while index < prices.length
D‘.‘C‘(:crs... ———>amount -= prices[index]
index += 1
end
amount
end

def show discounts (prices)
index = 0
while index < prices.length
amount off = prices[index] / 3.0
Imgﬁﬂ*” {puts format ("Your discount: $%.2f", amount off)
index += 1
end
end

This is definitely a violation of the DRY (Don't Repeat Yourself) principle.
We need to go back to the drawing board and refactor these methods.

Refattored .
D Given an array of pric
and return the total.

es, add them all together

ice from
Given an array of prices, subtract each price
O o

alance.
the customer's account b

Given an array of prices, reduce each item's price
D by 1/3, and print the savings.

164 Chapter #

www.it-ebooks.info

http://www.it-ebooks.info/

chapter title here

Eliminating repetition... the WRONG way...

Our total, refund, and show_discounts methods have a fair amount of repeated
code related to looping over array elements. It would be nice if we could extract the repeated
code out into another method, and have total, refund, and show_discounts callit.

But a method that combines all the logic in total, refund, and show variables
wouldn't look very pretty... Sure, the code for the loop uself is repeated, but the code in the
muddle of the loop is all different. Also, the total and refund methods need a variable to
track the total amount, but show_discounts doesn't.

Let's show you exactly kow awful such a method would look. (We want you to fully appreciate
it when we show you a better solution.) We'll try writing a method with an extra parameter,
operation. We'll use the value in operation to switch which variables we use, and what
code gets run in the middle of the loop.

def do something with every item(array, operation)
”opevation” should be set

if operation == "total" or operation == "refund" [4 43)” "vefund”, or
amount = 0 &—— We won't need this vaviable for ? how distounts”. Don't
, h n . n .
Here’s the start of the iiiex L the "show discounts operation. make 3 {3‘/\7°!

|ooP — no more du?lida{:iov\! {

while index < array.length

if operation == "total"
amount += array[index]
elsif operation == "refund"
amount -= array[index]
elsif operation == "show discounts"
amount off = array[index] / 3.0
puts format ("Your discount: $%.2f", amount off)
end

Use the tovreet logie J
the turvent oPcra‘{‘,ion.

index += 1
end

if operation == "total" or operation == "refund"

return amount 6\
d
en We don't veturn the value of this

. vaviable for “show distounts”.

We warned you it would be bad. We've got 1 f statements all over the place, each checking
the value of the operation parameter. We've got an amount variable that we use in some
cases, but not others. And we return a value in some cases, but not others. The code is ugly,
and it's way too easy to make a mistake when calling it.

But if you don't write your code this way, how will you set up the variables you need prior to
running the loop? And how will you execute the code you need in the middle of the loop?

you are here » 165

www.it-ebooks.info

http://www.it-ebooks.info/

page goal header

Chunks of code?

The problem is that the repeated code at the top and bottom of each method
surrounds the code that needs to change.

Always /

the same!

index = 0
while index < prices.length

& This code differs
among the 3 methods.

amount += prices[index]

index += 1
end

It would sure be nice if we could take those other chunks of code that vary...

amount -= prices[index]

...And swap them into the middle of the array loop code. That way we
could keep just one copy of the code that's always the same.

.Use ‘[:his!

amount off = prices[index] / 3.0
puts format ("Your discount: $%.2f", amount off)

\C— ch‘a this. Instead of this...

index = 0
while index < prices.length

; amount off = prices[index] / 3.0
puts format ("Your discount: $%.2f", amount off)

166 Chapter #

index += 1
end

t Keep this.

www.it-ebooks.info

http://www.it-ebooks.info/

chapter title here

Blocks

What if we could pass a chunk of code
into a method, like it was an argument? We
could put the looping code at the top and

bottom of the method, and then in the middle,
we could run the code that was passed in!

It turns out we can do just that, using Ruby's blocks.

A block is a chunk of code that you associate with a method call.
While the method runs, it can inwvoke (execute) the block one or more
times. Methods and blocks work in tandem to process your data.

Blocks are wmind-bending stuff. But stick with it!

We won't mince words. Blocks are going to be the hardest part of this
book. Even if you've programmed in other languages, you've probably
never seen anything like blocks. But stick with it, because the payoft is big.

Imagine if, for all the methods you have to write for the rest of your
career, someone else wrole half of the code _for you. For free. They'd write all
the tedious stuff at the beginning and end, and just leave a little blank
space in the middle for you to insert your code, the clever code, the code
that runs your business.

If we told you that blocks can give you that, you'd be willing to do
whatever it takes to learn them, right?

Well, here's what you'll have to do: be patient, and persistent. We're here
to help. We'll look at each concept repeatedly, from different angles. We'll
provide exercises for practice. Make sure to do them, because they'll help
you understand and remember how blocks work.

A few hours of hard work now are going to pay dividends for the rest of
your Ruby career, we promise. Let's get to it!

you are here » 167

www.it-ebooks.info

http://www.it-ebooks.info/

page goal header

Defining a method that takes blocks

Blocks and methods work in tandem. In fact, you can't ave a block
without also having a method to accept it. So to start, let's define a
method that works with blocks.

[On this page, we're going to show you how to use & to accept a block,
and call to call it. This isn't the quickest way to work with blocks,
but it DOES make it more obvious what's going on. We'll show you
yield, which is more commonly used, in a few pages!]

Since we're just starting off, we'll keep it simple. The method will print
a message, invoke the block it received, and print another message.

This method takes a
blotk as an yaramcicc\r!

def my method (&my block)
puts "We're in the method, about to invoke your block!"

my block.call &——The "¢all” method ¢alls the block.
puts "We're back in the method!"
end

If you place an ampersand (&) before the last parameter in a method
definition, Ruby will expect a block to be attached to any call to that
method. It will take the block, convert it to an object, and store it in
that parameter.

def my method (&my block)

end When You call this method with 3
block, it will be stored in "m\/__block"-

Remember, a block is just a chunk of code that you pass into a method.
To execute that code, stored blocks have a call instance method that
you can call on them. The call method invokes the block's code.

def my method (&my block)

No ampersand; that’s “%1;13‘/;block. call €——Run the bloek’s code.
only used when dc«cining .
the parameter-. end

OK, we know;, you still haven't seen an actual block, and you're going
crazy wondering what they look like. Now that the setup's out of the
way, we can show you...

168 Chapter #

www.it-ebooks.info

http://www.it-ebooks.info/

Your first block

Are you ready? Here it comes: your first glimpse of a Ruby block.

A bloek mus{‘, always

follow a method eall. Start of the block

Block bod\/

my method| [do
puts "We're in the block!"|

End of the block

There it 1s! Like we said, a block is just a chunk of code that you pass to a
method. We invoke my method, which we just defined, and then place
a block immediately following it. The method will receive the block in its
my block parameter.

* The start of the block is marked with the keyword do, and the end 1s
marked by the keyword end.

* The block body consists of one or more lines of Ruby code between
do and end. You can place any code you like here.

* When the block is called from the method, the code in the block
body will be executed.

e After the block runs, control returns to the method that invoked it.

chapter title here

t}lel'e qre no °
Dumb Questions

Q: Can | use a block by itself?

A: No, that will give you a syntax error.
Blocks are meant to be used together with
methods.

do
puts "Woooo!"

end
syntax error,

unexpected
keyword do block

This shouldn't ever get in your way; if you're
writing a block that isn't associated with a
method call, then whatever you're trying

to express can probably be done with
standalone Ruby statements.

So, we can callmy method def my method (smy block)

and pass it the above block:
my block.call

end

puts "We're in the method, about to invoke your block!"

puts "We're back in the method!"

The call to —
my_method.

puts

"We're in the bl@«/

...And here's the output we'd see:

The blotk. [will be stored
in the "m\/__blockn yaramcjccr.

in the method, about to invoke your block!

in the block!

back in the method!

www.it-ebooks.info

you are here » 169

http://www.it-ebooks.info/

page goal header

Flow of control between a method and block

We declared a method named my method, called it with a block, and got
this output:

my method do We're in the method, about to invoke your block!
puts "We're in the block!" We're in the block!
end We're back in the method!

Let's break down what happened in the method and block, step by step.

o The first puts statement in my method's body runs.

The method: The block:
def my method (&my block)
puts "We're in the method, about to invoke your block!" do
my block.call puts "We're in the block!"
puts "We're back in the method!" end

end

We're in the method, about to invoke your block!

e Themy block.call expression runs, and control is passed to the block.
The puts expression in the block's body runs.

def my method (&my block)

puts "We're in the method, about to invoke your block!" do
my block.call puts "We're in the block!"
puts "We're back in the method!" end

end

We're in the block!

e When the statements within the block body have all run, control returns to
the method. The second call to puts within my method's body runs, and
then the method returns.

def my method (&my block)

puts "We're in the method, about to invoke your block!" do
my block.calle_ puts "We're in the block!"
puts "We're back in the method!" end-~

end

We're back in the method!

170 Chapter #

www.it-ebooks.info

http://www.it-ebooks.info/

Calling the same wmethod with different blocks

You can pass many different blocks to a single method.

We can pass different blocks to the method we just defined, and do
different things:

my method do
puts "It's a block party!"
end

We're in the method, about to invoke your block!

It's a block party!
We're back in the method!

my method do
puts "Wooooo!"
end

We're in the method, about to invoke your block!

Wooooo0!
We're back in the method!

The code in the method is always the same, but you can change the code
you provide in the block.

Code from
the method
s{:a\/s the sam

Code from
the method
stays the sam

Code from
+he method
s{:a\/s the sam

//,9

AN

/)
AN

//,9
AN

puts "We're in the method, about to invoke your block!"
puts "We're in the block!"

puts "We're back in the method!"

puts "We're in the method, about to invoke your block!"
puts "It's a block party!"

puts "We're back in the method!"

puts "We're in the method, about to invoke your block!"
puts "Wooooo!"

puts "We're back in the method!"

www.it-ebooks.info

you are here »

chapter title here

Blotk code changcs!

Blotk code changcs!

Blotk code chanscs!

171

http://www.it-ebooks.info/

page goal header

Calling a block multiple times

A method can invoke a block as many times as it wants.

This method is just like our previous one, except that it has wo
my block.call expressions:

Dctlavins another > def twice (smy block)

method that puts "In the method, about to call the block!"

takes a block. my block.call &——Call the blotk.
puts "Back in the method, about to call the block again!"
my block.call &——Call the blotk AQAIN

puts "Back in the method, about to return!"

end
Call'mg the method = twice do
and passing it a block. puts "Woooo!"
end

The method name is appropriate: as you

1
can see from the output, the method does) D NGy, GISEHG 159 RN (2 (S EEly

. . Woooo!

indeed call our block twice! Back in the method, about to call the block again!
Woooo!

Back in the method, about to return!

o Statements in the method body run until the firstmy block.call
expression is encountered. The block is then run. When it completes,
control returns to the method.

def twice (&my block)
puts "In the method, about to call the block!" do
my block.call ¢ puts "Woooo!"
puts "Back in the method, about to call the block agaiﬁT:\\\:iEi:)
my block.call
puts "Back in the method, about to return!"
end

e The method body resumes running. When the second my block.call
expression 1s encountered, the block is run again. When it completes, control
returns to the method so that any remaining statements there can run..

def twice (&my block)
puts "In the method, about to call the block!"

my block.call

puts "Back in the method, about to call the block again!" do
my block.calle puts "Woooo!"
puts "Back in the method, about to return!" end

end

172 Chapter #

www.it-ebooks.info

http://www.it-ebooks.info/

Block parameters

We learned back in Chapter 2 that when defining a Ruby method,
you can specify that it will accept one or more parameters:

def print parameters (pl, p2)
puts pl, p2
end

You're probably also aware that you can pass arguments when

calling the method that will determine the value of those parameters.

print parameters ("one", "two") one
two

In a similar vein, a method can pass one or more arguments to a
block. Block parameters are similar to method parameters; they're
values that are passed in when the block is run, and that can be
accessed within the block body.

Arguments to call get forwarded on
to the block:

Passed to bloek- ~

chapter title here

therejare no
Dumb Questions

Q; Can | define a block once, and use it
across many methods?

A: You can do something like this using Ruby
procs (which are beyond the scope of this book).
But it's not something you'll want to do in practice.
Ablock is intimately tied to a particular method call,
so much that a particular block will usually only
work with a single method.

Q} Can a method take more than one block
at the same time?

A: No. A single block is by far the most common
use case, to the point that it's not worth the
syntactic mess it would create for Ruby to support
multiple blocks. If you ever want to do this, you
could also use Ruby procs (but again, that's
beyond the scope of this book).

~ Passed to block.

A block can accept one or more end

parameters from the method by
defining them between vertical bar (|)
characters at the start of the block:

Pavameter |

end

So, when we call our method and provide a block, the arguments to

call are passed into the block as parameters, which then get printed.

When the block completes, control returns to the method, as normal.
. d tl t2
def give (s&my block) © |presentl, presentZ|
— <_\j;ts "My method gave to me..."

my block.call ("2 turtle doves", "1 partridge")
end

www.it-ebooks.info

def give (&my block)
my block.call("2 turtle doves", "1 partridge")

give do |presentl, present2|

Parameter 2.

puts "My method gave to me..."

puts presentl, present?2

"2 turtle doves"

[£ there ave multiple
parameters, separate
them with tommas.

"1l partridge"

puts presentl, present2
end

My method gave to

2 turtle doves
1 partridge

you are here » 173

http://www.it-ebooks.info/

page goal

Using the "yield" keyword

So far, we've been treating blocks like an argument to our methods.
We've been declaring an extra method parameter that takes a block as
an object, then using the call method on that object.

def twice (&my block)
my block.call
my block.call

end

We mentioned that this wasn't the easiest way to accept blocks, though.
Now, let's learn the less-obvious, but more-concise way: the yield
keyword.

The yield keyword will find and invoke the block a method was
called with—there's no need to declare a parameter to accept the block.

This method is functionally equivalent to the one above:

def twice
yield
yield
end

Just like with call, we can also give one or more arguments to
yield, which will be passed to the block as parameters. Again, these
methods are functionally equivalent:

def give (&my block)
my block.call("2 turtle doves", "1 partridge")
end

def give
yield "2 turtle doves", "1 partridge"
end e :

il

. Declaring a s§block parameter
. is useful in a few rare instances
. (which are beyond the scope of
. this book). But now that you

. understand what the yield

. keyword does, you should just

. use that in most cases. It's

. cleaner, and easier to read.

174

www.it-ebooks.info

http://www.it-ebooks.info/

chapter title here

Block formats

So far, we've been using the do ... end def run_block

format for blocks. Ruby has a second block yield £ n

format, though: "curly-brace" style. You'll end Th,c d:..cnd . orma .
. " AN we Ve been USIY\S so .

see both formats being used "in the wild", so run_block do<//

you should learn to recognize both. puts "do/end"

end
Stavt of block. End of blotk.
"Cwl\/—b\raéc" ‘Fo\rma‘{;‘% run block { puts "brackets" }

Block bod\/, Jus{: like

Aside from replacing do and end with curly brackets, with "do...end”.
the syntax and functionality are identical.
do/end
brackets
And justas do ... end blocks can accept

parameters, so can curly-brace blocks:

def take this
yield "present"
end

take this do |thing]
puts "do/end block got #{thing}"

end

take this { |thing| puts "brackets block got #{thing}" }

do/end block got present
brackets block got present

blocks span multiple lines, but our curly-brace blocks all appear on a PPN .

By the way, you've probably noticed that all our do ... end

single line... This follows another convention that much of the Ruby : *
community has adopted. It's valid syntax to do it the other way: Oonv(-)n-honal
(Breaks onvention! WS om *
take this { [thing] Ruby blocks that fit on a single
puts "brackets: got #{thing}" . line should be surrounded with
} . curly brackets. Blocks that
take this do |thing| puts "do/end: got #{thing}" end . span multiple lines should be
: surrounded withdo ... end.
Breaks convention brackets: got present

(and is veally “3')')’ do/end: got present i This is not the only convention
) . for block formatting, but itis a

. . . L : common one. :
But not only is that out of line with the convention, it's really ugly.

you are here » 175

www.it-ebooks.info

http://www.it-ebooks.info/

page goal header

Fireside Chats

Method:

Hello, Block! I called you here tonight so we could
educate people on how blocks and methods work
together. I've had people ask me exactly what you
contribute to the relationship, and I think we can
clear those questions up for everyone.

So most parts of a method's job are pretty clearly
defined. My task, for example, is to loop through
each item in an array.

Sure! It's a task lots of developers need done;

there's a lot of demand for my services. But then I
encounter a problem: what do I do with each of those
array elements? Every developer needs something
different! And that's where blocks come 1n...

I know another method that does nothing but open
and close a file. He's very good at that part of the
task. But he has no c/ue what to do with the contents
of the file...

I handle the general work that's needed on a wide
variely of tasks...

176 Chapter #

Tonight's talk: A method and a block talk about how they
became associated with each other.

Block:

Sure, Method! I'm here to help whenever you call.

Right. Not a very glamorous job, but an important
one.

Precisely. Every developer can write their own block
that describes exactly what they need done with
cach element in the array.

...And so he calls on a block, right? And the

block prints the file contents, or updates them, or
whatever else the developer needs done. It's a great
working relationship!

And I handle the logic that's specific to an indwidual
task.

www.it-ebooks.info

http://www.it-ebooks.info/

chapter title here

Exercise

Here are three Ruby method definitions, each of which takes a block:

def call block (&block) def call twice def pass parameters to block

puts 1 puts 1 puts 1
block.call yield yield 9, 3
puts 3 yield puts 3
end puts 3 end
end

And here are several calls to the above methods.
Match each method call to the output it produces.

call block do
puts 2
end

call block { puts "two" }

1
call twice { puts 2 } 3
3
call twice do 1
puts "two" 12
end
pass parameters to block do |paraml, param?2| 1
puts paraml + param?2 two
end 3
pass parameters to block do |paraml, param?2 | t
puts paraml / param2 e
nd two
© 3
you are here » 177

www.it-ebooks.info

http://www.it-ebooks.info/

page goal header

[L4 N
Exercise - .
SDLU‘f‘ON Here are three Ruby method definitions, each of which takes a block:

def call block (&block) def call twice def pass parameters to block

puts 1 puts 1 puts 1
block.call yield yield 9, 3
puts 3 yield puts 3
end puts 3 end
end

And here are several calls to the above methods.
Match each method call to the output it produces.

call block do
puts 2
end

call block { puts "two" }

1
call twice { puts 2 } 3
3
call twice do 1
puts "two" 12
end
pass parameters to block do |paraml, param?2| 1
puts paraml + param?2 two
end 3
pass parameters to block do |paraml, param?2 | t
puts paraml / param2 e
two
end 3

178 Chapter #

www.it-ebooks.info

http://www.it-ebooks.info/

chapter title here

The "each" method

We had a lot to learn in order to get here: how to write a block, how
a method calls a block, how a method can pass parameters to a block.
And now, it's finally time to take a good, long look at the method that
will let us get rid of that repeated loop code in our total, refund,
and show_discounts methods. It's an instance method that
appears on every Array object, and it's called each.

You've seen that a method can yield to a block

more than once, with different values each time: def my method
yield 1
yield 2
yield 3
end
my method { |param| puts param } 1
- 2
3

The each method uses this feature of Ruby
to loop through each of the items in an array,

yielding them to a block, one at a time. ["a", "b", "c"].each { |param| puts param }

If we were to write our own method that works like each, it would
look very similar to the code we've been writing all along:
class Array
RcmtmbCh "scl(:" Y‘C‘(:CY‘S to
def each the curvent object. In this
This is just like the loops in our "total”, {index = 0 case, the turrent arvay:

"vefund”, and "show distounts” methods/ While index < self.length<// .
- " yield self[index] &——The key diffevente: we yield the

index += 1 é\ eurvent element to a block!

enznd Then move to the next
element, Just like before.

end

We loop through each element in the array, just like in our total,
refund, and show discounts methods. The key difference is
that instead of putting code to process the current array element in
the muddle of the loop, we use the yield keyword to pass the element to a
block.

you are here » 179

www.it-ebooks.info

http://www.it-ebooks.info/

page goal header

The "each" method, step-by-step

We're using the each method and a block to
process each of the items in an array: [n

Let's go step-by-step through each of the calls to the block, and see what it's doing.

o Tor the first pass through the while loop, index isset to 0, so the
first element of the array gets yielded to the block as a parameter. In
the block body, the parameter gets printed. Then control returns to
the method, index gets incremented, and the while loop continues.

def each

index = 0 vy

while index < self.length

yield self[index] { |param| puts param }
index += 1 <?____—___\‘~\\\5‘\5___________—f”,;>
end H
end
e Now, on the second pass through the while loop, index is set to
1, so the second element in the array will be yielded to the block as a

parameter. As before, the block body prints the parameter, control
then returns to the method, and the loop continues.

def each
index = 0 "

while index < self.length

yield self[index] { |param| puts param }
index += 1 <?______\‘\h—‘\~\\\5_\5____________—__”,:>
end n
end
6 After the third array element gets yielded to the block for printing and
control returns to the method, the while loop ends, because we've

reached the end of the array. No more loop iterations means no more
calls to the block; we're done!

def each

index = 0 "

while index < self.length

yield self[index] { |param| puts param }
index += 1 6—__\—2
end u
end

That's it! We've found a method that can handle the repeated looping code, and yet allows
us to run our own code in the middle of the loop (using a block). Let's put it to use!

180 Chapter #

www.it-ebooks.info

au, "b", "c"].each { \paraml

puts param }

http://www.it-ebooks.info/

chapter title here

PRYing up our code with "each” and blocks

Our invoicing system requires us to implement these three methods. All three of
them have nearly identical code for looping through the contents of an array.

It's been difficult to get Hig\nlig\n{:cd lines ave def total (prices)

rid of that duplication, duylica‘{‘,cd among the 3 Lmount = 0
though, because all methods. ™ >index = 0
three methods have while index < prices.length
different code in the This line in the middle ——Samount += prices[index]
middle of that loop. differs, though.. index += 1

end

amount

end

def refund(prices)
amount = 0
index = 0
while index < prices.length
Differs.. ——>amount -= prices[index]
index += 1
end
amount
end

def show discounts (prices)
index = 0
while index < prices.length
amount off = prices[index] / 3.0
])4£ﬂ&~ {puts format ("Your discount: $%.2f", amount off)
index += 1
end
end

But now, we've finally mastered the each method, which loops over
the elements in an array, and passes them to a block for processing.

["a", "b", "c"].each { |param| puts param }

Let' if h

et's see if we can use each to Refactored . < 2dd them all together
refactor our three methods and Given an array of prices,

limi h lication. D e total.
eliminate the duplication and return tht e

] ice
D Given an array of prices, subtract each pr

. balance.
the customers account

Given an array of prices, reduce each item's price
v)
D by 1/3, and print the savings-

you are here » 181

www.it-ebooks.info

http://www.it-ebooks.info/

page goal header

PRYing up our code with "each” and blocks (cont.)

First up for refactoring is the total method. Just like the others, it
contains code for looping over prices stored in an array. In the middle
of that looping code, total adds the current price to a total amount.

The each method looks like it will be perfect for getting rid of the
repeated looping code! We can just take the code in the middle that
adds to the total, and place in it a block that's passed to each.

index = 0

while index < prices.length
amount += prices[index]
index += 1

end To heve!

From heve...

prices.each { |price| amount += price }

t We don't have to pull the item
)ou‘{: O‘F the away any more,
"eath” does that for us/

Let's re-define our total method to utilize each, then try it out.

def total (prices) Start the total at O.
amount = O<///
prices.each do |price] &f—ProLcss eath \wice.
amount += price €&——Add the eurrent price

end to the total
amount
end Return the final total.

prices = [3.99, 25.00, 8.99]

puts format ("%$.2f", total (prices)) 37.98

Perfect! There's our total amount. The each method worked!

182 Chapter #

www.it-ebooks.info

http://www.it-ebooks.info/

chapter title here

PRYing up our code with "each” and blocks (cont.)

For each element in the array, each passes it as a parameter to the
block. The code in the block adds the current array element to the
amount variable, and then control returns back to each
prices = [3.99, 25.00, 8.99]
puts format ("%$.2f", total (prices))

(1)

def each
index = 0 599
while index < self.length do |price]|

yield self[index]

amount += price
index += 1 V;—\\“‘~—~\~\~_:ift)
end

end

def each
index = 0 25.00
while index < self.length do |price]|

yield self[index]

amount += price
index += 1 V;—*——~\~\~_:izt>
end

end

(3]

def each
8.99

index = 0
while index < self.length do |price]|

yield self[index]

amount += price
index += 1 V;—*——~\~\~_:izi>
end

end
We've successfully refactored £ d
efactore ; all together
the total method! : g Given an array of prices, add them g
total.
But before we move on and return the (0 from

; tract each price

to the other two methods, Given an array of prices, sub
' s account balance.

let's take a closer look at the custome duce cach ite m's price

. . e

how that amount variable D Given an array of prices, r¢ uc

i i int the savings.

interacts with the block. by 1/3, and print t g

you are here » 183

www.it-ebooks.info

http://www.it-ebooks.info/

page goal header

Blocks and variable scope

We should point something out about our new total
method. Did you notice that we use the amount variable
both inside and outside the block?

As you may remember from chapter 2, local variables
defined within a method are out of scope as soon as the
method ends. You can't access variables that are local to
the method from outside the method.

The same 1s true of blocks, i/ you define the variable for
the first time nside the block.

But, if you define a variable before a block, you can access
it wnside the block body. You can also continue to access it
after the block ends!

184 Chapter #

def total (prices)
amount = 0
prices.each do |price]
amount += price
end
amount
end

Define the variable

def my method within the method.

greeting = "hello"<//
end
my method e—2Call the method.
puts greeting &f—T\r\/ to ?\rin‘{: the variable.

undefined local variable
or method "greeting'

def run block
yield
end

Define the variable
within the blotk.

run block do

greeting = "hello"<//

end
puts greeting é——Tr\/ to ?\rin{: the variable.

undefined local variable
or method “greeting'

Define the variable

BEFORE the blotk.
greeting = nil<//

run_block do

greeting = "hello"<//

end

Assign a new value
within the blotk.

puts greeting €&—— Print the variable.

www.it-ebooks.info

http://www.it-ebooks.info/

Blocks and variable scope (cont.)

Since Ruby blocks can access variables declared outside the block body,
our total method is able to use each with a block to update the
amount variable.

We can call total like this:

total([3.99, 25.00, 8.99])

The amount variable is set to 0, and then each is called on the array.
Each of the values in the array are passed to the block. Each time the
block is called, amount is updated:

def each
3.99

index = 0
while index < self.length do |price]|

yield self[index]

amount += price
index += 1 ?;‘\“*‘—“‘\~_:ift> 1l.
end MPd&fed from

end Is) '{:o 34)5)
def each
25.00

index = 0
while index < self.length do |price]|

yield self[index]

amount += price
index += 1 q;_\“*‘—“‘\~_:ift) 11_
end M?d&fed from

end 399 40 2899

(3]

def each
.99

index = 0 ¢
while index < self.length do |price]|

yield self[index]

amount += price
index += 1 €;—‘“\~——-~\~__fift3 11_
end MPdafed from

end 2899 t0 3798

When the each method completes, amount is still set to that final
value, 37.98. It's that value that gets returned from the method.

www.it-ebooks.info

chapter title here

def total (prices)
amount = 0
prices.each do |price]|
amount += price
end
amount
end

therejare no
Dumb Questions

Q: Why can blocks access variables
that were declared outside their bodies,
when methods can't? Isn't that unsafe?

A: A method can be accessed from
other places in your program, far from
where it was declared (maybe even in a
different source file). A block, by contrast,
is normally accessible only during the
method call it's associated with. A block,
and the variables it has access to, are
all kept in the same place in your code.
That means you can easily see all the
variables a block is interacting with,
meaning that accessing them is less
prone to nasty surprises.

you are here » 185

http://www.it-ebooks.info/

page goal header

Using "each" with the "refund" method

We've revised the total method to get rid of the repeated loop code. We
need to do the same with the refund and show _discounts methods,
and then we'll be done!

The process of updating the refund method is very similar to the process
we used for total. We simply take the specialized code from the middle
of the generic loop code, and move it to a block that's passed to each.

def refund(prices)
amount = 0 def refund(prices)
index = 0 From To amount = 0
while index < prices.length»mr&” hﬂt’ prices.each do |price]
amount -= prices[index]—————————————"—"—"—"—%amount -= price é\

i =1 N
en;ndex E;Sunt Asmn,wcdoﬁfhau
amount end 1o pull the item out

end of the array, "eath”

56{',5 it for us!

Much cleaner, and calls to the method still work just the same as before!.

prices = [3.99, 25.00, 8.99]

puts format ("%.2f", refund(prices)) -37.98

Within the call to each and the block, the flow of control looks very
similar to what we saw in the total method:

o def each
3.99

index = 0
while index < self.length do |price]|

yield self[index] =

amount -= price
index += 1 end
i _D Updated from

end 0 to -'3~aﬁ

e def each
25.00

index = 0
while index < self.length do |price|

yield self[index]

amount -= price
index += 1 end
L \D l,(yda{:ed ‘FY‘OM

end -—377 to -‘2-3-‘77

e def each
8.99

index = 0
while index < self.length do |price]|

yield self[index]

amount -= price
index += 1 end
L _D Myda{:cd ‘FY‘OW\

end -28.99 to -3198

186 Chapter #

www.it-ebooks.info

http://www.it-ebooks.info/

chapter title here

Using "each" with our last method

One more method, and we're done! Again, with show_discounts,
it's a matter of taking the code out of the middle of the loop, and
moving it into a block that's passed to each.

def show discounts (prices)
index = 0
while index < prices.length
amount off = prices[index] / 3.0

puts format ("Your discount: $%.2f", amount off)
index += 1 From
end heve... T def show discounts (prices)
end °’ prices.each do |price]|
heve!

amount off = price / 3.0
puts format ("Your discount: $%.2f", amount off)
end
end

Again, as far as users of your method are
concerned, no one will notice you've changed a thing!

prices = [3.99, 25.00, 8.99]
show _discounts (prices) Your discount:
Your discount:
Your discount:

Here's what the calls to the block look like:

o def each

index = 0

prices.each do |price]
while index < self.length amount off = price / 3.0
yield self[index] N

puts format ("Your discount: $%.2f", amount off)
index += 1 N
end

Your discount: $1.33
end

9 def each

index = 0

prices.each do |price]|
while index < self.length amount off = price / 3.0
yield self[index] =

puts format ("Your discount: $%.2f", amount off)
index += 1 é\—‘_\\\\\SSE)
end

Your discount: $8.33
end

e def each

index = 0

X . prices.each do |price]|
whl}e index <Iself.length amount off = price / 3.0
yield self[index] -

puts format ("Your discount: $%.2f", amount off)
index += 1 <N—“—__.) -
end
end

Your discount: $3.00
end

25.00

Ne]
e

you are here » 187

www.it-ebooks.info

http://www.it-ebooks.info/

page goal header

Our complete invoicing methods

amount = 0
prices.each do |price]| &’—Proc‘,css eath \Wicc-
amount += price €&——Add the current price ——
end +o the total. prices.rb
amount
end

def total (prices) Start the 4otal at O.
—

Return the -(:inal total.
def refund(prices) _ Start the 4otal at O.

amount = O<//

prices.each do |price]| &’—Proc‘,css eath yvicc.
amount -= price e——Rch\d the eurvent price.

end

amount é\ *

end Return the final total.

def show discounts (prices)

2,
| Do this!
prices.each do |price| &——Protess eath price.
amount off = price / 3.0 &——Caleulate disount.

puts format ("Your discount: $%.2f", amount off)

end
end Format and print the curvent discount. Savle this code in a file namec.l
prices.rb. Then try running
prices = [3.99, 25.00, 8.99] it from the command line!
puts format ("%.2f", total (prices)) $ ruby prices.rb

37.98

puts format ("%.2f", refund(prices)) -37.98

show discounts (prices)

Your discount: $1.33
Your discount: $8.33
Your discount: $3.00

We've gotten rid of the repetitive loop code!

We've done it! We've refactored Rcfacbvcd : add them all together
the repetitive loop code out of g Given an array of {)rmes,
our methods! We were able to and return the total.

.] ct each price from
move the portion of the code ‘Z/ Given an atray of prices, subtra P

that differed into blocks, and rely the customer's account balance. e
S
on a method, each, to replace reduce each items P

g Given an array of prices,

the code that remained the same! iy 15, and print the savings.

188 Chapter #

www.it-ebooks.info

http://www.it-ebooks.info/

chapter title here

Poo] Puzzle

Your job is to take code snippets from the pool and place them into the blank lines in
the code. Don't use the same snippet more than once, and you won't need to use all the
snippets. Your goal is to make code that will run and produce the output shown.

def pig latin(words)

original length = 0
=0

words. do
puts "Original word: #{word}"
+= word.length
letters = word.chars
first letter = letters.shift

new word = "#{letters.join}#{first letter}ay"
puts "Pig Latin word: #{ B
+= new word.length Output:
end File Edi_Window Help
Original word: blocks
puts "Total original length: #{ P Pig Latin word: locksbay
puts "Total Pig Latin length: #{new length}" Original word: totally
Pig Latin word: otallytay
end Original word: rock
Pig Latin word: ockray
my words = ["blocks", "totally", "rock"] Original total length: 17
pig latin() Total Pig Latin length: 23

Note: each thing from
the pool can only be
used once!

d .
lword| yield

iginal 1 h
original lengt e leneith
- new word

hrink
new length my words shrin

original length

st

you are here » 189

www.it-ebooks.info

http://www.it-ebooks.info/

page goal header

Pos] Puzzle Jolution

def pig latin(words)

original length = 0
new length = 0

words.each do |word|
puts "Original word: #{word}"
original length += word.length
letters = word.chars
first letter = letters.shift
new word = "#{letters.join}#{first letter}ay”
puts "Pig Latin word: #{new word}"

new length += new word.length Output:
end File Eqt_Window Help
Original word: blocks
puts "Total original length: #{original length}" Pig Latin word: locksbay
puts "Total Pig Latin length: #{new length}" Original word: totally
Pig Latin word: otallytay
end Original word: rock
Pig Latin word: ockray
my words = ["blocks", "totally", "rock"] Original total length: 17

pig latin (my words) Total Pig Latin length: 23

190 Chapter #

www.it-ebooks.info

http://www.it-ebooks.info/

chapter title here

Utilities and Appliances, Blocks and Methods

Imagine two very different electric appliances: a mixer, and a drill. They have pretty different jobs: one is used for
baking, the other for carpentry. And yet, they have a very similar need: electricity.

Now, imagine a world where, any time you wanted to use an electric mixer or drill, you had to wire your appliance into
the power grid yourself. Sounds tedious (and fairly dangerous), right?

That's why, when your house was built, an electrician came and installed power outlets in every room. They provide the
same utility (electricity) through the same interface (an electric plug) to very different appliances.

The electrician doesn't know the details of how your mixer or drill works, and he doesn't care. He just uses his skills
and training to get the current safely from the electric grid to the outlet.

The designers of your appliance, likewise, have no idea how to wire a home for electricity. They just know how to take
power from an outlet and use it to make their devices operate.

You can think of the author of a method that takes a block as being kind of like an electrician. gef wire
They don't know how the block works, and they don't care. They just use their knowledge of a yield "current"
problem (say, looping through an array's elements) to get the neccessary data to the block. end

You can think of calling a method with
a block as being kind of like plugging an

appliance into an outlet. Like the outlet Like a power outlet.
supplying power, the block parameters
offer a safe, consistent interface for the wire { |power| puts "Using #{power} to turn drill bit" }

method to supplydatatoyourblock. wire { |power| puts "Using #{power} to spin mixer" }

Your block doesn't have .to. worry about Using current to turn drill bit
how the data got there, it just has to Using current to spin mixer
process the parameters it's been handed.

Not every appliance uses electricity, of course; some require other utilities. There are stoves and furnaces that require
gas. There are automatic sprinklers and spray nozzles that use water.

Just as there are many kinds of utilities to supply many kinds of appliances, there are many methods in Ruby that
supply data to blocks. The each method was just the beginning. We'll be looking at some of the others over the next
chapter.

you are here » 191

www.it-ebooks.info

http://www.it-ebooks.info/

page goal

Your Ruby Toolbox

That's it for Chapter 5! You’ve added
arrays and blocks to your tool box.

-‘—:-"ow"“l—(

i Mc*,\\ods

er ent
F Py Rut P‘wa\[S
Me \ A
edl de
vel ':(o °bl)cd"s
- sta

192

www.it-ebooks.info

Q BULLET POINTS —————

® The index is a number that can be used
to retrieve a particular item from an
array. An array's index starts with 0.

You can also use the index to assign a
new value to a particular array location.

The 1ength method can be used to
get the number of items in an array.

Ruby blocks are only allowed following
a method call.

There are two ways to write a block:
withdo ... end orwith curly
brackets ({ })

You can specify that the last method
parameter should be a block by
preceding the parameter name with an
ampersand (&).

It's more common to use the yield
keyword, though. You don't have to
specify a method parameter to take the
block - vield will find and invoke it
for you.

Ablock can receive one or more
parameters from the method. Block
parameters are similar to method
parameters.

Ablock can get or update the value of
local variables that appear in the same
scope as the block.

Arrays have an each method which
invokes a block once for each item in
an array.

http://www.it-ebooks.info/

6 block return values

How Should | Handle This?

Let me go over the list with

you... Should I keep the steak?

OK, I'll keep it. The chicken?

Keep, OK. The liver? ...Geft rid of
it? Consider it donel!

You've only seen a fraction of the power of blocks. Up until now,
the methods have just been handing data off to a block., and expecting the block to do all
the work with it. But a block can also return data back to the method. This feature lets the

method get directions from the block, allowing it to do more of the work.

In this chapter, we'll show you some methods that will let you take a big, complicated

collection, and use block return values to cut it down to size.

this is a new chapter 193

www.it-ebooks.info

http://www.it-ebooks.info/

page goal

A big collection of words to search through

Word got out on the great work you did on the invoicing program, and
your next client has already come in - a movie studio. They release
alot of films each year, and the task of making commercials for all

of them is enormous. They want you to write a program that will go
through the text of movie reviews, find adjectives that describe a given
movie, and generate a collage of those adjectives:

The critics agree, Hindenburg is:

"Romantic"
"Thrilling"

"Explosive"

They've given you a sample text file to work off of, and they want you
to see if you can make a collage for their new release, Truncated.

Looking at the file, though, you can see your work is cut out for you:

Lines ave wrapped so they fit heve..

Line |

Line 2
Line 3

Line 4’
Line
Line b
Line 7

Line

Normally producers and directors would stop this kind of These veviewer
garbage from getting published. Truncated is amazing in that bylines need +o
it got past those hurdles. i

--Joseph Goldstein, "Truncated: Awful", New York Minute<///
Guppies is destined to be the family film favorite of the &——There are reviews

be igno\rcd

summer. ‘(:or other movies
--Bill Mosher, "Go see Guppies", Topeka Obscurant mixed in heve.
Truncated is funn‘y(— it can't be categorized as comedy, The ad\)ccicivcs are
romance, or horror, because none of those genres would want La?i{:aliz.cd in the CO“aSCJ
to be associated with it. but not in the text.
--Liz Smith, "Truncated Disappoints", Chicago Some-Times —_
I'm pretty sure this was shot on a mobile phone. Truncated J—
is astounding in its disregard for filmmaking aesthetics. ——
--Bill Mosher, "Don't See Truncated", Topeka Obscurant reviews.txt

It's true, this job is a bit complex. But don't worry, arrays and blocks can help!

194

www.it-ebooks.info

http://www.it-ebooks.info/

chapter title here

A big collection of words to search through (cont.)

Let's break our tasks down into a checklist:

Get the file contents.

Find reviews for the current movie.
Discard reviewer bylines.

Find an adjective within each review.

ject it otation
Capitalize each adjective and put it 1 qu
marks.

[
U
U
U
0

Five tasks to accomplish. Sounds simple enough. Let's get to it!

you are here » 195
www.it-ebooks.info

http://www.it-ebooks.info/

page goal header

Opening the file

Our first task 1s to open the text file with the review contents. This

1s easier than it sounds - Ruby has a built-in class named File that
represents files on disk. To open a file named "reviews.txt" in the
current directory (folder) so you can read data from it, call the open
method on the File class:

review file = File.open("reviews.txt")

The open method returns a new File object. (It actually calls File.new
for you, and returns the result of that.)

puts review file.class

There are many different methods that you can call on this File
stance, but the most useful one for our current purpose is the
readlines method, which returns all the lines in the file as an array.

lines = review file.readlines
puts "Line 4: #{lines[3]}"
puts "Line 1: #{lines[O]}" Line 4: --Bill Mosher, "Go see Guppies",
Topeka Obscurant
Line 1: Normally producers and directors would

\C (Wrapped to £it this page.)

stop this kind of garbage from getting published.
Truncated is amazing in that it got past those
hurdles.

Safely closing the file

We've opened the file, and read its contents. Your next step should be
to close the file. Closing the file tells the operating system, "I'm done
with this file; others can use it now."

review file.close

Why are we so emphatic about doing this? Because bad things happen
when you forget to close files.

You can get errors if your operating system detects that you have too
many files open at once. If you try to read all the contents of the same
file multiple times without closing it, it will appear to be empty on
subsequent attempts (because you've already read to the end of the
file, and there's nothing after that). If you're writing to a file, no other
program can see the changes you made until you close the file. It is very
important not to forget.

Are we making you nervous? Don't be. As usual, Ruby has a
developer-friendly solution to this problem.

196 Chapter #

www.it-ebooks.info

http://www.it-ebooks.info/

chapter title here

Safely closing the file, with a block

Ruby offers a way to open a file, do whatever you need with it, and
automatically close it again when you're done with it. The secret is to
call File.open... with a block!

File ob\')ec{', is veturned

We just change our and needs to be stored

code from this: in 3 vaviable.

review file = File.open("reviews.txt")
lines = review file.readlines
review file.close

Need 4o call "tlose”

when done.

File ob\)cc{: is passed
... To this! as a parameter to
'[:hc bloek.

File.open ("reviews.txt") do |review file|
lines = review file.readlines
end

When the block finishes,
the file is au{:oma{:ically
tlosed ‘cor you!

Why does File.open use a block for this purpose? Well, the first
and last steps in the process are pretty well-defined:

file = File.open Ij

|file.close |j

you do hevre?

...But the creators of File.open have no idea what you intend to do
with that file while it's open. Will you read it one line at a time? All at
once? That's why they let you decide what to do, by passing in a block.

/_|file = File.open

—>[{ Ifile| lines = file.readlines }Um

| file.close

you are here » 197

www.it-ebooks.info

http://www.it-ebooks.info/

page goal header

Pon't forget about variable scope!

When we're not using a block, we can access the array of lines from the
File object just fine.

review file = File.open("reviews.txt")
lines = review file.readlines

review file.close

Switching to the block form of File.open has introduced a
problem, however. We store the array returned by readlinesina
variable within the block, but we can't access it afler the block.

puts lines.length

File.open ("reviews.txt") do |review file]
lines = review file.readlines
end

puts lines.length
undefined local variable
or method ‘lines'

The problem is that we're creating the 1ines variable within the block.
As we learned back in Chapter 5, any variable created within a block

has a scope that's limited to within the block. Those variables can't be
"seen" from outside the block.

But, as we also learned in Chapter 5, local variables declared before
a block can be seen within the block body (and are still visible after
the block, of course). So the simplest solution is to create the 1ines
variable before declaring the block.

lines = []

File.open ("reviews.txt") do |review file|
lines = review file.readlines &——S{:i“ in sCoPC.’

end

puts lines.length

Still in scope!

OK, we've safely closed the file, and we've got our review contents.
What do we do with them? We'll be tackling that problem next.

198 Chapter #

www.it-ebooks.info

therejare no
Dumb Questions

Q: How can File . open work both with a
block and without one?

A: Within a Ruby method, you can call the
block given? method to check whether the
method caller used a block, and change the method
behavior accordingly.

If we were coding our own (simplified) version of
File. open, it mightlook like this:

def File.open (name, mode)
file = File.new(name, mode)
if block given?
yield(file)
else
return file
end
end

If a block is given, the file is passed to it for use
within the block. If it's not, the file is returned.

http://www.it-ebooks.info/

chapter title here

Three Ruby scripts are below. Fill in the blank in each script so that it will run successfully and
produce the specified output.

ercise

o def yield number
yield 4
end

yield number { |number| array << number }

p array [1, 2, 3, 4]

[1, 2, 3].each { |number| sum += number }

e puts sum n

File.open ("sample.txt") do |file]

contents = file.readlines
end
puts contents This is the first line in the file.

This is the second.
This is the last line.

you are here » 199

www.it-ebooks.info

http://www.it-ebooks.info/

page goal header

ExerciSe

OLution

Three Ruby scripts are below. Fill in the blank in each script so that it will run successfully and
produce the specified output.

def yield number
yield 4

end

array =

[1, 2, 3]

yield number { |number| array << number }

p array

[1, 2, 3, 4]
‘E’ sum = 0

Awyvduca{a“vM| [1, 2, 3].each { |number| sum += number }

work heve, sinte we
contents = []&——assign @ completely puts sum n

new value in the block.

File.open ("sample.txt") do |file]
contents = file.readlines

end

puts contents This is the first line in the file.

This is the second.
This is the last line.

200

Chapter #

www.it-ebooks.info

http://www.it-ebooks.info/

chapter title here

Finding array elements we want, with a block

We've opened the file, and used the readlines method to get an

array with every line from the file in its own element. The first feature
from our checklist is complete!

Let's see what remains:

E/ Get the file contents.

D Find reviews for the current movie.
D Discard reviewer bylines.
D Find an adjective within each review.

jecti iti otation
Capitalize each adjective and put it I qu

marks.

It seems we can't expect the text file to contain only reviews for the
movie we want. Reviews for other movies are mixed in there, too:

Line | Normally producers and directors would stop this kind of
garbage from getting published. Truncated is amazing in that
it got past those hurdles.
Line 2 --Joseph Goldstein, "Truncated: Awful", New York Minute
Line 3 Guppies is destined to be the family film favorite of the <L————-A\1VRW-QW
summer. aCom?kfdy
Line & --Bill Mosher, "Go see Guppies", Topeka Obscurant &££ﬂ1“{'m°wd
Line © Truncated is funny - it can't be categorized as comedy,
romance, or horror, because none of those genres would want —_
to be associated with it. =
—
Line b --Liz Smith, "Truncated Disappoints", Chicago Some-Times —
reviews.txt

Fortunately, it also looks like every review mentions the name of the

movie at least once. We can use that fact to find only the reviews for
our target movie.

Normally producers and directors would stop this kind of
garbage from getting published.

Trun is amazing in that it
got past those hurdles.

We ¢can look for this
within the s{:rins‘

you are here » 201
www.it-ebooks.info

http://www.it-ebooks.info/

page goal header

The verbose way to find array elements, using "each"

You can call the include? method on any instance of the String
class to determine if it includes a substring (which you pass as an
argument). Remember, by convention, methods that end in ? return a
boolean value. The include? method will return true if the string
contains the specified substring, and false if it doesn't.

my string = "I like apples, bananas, and oranges"

puts my string.include? ("bananas") true
puts my string.include? ("elephants") false

It doesn't matter if the substring you're looking for is at the beginning of
the string, at the end, or somewhere in the middle; include? will find it.

So, here's one way you could select only the relevant reviews, using the
include? method and the other techniques we've learned so far...

lines = []

Our old tode to veads File.open ("reviews.txt") do |review file|

the Lile contents. lines = review file.readlines
end
Remember 1o ereate the

relevant lines = [] e,_variablc outside the Hotk!
Protess each line ——> 1ines.each do |line| €&——The eurvent line is passed to the blotk as a parameter.
from the file. if line.include? ("Truncated")

relevant lines << line
end

Add the turrent line 4o
the array of veviews.

end

puts relevant lines

Normally producers and directors would stop this kind of
garbage from getting published. Truncated is amazing in that
it got past those hurdles.
Review for other --Joseph Goldstein, "Truncated: Awful", New York Minute
movie vemoved! Truncated is funny - it can't be categorized as comedy,

romance, or horror, because none of those genres would want
to be associated with it.
--Liz Smith, "Truncated Disappoints", Chicago Some-Times
I'm pretty sure this was shot on a mobile phone. Truncated
is astounding in its disregard for filmmaking aesthetics.
--Bill Mosher, "Don't See Truncated", Topeka Obscurant

202 Chapter #

www.it-ebooks.info

http://www.it-ebooks.info/

chapter title here

Introducing a faster method...

But actually, Ruby offers a much quicker way to do this. The find all method
uses a block to run a test against each element in an array. It returns a new array
that contains only the elements for which the test returned a true value.

We can use the £ind_all method to achieve the same result, by
calling include? in its block:

lines = []
File.open ("reviews.txt") do |review file|
lines = review file.readlines
end
relevant lines = lines.find all { |line| line.include? ("Truncated") }

This shortened code works just as well: only lines that include the
substring "Truncated" are copied to the new array!

puts relevant lines

Normally producers and directors would stop this kind of
garbage from getting published. Truncated is amazing in that
it got past those hurdles.

--Joseph Goldstein, "Truncated: Awful", New York Minute
Truncated is funny - it can't be categorized as comedy,

romance, or horror, because none of those genres would want
to be associated with it.
--Liz Smith, "Truncated Disappoints", Chicago Some-Times
I'm pretty sure this was shot on a mobile phone. Truncated
is astounding in its disregard for filmmaking aesthetics.
--Bill Mosher, "Don't See Truncated", Topeka Obscurant

Replacing six lines of code with a single
line... Not bad, huh?

Uh, oh. Did we just blow your mind again?

one line of code is doing behind
the scenes. :

Over the next few pages, we'll walk you
through everything you need in order to fully
: understand how £ind all works. There are
: many other Ruby methods that work in a similar way, so

¢ trust us, the effort will be worth it!

you are here » 203

www.it-ebooks.info

http://www.it-ebooks.info/

page goal header

Blocks have a return valve

We just saw the £ind all method. You pass it a block with selection
logic, and find all finds only the elements in an array that match
the block's criteria.

lines.find all { |line| line.include? ("Truncated") }

By "elements that match the block's criteria", we mean elements for which
the block returns a true value. The £ind all method uses the return value
of the block to determine which elements to keep, and which to discard.

As we've progressed, you've probably noticed a few similarities
between blocks and methods...

Methods: Blocks:
° Accept parameters ° Accept parameters
* Have a body that holds Ruby expressions * Have a body that holds Ruby expressions
* Return a value * Return a value é\

Wait, what? Do {:hc\/?

That's right, just like methods, Ruby blocks return the value of the last
expression they contain! It's returned to the method as the result of
the yield keyword.

We can create a simple method that shows this in action, and then call
it with different blocks to see their return values:

def print block result
block_result = yield &——Assigns the vesult of the
puts block result blotk to a vaviable.

end

print block result { 1 + 1 }

print block result do
"I'm not the last expression, so I'm not the return value."
"I'm the result!"

end

print block result { "I hated Truncated".include? ("Truncated") }

2

I'm the result!
true

204 Chapter #

www.it-ebooks.info

http://www.it-ebooks.info/

Blocks have a return valuve (cont.)

The method isn't limited to printing the block return value, of course. It
can also do math with it:

def triple block result
puts 3 * yield

end
triple block result { 2 } 6
triple block result { 5 } 15

...Or use it 1n a string:

def greet
puts "Hello, #{yield}!"
end

greet { "Liz" } Hello, Liz!

...Or use it in a conditional:

def alert if true

if yield
puts "Block returned true!"
else
puts "Block returned false."
end
end

alert if true { 2 + 2 == 5} Block returned false.
alert if true { 2 > 1 } Block returned true!

Up next, we'll take a detailed look at how £ind all uses the block's
return value to give you just the array elements you want.

www.it-ebooks.info

chapter title here

you are here »

205

http://www.it-ebooks.info/

page goal

We say that blocks have a "return
value”, but that doesn't mean you
should use the return keyword.

Using the return keyword within a

block isn't a syntax error, but we don't
recommend it. Within a block body, the return
keyword returns from the method where the block is
being defined, not the block itself. It's very unlikely that
this is what you want to do.

Watch it!

def print block value
puts yield
end

def other method

print block value { return 1 + 1 }
end
other method

The above code won't print anything, because
other method exits as the block is being defined.

If you change the block to simply use its last expression
as a return value, then everything works as expected:

def other method
print block value { 1 + 1 }
end

other method n

206

www.it-ebooks.info

therejare no
Dumb Questions

Q: Do all blocks return a value?

A: Yes! They return the result of the last
expression in the block body.

Q} If that's true, then why didn't we learn about
this sooner?

A: We haven't needed to. A block may return
a value, but the associated method doesn't have to
use it. The each method, for example, ignores the
values returned from its block.

Q,- Can | pass parameters to a block and use its
return value?

A: Yes! You can pass parameters, use the return
value, do both, or do neither; it's up to you.

def one two
result = yield(1l, 2)
puts result

end

one two do |paraml, param?2 |
paraml + param?2
end

http://www.it-ebooks.info/

[

chapter title here

=

255 | Code Magnets

=== @
§ A Ruby program is all scrambled up on the fridge. Can you reconstruct

the code snippets so that they produce the given output?

puts "Place #{ingredients} in dish" Id '

=)

lmake_casserole '
I make casserole
make casserole

Output:
File Edit Window Help

Preheat oven to 375 degrees
Place noodles, celery, and tuna in dish
Bake for 20 minutes

puts "Bake for 20 minutes"

=)

"rice, broccoli, and chicken"

puts "Preheat oven to 375 degrees" B
o
o

"noodles, celery, and tuna"

i

Preheat oven to 375 degrees

Place rice, broccoli, and chicken in dish
Bake for 20 minutes

you are here » 207

www.it-ebooks.info

http://www.it-ebooks.info/

page goal header

(2221 Code Magnets Solution
- 1

A Ruby program is all scrambled up on the fridge. Can you reconstruct
the code snippets so that they produce the given output?

—_—

def | mak I l ' | '
e _casserole make casserole do
puts "Preheat oven to 375 degrees"
I"noodles, celery, and tuna"'
ingredients h B
puts "Place #{ingredients} in dish"'
Iputs "Bake for 20 minutes"' I make_casserole ' M
|"rice, broccoli, and chicken"'
Output:

File Edit Window Help
Preheat oven to 375 degrees

Place noodles, celery, and tuna in dish
Bake for 20 minutes

Preheat oven to 375 degrees
Place rice, broccoli, and chicken in dish
Bake for 20 minutes

208 Chapter #

www.it-ebooks.info

http://www.it-ebooks.info/

chapter title here

How the method uses a block return value

We're close to deciphering how this snippet of code works:
lines.find all { |line| line.include? ("Truncated") }

The last step is understanding the £ind all method. It passes each
element in an array to a block, and builds a new array including only
the elements for which the block returns a true value.

p [1, 2, 3, 4, 5].find all { |number| number.even? } [2, 4]
p [1, 2, 3, 4, 5].find all { |number| number.odd? } [1, 3, 5]

You can think of the values the block returns as a set of wnstructions .
for the method. The £ind all method's job is to keep some array Tlllnl(0‘[l)lOCk return
elements and discard others. But it relies on the block's return value to

tell it which elements to keep. Values as iHStr UCtions {I’Om
All that matters in this selection process is the block's return value. The tlte l)lOCl(to tlle metllO(:[.

block body doesn't even have to use the parameter with the current

array element (although in most practical programs, it will). If the
block returns true for everything, all the array elements will be
included...

p ['a', 'b', 'c']l.find all { |item| true } ["a", "b", "c"]
.. If it returns false for everything, none of them will be.

p ['a', 'b', 'c'].find all { |item| false } m

Create a new avray to hold

If we were to write our own version the elements for which the

. o . . o
of find all, it might look like this: class Array blotk veturns "true’-
def find all (
matching items = [] Protess eath element.

self.each do |item| <//

if yield (item) €——Pass the element to the blotk. [£ the

. . . . n{: »
matching items << item é\ vesult is “true .

end .
end Add it to the arvay of
matching items "‘aah'“ﬁ elements.
end
end
If this code looks familiar, it should. It's a more The old tode: relevant_lines = []
generalized version of our earlier code to find lines.each do |line]

if line.include? ("Truncated")
relevant lines << line
end
end
puts relevant lines

lines that were relevant to our target movie!

you are here » 209

www.it-ebooks.info

http://www.it-ebooks.info/

page goal header

Putting it all together

Now that we know how the find all method works, we're really
close to understanding this code.

lines = []
File.open ("reviews.txt") do |review file|
lines = review file.readlines
end
relevant lines = lines.find all { |line| line.include? ("Truncated") }

Here's what we've learned (not necessarily in order):

e The last expression in a block becomes its return value. Result will be used as
block veturn value.
N

. . . ’ . . IR
lines.find all { |line| line.include? ("Truncated") }

e The include? method returns true if the string contains the
specified substring, and false if it doesn't.

lines.find all { |line| line.include? ("Truncated") }

Returns true i‘(: line

. The find all method h el ti t .
e . method passes each element in an array to a tontains "Truneated”.

block, and builds a new array including only the elements for
which the block returns a true value.

lines.find all { |line| line.include? ("Truncated") }

Result will be an array with all the elements of ”lines”
that contain s{:ring "Teuntated”.

Let's look inside the £ind all method and the block as they process
the first few lines of the file, to see what they're doing...

210 Chapter #

www.it-ebooks.info

http://www.it-ebooks.info/

chapter title here

A closer look at the block return values

o The £ind all method passes the first line from the file to the block, which "ﬁihd_all" passes
receives it in the 1ine parameter. The block tests whether 1ine includes the £ull text
the string "Truncated". It does, so the return value of the block is t rue. lines; we've just
Back in the method, the line gets added to the array of matching items. shortened \'\Cm’

def find all \C to £it this page!
matchigg_items =[]

. "...Truncated is amazing..."
self.each do |item| ru B zing

"Thc k|od< rc{:wns“% if yield (item)—/_T}inel line.include? ("Truncated") }
true”, so the eurvent matching items << item true
line gets added +o end

matehing items! end

end

9 The £ind all method passes the second line from the file to the block.
Again, the 1ine block parameter includes the string "Truncated", so the
return value of the block is again true. Back in the method, this line also
gets added to the array of matching items.

def find all
matching items = []

self.each do Ii?ETL//’//,——-———\T»...Truncated: Awful...

Another block ——> i yield (item) { |line| line.include? ("Truncated") }
veturn value of matching items << item e
"brue”, so this line end

gets added as well. end

end

e The third line from the file doesn't include the string "Truncated", so the
return value of the block is false. This line is not added to the array.

def find all
matching items = [] "

self.each do Ii%iil’/’///,——e———\f&...Gupples is destined...

The bloek veturn ——> 1f yield(item) { |line| line.include? ("Truncated") }
value is "1ca|sc", so matching items << item false
this line is NOT end

added. end
end

\C Shorkened o fit Ehis paoe!

...And so on, through the rest of the lines
in the file. The find all method adds

] p relevant lines ...Truncated is amazing...",
the current element to a new array 1f' t'he ...Truncated: Awful...",
block returns a true value, and skips it if ...Truncated is funny...",
the block returns a false value. The result .. .Truncated Disappoints...",

is an array that contains only the lines o gzﬁ?iagzg 'il'ls:‘urai:z:gding] et

that mention the movie we want!

you are here » 211

www.it-ebooks.info

http://www.it-ebooks.info/

page goal header

Eliminating elements we don't want, with a block

Using the find_all method, we've successfully found all the reviews
for our target movie, and placed them in the relevant lines
array. We can check another requirement off our list!

[2(Get the file contents.

@/ Find reviews for the current m

ovie.

E] Discard reviewer bylines.

Our next requirement is to discard the reviewer bylines, because we're
only interested in retrieving adjectives from the main text of each review.

Normally producers and directors would stop this kind of
garbage from getting published. Truncated is amazing in that
(RTNR XM it got past those hurdles.
vid of +hese: --Joseph Gol in, "Trun ;: Awful", New York Minute

Truncated is funny - it can't be categorized as comedy,
romance, or horror, because none of those genres would want
to be associated with it.

--Liz Smith, "Truncated Disaoints" Chicao Some-Times

Fortunately, they're clearly marked. Each one starts with the characters
"—="_so0 it should be easy to use the include? method to determine
if a string contains a byline.

Before, we used the £ind_all method to keep lines that included a
particular string. The reject method is basically the opposite of
find all -it passes elements from an array to a block, and r¢jects an
element if the block returns a true value. If £ind all relies on the
block to tell it which items to keep, reject relies on the block to tell it

which items to discard. Create a new arvay .+’° hold
If - , he elements for which the
n ”n
we were to. implement our own version class Array block veturns Lalse”.
of reject, it would look very similar to .
def reject

find_all: kept items = [Protess eath element.

]
self.each do |item|<//

unless yield(item) € Pass the element to the block.

kept_items << item [£ the vesult is "false”...
end)
end Add it to the arvay of
kept items kCP‘{: elements.
end

end

212 Chapter #

www.it-ebooks.info

http://www.it-ebooks.info/

chapter title here
The return values for "reject”

So reject works just like find all, except that instead of keeping elements that the block
returns a true value for, it rgjects them. Using reject, it should be easy to get rid of the bylines!

reviews = relevant lines.reject ({

|1line| line.include? ("--") }

The reject method passes the first line from the file to the block. The 1ine block

parameter does not include the string "--", so the return value of the block is false.
Back in the method, this line gets added to the array of items we're keeping.
def reject

kept items = []

"

self.each do |item| ﬁ ...Truncated is amazing..."
, BHIOCk veturns ——> unless yield (item) { |line| line.include?("--") }
£a|sc , so turrent kept items << item T
line gets added to end
arvay of kept items. end
kept items
end

12

The reject method passes the second line to the block. The 1ine parameter does
include the string "==", so the return value of the block is true, and the method
discards (rejects) this line.
def reject
kept items = []

"

self.each do |item| —_—_’////,,—e———\j&...——Joseph Goldstein..."
b Blotk veturns ——> unless yield(item) { |line| line.include? ("--") }
true”, so line is NOT kept items << item T e
added to arvay. end
end
kept items
end

(3]

The third line doesn't include "—==", so the return value of the block is false,
and the method keeps this line.
def reject
kept items = []

self.cach do |item| ...Truncated is funny...
BlOCk veturns ——>unless yield (item)

R ’ { Iline| line.include?("--") }
. R . D —— T e
false) so item kept items << item false
is kept. end
end

kept items
end

...And so on, for the rest of the lines in the file. The
reject method skips adding a line to the new p reviews
array if it includes "—="". The result is a new array
that omits the bylines and includes only the reviews!

...Truncated is amazing...",

...Truncated is funny...",
...Truncated is astounding..."]

you are here » 213
www.it-ebooks.info

http://www.it-ebooks.info/

page goal header

Breaking a string into an array of words

We've discarded the reviewer bylines,
leaving us with an array containing
only the text of each review. That's
another requirement down! Two to go...

Get the file contents.

1€.
Find reviews for the current movi

Discard reviewer bylines.

Find an adjective within each review.

. ‘on
ze each adjecuve and put1tin quotatl

OO RE

Capitali
marks.

For our next requirement, we're going to need a couple new methods.
They don't take blocks at all, but they are super-useful.

We need to find an adjective in each review:

p reviews ["...Truncated is amazing...", We need to select just
the ad\')cc{:ivcs...

"...Truncated is funny...",
"...Truncated is astounding..."]

If you look above, you'll notice a pattern... The adjective we want always seems
to follow the word "is".

So, we need to get one word that follows another word... What we have right
now are strings. How can we convert those to words?

Strings have a split instance method that you can call to split them
into an array of substrings.

p "1-800-555-0199".split("-") ["i", "800", "555", "0199"]
p "his/her".split ("/") ["his", "her"]
p "apple, avocado, anvil".split(", ") ["apple", "avocado", "anvil"]

The argument to split is the separator: one or more characters that separate
the string into sections.

What separates words in the English language? A space! If we pass " " (a space
character) to split, we'll get an array back. Let's try it with our first review.

string = reviews.first

words = string.split(" ")

p words ["Normally", "producers", "and", "directors",
HWOuldH 0 Hstopll 0 " this" 0 Hkind" 0 "of" 0 "garbage " 0

"from", "getting", "published.", "Truncated", "is",
llamazing" ’ n in" ’ n that" , llitll , llgotll ’ llpastll ’
"those", "hurdles."]

There you have it - an array of words!

214 Chapter #

www.it-ebooks.info

http://www.it-ebooks.info/

chapter title here

Finding the index of an array element

The split method converted our review string into an array of words.
Now, we need to find the word "is" within that array. Again, Ruby has a
method ready to go for us. If you pass an argument to the find index
method, it will find us the first index where that element occurs in the array.

p ["1", "800", "555", "0199"].find index("800")
p ["his", "her"].find index("his")
p ["apple", "avocado", "anvil"].find index("anvil")

NOR

Using find index, let's write a method that will split a string into
an array of words, find the index of the word "is", and return the

word that comes gfter that. Split the sententes
def find adjective (string) into words.

words = string.split (" ") <// o
index = words.find index ("is") &——Find the arvay index of "is”.
words [index + 1]

end Find the word AFTER

"is”, and vetuen it.

We can easily test our method out on one of our reviews...
adjective = find adjective (reviews.first)

There's our adjective! That only takes care of one review, though.
Next, we need to process all the reviews, and create an array of the
adjectives we find. With the each method, that's easy enough to do.

Create a new avray to

add adiectives into.
adjectives = []<// J

reviews.each do |review| &——For eath veview in the array...
adjectives << find adjective (review)

end Call the method we
e adients) made, and add the
puts adjectives ;ﬁz:;ng adjective to the list.

astounding

Now we have an array of adjectives, one for each review!

Would you believe there's an even easier way to create an array of
adjectives based on the array of reviews, though?

you are here »

www.it-ebooks.info

215

http://www.it-ebooks.info/

page goal header

Making one array that's based on another, the hard way

We had no problem looping through our array of reviews to build up an
array of adjectives using each and our new find adjective method.

But creating a new array based on the contents of another array is a really
common operation, that requires similar code each time. Some examples:

numbers = [2, 3, 4] numbers
squares = [] &— Make an arvay | oop cubes =
40 hold vesults. {')w-oush

numbers.each do [number| sourte numbers
squares << number ** 2 arvay. cubes

end end

Perform an operation, and
p squares eopy result to vesults arvay. p cubes
[4, 9, 16]

3, 4]
[] €——Make an array
4o hold vesults. Loop
.each do Inumber!@/ {h\rough

<< number ** 3 sourte

arvay.
Pcr‘(:orm an oPc\ra{:ion, and

topy vesult to vesults arvay.

[8, 27, 64]

phone numbers = ["1-800-555-0199",

area_codes

[] €——Make an array

4o hold vesults.
phone numbers.each do |[phone number | e/
area codes << phone number.split ("-") [1]

end
Pcr‘(:orm an oPc\ra{‘,ion, and
topy vesult to vesults arvay.

["800", |l402ll]

In each of these examples, we have to set up a new array to hold the results, loop

p area codes

"1-402-

555-0123"]

Loop ‘(:\'\rough
sourte arvay.

through the original array and apply some logic to each of its members, and add the

result to the new array. (Just like in our adjective finder code.) It's a bit repetitive...

Wouldn't it be great if there were some sort of magic processor for
arrays? You drop in your array, it runs some (interchangeable) logic on
its elements, and out pops a new array with the elements you need!

ro

L b1 (i

r

number ** 3

["1-800-555-01 g

["l-405 ¢

I4

b 1

3

Slole =T AN EsE-NTE!

number ** 2

g

phone number.split ("-") [1]

527, 64]

T4, 9, 16]

216 Chapter #

www.it-ebooks.info

800, "402m

http://www.it-ebooks.info/

chapter title here

Making one array that's based on another, using "map"

Ruby has just the magic array processor we're looking for: the map
method. The map method takes each element of an array, passes it to a
block, and builds a new array out of the values the block returns.

No need to ereate the
vesult arvays beforehand —

"map” ereates them for us! Make a new arvay with the

squares of eath number.

squares = [2, 3, 4].map { |number| number ** 2 } Make a new avvray with

cubes = [2, 3, 4].map { |number| number ** 3 }e’—{:hc Cubcs&c eath number.

area codes = ['1-800-555-0199', '1-402-555-0123'].map do |phone|
phone.split ("-") [1] &——Make a new array with

end \')us{: area todes.

p squares, cubes, area codes

[4, 9, 16]

[8, 27, 64]
["800" ’ "402"]

The map method is similar to find _all and reject, in that it processes
each element in an array. But find all and reject use the block's return
value to decide whether to copy the original element from the old array to the
new one. The map method adds the block's return value itself to the new array.

If we were to code our own version of map, it might look like this:

Make a new array to hold the
class Array blotk veturn values.
def map (Loop through
results = [] eath element.
self.each do |item|<//
results << yield(item) &——— Pass the element to the block, and add

end the veturn value to the new arvay.
results

end
end

Return the array of

bloek veturn values.

The map method can shorten our code to
gather adjectives down to a single line! An arvay with all the vetuwen
\C- values from (:ind__ad\')cchvc.

adjectives = reviews.map { |review| find adjective(review) }

Call our method. Its
veturn value will be the
rc{:wn value 0‘(: {:hc bloek.

The return value of map is an array with all the values the block returned:

p adjectives ["amazing", "funny", "astounding"]

you are here » 217

www.it-ebooks.info

http://www.it-ebooks.info/

page goal header

Making one array that's based on another, using "map" (cont.)

Let's look at how the map method and our block [r..

. -Truncateq is
process the array of reviews, step by step...

'TrUncated is
'TrUncated is

a“aZing. "
funn ;. !
L}
V...",
a fr\uf\

i
UL TICT LIS
find adjective (review) Ij
L amazlngn
. 4
adjectives = reviews.map { |review| find adjective (review) } "funny"
- ’

"aStOundingnJ

o The map method passes our first review to the block. The block, in turn,
passes the review to find adjective, which returns "amazing". The
return value of find adjective also becomes the return value of the
block. Back in the map method, "amazing" is added to the results array.

def map
results = [] "...Truncated is amazing...
self.each do |item|

results << yield(item) { |review| find adjective (review) }
~——— N
end "amazing"
results 4,/

end

e The second review is passed to the block, and find adjective returns
"funny". Back in the method, the new adjective is added to the results array.

def map
results = [] "...Truncated is funny...'
self.each do |item|

results << yield(item) { |review| find adjective (review) }
~——— N
end "funny"
results _

end

e For the third review, find adjective returns "astounding", which
gets added to the array with the others.

def map
results = [] "...Truncated is astounding..."
self.each do |item|

results << yield(item) { |review| find adjective (review) }
~———— N
end "astounding"
results -

end
.) Iz/ Find an adjective within each review.
We have just one more requirement,
and this one will be easy! |:| Capitalize each adjective and put it in quotation
marks.

218 Chapter #

www.it-ebooks.info

http://www.it-ebooks.info/

chapter title here

Some additfional logic in the "map” block body

We're already using map to find the adjectives for each review:

adjectives =

reviews.map { |review| find adjective (review) }

We can just add code to capitalize the adjective and enclose it in quotation
marks to the block, right after the call to our find adjective method.

adjectives =
adjective =

"'#{adjective.capitalize}"'<&-\\\

end

The bloek takes up more than one

line now, so we ﬁonow tonvention and

switth to a "do - end” blotk.

We need 4o work with this value
Further, so we assign ittoa
vaviable instead of veturning it.

c

reviews.map do |review|
find adjective (review)

Heve's our new veturn value.

Here are the new return values that this updated code produces:

def map
results =
self.each
results
end
results
end

2]

def map
results =
self.each
results
end
results
end

(3]

def map
results =
self.each
results
end
results
end

"...Truncated is amazing..."

[]
do |item]|
<< yield(item)

do |review|
adjective = find adjective (review)
"'#{adjective.capitalize}'"
ena——————~———\vf-—~_______,/

"'Amazing'"

"...Truncated is funny...

[]
do |item]

<< yield(item),

do |review|
adjective = find adjective (review)
"'"#{adjective.capitalize}'"

end ao oo

"'Funny'"

"...Truncated is astounding..."

[]
do |item]|
<< yield(item),

do |review|
adjective = find adjective(review)
"'"#{adjective.capitalize}"'"
ena——————~———\vf-—~_______,/

"'Astounding'"

you are here » 219

www.it-ebooks.info

http://www.it-ebooks.info/

page goal header

The finished product

That's our last requirement. Congratulations, we're done!

Get the file contents.

1e.
Find reviews for the current movi

Find an adjective within each review:

&
A
‘z Discard reviewer bylines.
M

i it tation
@/ Capitalize cach adjective and put itin quo

marks.

You've successfully learned to use block return values to find elements you want within an array,
reject elements you don't want, and even to use an algorithm to create an entirely new array!

Processing a complex text file like this would take dozens of lines of code in other languages,
with lots of repetition. The find all, reject, and map methods handled all of that

for you! They're not the easiest methods to learn to use, but now that you have, you've got
powerful new tools at your disposal!

Here's our complete code listing: We'll eall his method below, to

Lind adiectives within each veview.
def find adjective (string) € J
words = string.split (" ") &—— Break the string into an arvay of v:’w'fis
index = words.find index ("is") €&——Find the index of the word "is”.
words [index + 1] &—— Return the word

end (:o”owing s

lines = [] &——We need to treate +this vaviable outside the bloek. .
File.open ("reviews.txt") do |review file| &——0\70\ {:he ‘Cilc, and achomaqucally

lines = review file.readlines é\ tlose it when we've done.
end L O
Read every line in the file into an array. Find lines that intlude
relevant lines = lines.find all { |line| line.include? ("Truncated") } (———{:hc movie name.
reviews = relevant lines.reject { |line| line.include?("--") }&——Extlude veviewer b\/l’mcs.

Protess eath veview.
adjectives = reviews.map do |review| <//
adjective = find adjective (review) &——Find the ad\)ccﬁvc.
"'#{adjective.capitalize} " E——Return the ad\')ec-{;ivc, capitalized and surrounded
end by quotes.

o . The critics agree, Truncated is:
puts "The critics agree, Truncated is:" 'Amazing'

puts adjectives

'Funny'
'Astounding'’

220 Chapter #

www.it-ebooks.info

http://www.it-ebooks.info/

chapter title here

Open a new terminal or command prompt, type "irb" and hit the Enter/Return key. For each of the
Ruby expressions below, write your guess for what the result will be on the line next to it. Then
try typing the expression into irb, and hit Enter. See if your guess matches what i rb returns!

Exercise

(1, 2, 3, 4].find all { |number| number.odd? }

(1, 2, 3, 4].find all { |number| true }

[1, 2, 3, 4].find all { |number| false }

[1, 2, 3, 4]1.find { |number| number.even? }

[1, 2, 3, 4].reject { |number| number.odd? }

[1, 2, 3, 41.all? { |number| number.odd? }

[1, 2, 3, 4].any? { |number| number.odd? }

[1, 2, 3, 4].none? { |number| number > 4 }

[1, 2, 3, 4].count { |number| number.odd? }

[1, 2, 3, 4].partition { |number| number.odd? }

['S', 'SS', 'S$$SS$S']l.map { |string| string.length }

['$', '$$', '$$$'].max by { |string| string.length }

['$', '$$', '$$$'].min by { |string| string.length }

you are here » 221

www.it-ebooks.info

http://www.it-ebooks.info/

page goal header

Open a new terminal or command prompt, type "irb" and hit the Enter/Return key. For each of the
Ruby expressions below, write your guess for what the result will be on the line next to it. Then
try typing the expression into irb, and hit Enter. See if your guess matches what i rb returns!

Ex.emSe
5°Lut\ou
An array of all values for which
L2, 3, 4).find all { [number| number.odd? L], 3] €— the blotk vetuens "true”.
I‘('\ rl', alwa\/s re‘l',u\rv\s ‘[‘,\ruc)
(1, 2, 3, 4].find all { |number| true } 2,3, 4.3&_ all values gc{: intluded.
£ it NEVER veturns true,
(1, 2, 3, 4].find all { |number| false } [Je¢ NO values ave included.
"find” \rc{:wns the FIRST value for
(1, 2, 3, 4].find { |number| number.even?) 2 €— which the blotk vedurns "bruc’.
An arvay of all values for
[1, 2, 3, 4].reject { |number| number.odd? } L'2_ 4_3 ¢ which {:hc bloek veturns £a|sc
"all2” rc-l:wns true if the block
[1, 2, 3, 4l.all? { |number| number.odd? } Lalse (—'—vc{wncd true for ALL elements.
an\/? \rc{:wns {:\ruc |£ {:hc bloek
[1, 2, 3, 4].any? { |number| number.odd?] true € veturned true for ANY elements.
"none?” rc{:wrns true if the block
(1, 2, 3, 4].none? { [number| number > 4 } true € veturned FALSE for all elements.
The number o('\ elements for whith
(1, 2, 3, 4].count { |number| number.odd? } 2 ¢ the blotk rc{:wncd "Lrue”.
(1, 2, 3, 4].partition { |number| number.odd? } EU 2], [2, 4_:]]
Two arvays, the Liest wn{:h all the elements
wheve the block veturned TRUE, the setond
with all the elements whevre it vetuned FALSE.
An array with all the
['$', '$$', '$$$']l.map { |string| string.length } [l,2,3]¢ valucs £he blotk veturns.
The clcmcn{: £or which the bloek
787, 837, "3%%71.max by { |string| string.length |} ”Is’ISlls'" &— veturned the LARGEST value.
The clcmcn{: £or which the bloek
['s", '98", '988'].min by { |string| string.length } "5" &— veturned Jt:hc SMALLEST value.
222 Chapter #

www.it-ebooks.info

http://www.it-ebooks.info/

chapter here

~ Your Ruby Toolbox
That's it for Chapter 6! You’ve added Q BULLET POINTS

block return values to your tool box.

® [fyoupassablockto File.open,it
will yield the file to the block so you can do
whatever you need with it. When the block
ends, the file will automatically be closed.

® Strings have an instance method called
include?, which takes a substring as
an argument. It will return true if the
string includes the substring, false if
not.

= When you need to find all elements of an
array that meet some criteria, you can use
the find all method. It passes each
element of the array to a block, and will
return a new array with all the elements for
which the block returned a true value.

® The reject method works just like
find all, except thatit rejects array
elements for which a block returns a true
value.

= The split method on strings takes a
separator as an argument. It finds each
instance of the separator within the
string, and returns an array with all of
the substrings that were between each
separator.

= The find index method searches for
the first occurrence of an element within
an array, and returns its index.

= The map method takes each element of
an array, passes it to a block, and builds
a new array out of the values the block
returns.

223

www.it-ebooks.info

http://www.it-ebooks.info/

page goal header

224 Chapter #

www.it-ebooks.info

http://www.it-ebooks.info/

7 hashes

Labelling Data

Wilson, Wilson... Not here,
either. If only this data had
labels on it... I could find things

more quickly!

Throwing things in piles is fine, until you need to find something
again. You've already seen how to create a collection of objects using an array. You've seen
how to process each item in an array, and how to find items you want. In both cases, you start
at the beginning of the array, and look through Every. Single. Object.

You've also seen methods that take big collections of parameters. You've seen the problems
this causes: method calls require a big, confusing collection of arguments that you have to
remember the exact order for.

What if there was a kind of collection where all the data had labels on it? You could quickly find

the elements you needed! In this chapter, we'll learn about Ruby hashes, which do just that.

this is a new chapter 225

www.it-ebooks.info

http://www.it-ebooks.info/

page goal

Counting votes

A seat on the Sleepy Creek County School Board is up for grabs this year,
and polls have been showing the election to be really close. Now that it's
election night, the candidates are excitedly watching the votes roll in.

I'm confident
that the voters will
choose the candidate

who will put our children

first!

It's time to bring
financial responsibility
and accountability back
to our school system!

{"name" => "Amber Graham",
"occupation" => "Manager"}

{"name" => "Brian Martin",
"occupation" => "Accountant"}

The electronic voting machines in use this year record the votes to text
files, one vote per line. (Budgets are tight, so the city council chose the
cheap voting machine vendor.)
Each line vepresents

Here's a file with all the votes for District A: one vote.

Graham
Brian Martin
Amber Graham
Brian Martin

We need to process each line of the file, and tally Martin =
the total number of times each name occurs. The ==
name with the most votes will be our winner!

votes.txt

The development team's first order of business is to read the contents
of the "votes.txt" file. That part is easy; it's just like the code we
used to read the movie reviews file back in Chapter 6.

Create a vaviable that will still
be actessible after the block.

lines = [J<///

File.open ("votes.txt") do |file| €——Open the file, and pass
lines = file.readlines it to the bloek.

end é\

Stove all the file lines in an array.

Now, we need to get the name from each line of the file, and
increment a tally of the number of times that name has occurred.

226

www.it-ebooks.info

http://www.it-ebooks.info/

chapter here

An array of arrays... is not ideal

But how do we keep track of all those names and associate a vote total with each of them?
We'll show you two ways. The first approach uses arrays, which we already know about from
Chapter 5. Then we'll show you a second way using a new data structure, fashes.

If all we had to work with were arrays, we might build an array of arrays to hold everything,
That's right, Ruby arrays can hold any object, including other arrays. So we could create an
array with the candidate's name, and the number of votes we've counted for it:

["Brian Martin", 1]

We could put this array inside another array that holds all
the other candidate names and their totals:
Outer avcay. —> | An inner avray-
["Amber Graham", 1], <///
["Brian Martin", 1] &—— |nsert the new arvay hevre...

For each name we encountered in the text file... "Mikey Moose"

...We'd need to loop through the outer array and check
whether the first element of the inner array matches it.
[
» .)
)‘Mfkc‘/ M°°SC:'~? NOPC--' ["Amber Graham", 17,
Mnkc\/ Moose 2 No‘?e..- g ["Brian Martin", 1],
]
If none matched, we'd add a new inner array with the
new name.

["Amber Graham", 17,
["Brian Martin", 1],
["Mikey Moose", 1] &——|nsert the new array heve..

But if we encountered a name in the text file that did

already exist in the array of arrays... WBrian Martin"

Then we'd update the existing total for that name. [

):‘B!rian Martin"? No?c. ["Amber Graham", 1],
Brian Mavrtin"? ch! C["Brian Martin", 27, %’—M?da{x this vote tount.
["Mikey Moose", 1]

...You could do all that. But it would require extra code, and all that looping would

take a long time when processing large lists. As usual, Ruby has a better way.

227

www.it-ebooks.info

http://www.it-ebooks.info/

page goal header

Hashes

The problem with storing the vote tally for each candidate .) [
in an array is the inefficiency of looking them up again))Mfkc\/ M°°SC"~? Nope... ["Amber Graham", 4],
later. For each name we want to find, we have to search Mikey ,/,V"’.°S° ¢ N°?C,'," E[::Blflan Martlf" Sl
through all the others. Mikey Moose™?] ["Mikey Moose™, 2]
Putting data in an array is like stacking Ruby has another way of storing collections of data... hastes.
itin a big pile; you can get particular A hash is a collection where each value is accessed via a key.
items back out, but you'll have to search Keys are an easy way to get data back out of your hash. It's
through everything to find them. like having neatly labelled file folders instead of a messy pile.
f;;;
é\ Ammmm&mé\

Start at the Keys let you

top; searth quickly find

the whole pile. data again/

Array Hash

Just like with arrays, you can create a new hash and add some data to
it at the same time using a hash literal. The syntax looks like this:

Key Value Key Value

Start of hash Ivv Hydrogen"|, |"Li "| In Lithium"||}|-\ End of hash.

K ey/value Separate key/value Kcy/ value
sc?a\ra{‘pr pairs with tommas sc?ara{:o\r

Those => symbols show which key points to which value. They look a
bit like a rocket, so they are sometimes called "hash rockets".

We can assign a new hash to a variable: elements = {"H" => "Hydrogen", "Li" => "Lithium"}

Use a hash key heve, and you'll
56{‘, the LorrcsFonding value:

Then, we can access values from that hash using the keys we
set up for them. Whereas hash literals use curly braces, you

use square brackets to access individual values. It looks just like v o

the syntax to access values from an array, except you place puEs eiements { ";i]] ;l:;};_;uzn
o . L uts elements

the hash key within the brackets instead of a numeric index. P yorog

228 Chapter #

www.it-ebooks.info

http://www.it-ebooks.info/

chapter here

Hashes (cont.)

We can also add new keys and values to an existing hash.

Hash key we've

assigning a value Lor. New value.

Again, the syntax looks a lot like the syntax to assign to an
array element: elements["Ne"] = "Neon"
puts elements["Ne"]
Whereas an array can only use integers as indexes, a hash can use

any object as a key. That includes numbers, strings, and symbols.

mush = {1 => "one", "two" => 2,
p mush[:three] 3.0

p mush[1] "one"

p mush["two"] 2

:three => 3.0}

Although arrays and hashes have major differences, there are enough
similarities that it's worth taking a moment to compare them...

Arrays:
* Grow and shrink as needed
* (Can hold any object, even hashes or other arrays

¢ (Can hold instances of more than one class at the
same time

» Literals surrounded by square brackets

* Elements accessed by specifying index within
square brackets

* Only integers can be used as indexes

* Index of an element is determined by position
within array

[2.99, 25.00, 9.99]

(o} | 2

Hashes:
* Grow and shrink as needed
* (Can hold any object, even arrays or other hashes

¢ (Can hold instances of more than one class at the
same time

» Literals surrounded by curly braces

* Values accessed by specifying key within square
brackets

* Any object can be used as a key

* Keys not calculated; key must be specified
whenever a value 1s added

{"M" => "Monday", L ALEESN "Tuesday"}

I t 7

Key Value Key Value

my hash = {"one" =>
puts my hash[5]

puts my hash["one"]
puts my hash]|]
my hash(] =8
puts my hash["seven"]

Exercise

Fill in the blanks in the code below, so that it will produce the output shown.

, :three => "four", => "six"} Output:
six
two
four

8

229

www.it-ebooks.info

http://www.it-ebooks.info/

page goal header

Fill in the blanks in the code below, so that it will produce the output shown.
Exekcise my hash = {"one" => "‘Ewo" , ithree => "four", § => "six"} Output:
So -'~-io puts my hash[5] i
) L!Jt\v N puts my hash["one"] i;x
puts my_hash[:three] folo:lr
my_hash["seven” 1 = 8 8
puts my hash["seven"]
]
Hashes are objects
We've been hearing over and over that everything in Ruby is an object. We saw that
arrays are objects, and it probably won't surprise you to learn that hashes are objects, too.
protons = {"H" => 1, "Li" => 3, "Ne" => 10}
puts protons.class
And, like most Ruby objects, hashes have lots of useful instance methods. Here's a sampling...
They have the methods that you expect puts protons.inspect {"H"=>1, "Li"=>3, "Ne"=>10}

every Ruby object to have, like inspect:

The length method lets you determine

. t .1 h
how many key/value pairs the hash holds: puts protons.lengt

There are methods to quickly test whether puts protons.has key? ("Ne")

the hash includes particular keys or values:
puts protons.has value? (3)

There are methods that will give you an p protons.keys ["H", "Li", "Ne"]

array with all the keys, or all the values:
p protons.values [1, 3, 10]

And, as with arrays, there are methods that will let you use a protons.each do |element, count|
block to iterate over the hash's contents. The each method, puts "#{element}: #{count}"

for example, takes a block with fwo parameters, one for the end

key and one for the value. (More about each in a few pages.)

230 Chapter #

www.it-ebooks.info

http://www.it-ebooks.info/

protons

protons

protons

protons

protons

protons

protons.

protons

protons

chapter here

Open a new terminal or command prompt, type "irb" and hit the Enter/Return key. For each of the
Ruby expressions below, write your guess for what the result will be on the line next to it. Then
try typing the expression into irb, and hit Enter. See if your guess matches what i rb returns!

= (MHem =24}
("Rl
retb=
e
.-has_key? ("C")

.has value?(119)

keys

.values

.merge ({ "C" => 0, "Uh" => 147.2 })

there/are/nQ °
Dumb Questions

Q} Why do they call it a "hash"?

A: Frankly, it's not the best possible name. Other languages refer to this kind of
structure as "maps", "dictionaries", or "associative arrays" (because keys are associated
with values). In Ruby, it's called a "hash" because an algorithm called a hash table is
used to quickly look up keys within the hash. The details of that algorithm are beyond
the scope of this book, but you can visit your favorite search engine to learn more.

www.it-ebooks.info

231

http://www.it-ebooks.info/

page goal header

232

Exercise
SoLution

protons
protons
protons
protons
protons

protons

protons.

protons

protons

Chapter #

Open a new terminal or command prompt, type "irb" and hit the Enter/Return key. For each of the
Ruby expressions below, write your guess for what the result will be on the line next to it. Then
try typing the expression into irb, and hit Enter. See if your guess matches what i rb returns!

= { "He" => 2 }

["He"]

[IIC"] = 6

[HCH]

.has_key?2("C")

-has value? (119)

keys

.values

.merge ({ "C" => 0,

RcsuH‘, o‘: an assigmnCn{:
statement, as always, is the
value that was assigned.

{u H'C":>2.} «/

be—

assigned from the hash.

be—

"Leue” betause the hash
intludes the given key.
..................... "false” betause no key in the

hash has the gjven value.

falses—

An arvay Lonfahﬁhg
every key in the hash.
o, e T

An array COnﬁahﬂng
every value in the hash.

[2, bJe—

""""""""""" £ a key didn't
£ a key in the new hash alveady exist,
alveady exists in the old hash, it just gets
the old value is overridden. added.

"UR" => 147.2 1) {"H"=52, "C"=>0, "Un"=>147.2}

www.it-ebooks.info

http://www.it-ebooks.info/

chapter title here

Hashes return "nil" by defavlt =

—
—

Let's take a look at the array of lines we read from the sample file of votes.)

We need to tally the number of times each name occurs within this array. votes.txt

p lines

["Amber Graham\n", "Brian Martin\n", "Amber Graham\n",

"Brian Martin\n", "Brian Martin\n"]

These newline tharacters
weve vead from the file.

In the place of the array of arrays we discussed earlier, let's use a hash to store the vote counts. When

we encounter a name within the 1ines array, if that name doesn't exist, we'll add it to the hash.
{

I£ we vead this line... ——> "Amber Graham" "Amber Graham" => 1, &——Well add this kc\/ and
} value to the hash.

Each new name we encounter will get its own key and value added to the hash.

{

I£ we vead this line.. =™—> "Brian Martin" "Amber Graham" => 1,
"Brian Martin" => 1, éf—WcI“ add this kc\/ and
} value to the hash.
If we encounter a name that we've already added, we'll update its count, instead.
{
,‘(" we vead the same ——> "Amber Graham" "Amber Graham" => 2, &f—Wc)“ u\’da‘[:c the
name again... "Brian Martin" => 1, ¢orresponding value.
. }
...And so on, until we've counted all the votes.
\C Set up an empty hash.
That's the plan, anyway. But votes = {} _
our first version of the code Remove the newline
to do this fails with an error... lines.each do |line| thavatter. Evvor:
name = line.chomp<// (
votes [name] += 1 &’—Intxc»\cn{: {:hc ‘(’,o{',al ’
end for the turrent name. undeflngd
method "+' for
nil:NilClass
p votes
So what happened? As we saw in the arrays
hapter, if try t lement that
C ap' et, if you try to access an c'zmyJ element tha array = (] Doesr’t exist.
hasn't been assigned to yet, you'll get nil back. o
P array[999]<//
If you try to access a hash key that has never been "o el
: ned to. the default value is also nd 1 hash = {} Doesn't exist. .
assigned to, the default value is also nil. p hash["T don't exist"]<// nil

When we try to access the votes for a candidate name that has never been
assigned to, we get nil back. And trying to add to nil produces an error.

you are here » 233

www.it-ebooks.info

http://www.it-ebooks.info/

page goal header

Hashes return "nil" by default (cont.)

The first time we encounter a candidate's name, instead lines.each do |line]|

of getting a vote tally back from the hash, we get nil. name = line.chomp defined method “+'
3 3 i votes[name] += 1 unde :_"ne _me o

This results in an error when we try to add to it. . for nil:NilClass

To fix this, we can test whether the value for
the current hash key is nil. If it's not, then
we can safely increment whatever number is

there. Butif it zs ni1, then we'll need to set lines = []
up an initial value (a tally of 1) for that key. File.open ("votes.txt") do |file]
lines = file.readlines
end
votes = {}

lines.each do |line|
name = line.chomp
if votes[name] != nil 6’—” wc’vc seen this name bc£0r6~~~
votes[name] += 1 €—— |ntrement its total.
else &——|f this is our Livst sigH: of this name...
votes[name] = 1 &——HAdd it to the hash with value of I.

end
end
And in the output, we see the populated
hash. Our code is working! p votes {"Amber Graham"=>2, "Brian Martin"=>3}
[] [] [] n n
nil (and only nil) is "falsy
There's a small improvement to be made,
though... That conditional is a little ugly. if votes[name] != nil

We can clean that up by taking advantage of the fact that any Ruby expression
can be used in a conditional statement. Most of them will be treated as if they
were a "true" value. (Rubyists often say these values are "truthy".)
if "any string" &’_TW{:“‘/' if 42 e’_T“"‘{:"‘\/' if ["any array"] G’T\ru{‘)\\[

puts "I'll be printed!" puts "I'll be printed!" puts "I'll be printed!"
end end end

In fact, aside from the £alse boolean value, there is only one value that Ruby
treats as if it was false: nil. (Rubyists often say that nil is "falsy”.)

if false €——Aetually false. if ni1 €—Falsy.

puts "I won't be printed!" puts "I won't, either!"
end end

234 Chapter #

www.it-ebooks.info

http://www.it-ebooks.info/

chapter here

nil (and only nil) is "falsy" (cont.)

Ruby treats nil like it's false to make it easier to test whether
values have been assigned or not. For example, if you access a
hash value within an if statement, the code within will be run if
the value exists. If the value doesn't exist, the code won't be run.

votes = {}
Vbhcisnﬂ,————%)if votes ["Kremit the Toad"]
thhisﬁbky puts "I won't be printed!"
end
votes ["Kremit the Toad"] =1

Value is |,——= if votes["Kremit the Toad"]
which is {:\ru{h\/. puts "I'll be printed!"

end
We can make our conditional read a little lines.each do |line]
better by changing it from name = line.chomp

if votes[name] &——We don't need that ug,ly

"if votes[name] != nil" to just B "
votes [name] += 1 "if votesCname] I= il

"if votes[name]".

else any more!
Our code still works the same as before; it's ZOteS [name] =1
just a bit cleaner looking. This may be a enin
small victory now, but the average program
has to test for the existence of objects a lot. p votes

. hi hni 1
Over time, this technique will save you many e er Graham"=>2, "Brian Martin"=>3}
keystrokes!

We mean it

Guess the output for the code below,
when we say

and write it in the blanks provided.

.oy thatonly nil EXQRCISE (0. Filed in he first i for you)
Watch it! is falsy. :
: Most values that school = {
are treated as falsy in some : "Simone" => "here",
other languages, such as : "Jeanie" => "here"
empty strings, empty arrays, : }
and the number 0, are truthy :
h)Ruby g names = ["Simone", "Ferriss", "Jeanie", "Cameron"]
... names.each do |name|
if school [name] Simone is present
puts "#{name} is present"
else T
puts "#{name} is absent"
end
end

235

www.it-ebooks.info

http://www.it-ebooks.info/

page goal

Guess the output for the code below,
and write it in the blanks provided.

Exercise
LutiON

school = {

}

names.each do |name]|
if school [name]

else

end
end

"Simone" => "here",
"Jeanie" => "here"

names = ["Simone", "Ferriss", "Jeanie", "Cameron"]

puts "#{name} is present"

puts "#{name} is absent"

Simone is yrcscr\f

A hash that returns something other than "nil" by default

A disproportionate amount of our code for
tallying the votes lies in the 1 £/else statement
that checks whether a key exists within the hash...

And we need that 1 f statement. Normally, when

you try to access a hash key that hasn't had a value
assigned yet, you get nil back. We'd get an error the
first time we tried to add to the tally for a key that
didn't yet exist (because you can't add to nil).

votes = {}

lines.each do |line|
name = line.chomp
if votes[name] &——|f voteslname] is not nil..
votes [name] += 1 &—— |nevement the cxis{:ing total.
else «——|§ votesCnamel IS nil...
votes[name] = 1 &——Add the name to the

end hash with value of I.
end
On the first name,
lines.each do |line| 5c{-,s "wil” and tries
name = line.chomp toadd | toit

votes [name] += 1<//

end

5 emmmrd undefined method “+'
for nil:NilClass

But... what if, when we tried to access a hash key that hasn't been assigned
to yet, we got a different value instead of nil? One that we can increment?

Let's find out how to make that happen...

236

www.it-ebooks.info

http://www.it-ebooks.info/

chapter title here

A hash that returns something other than "nil" by default (cont.)

Instead of using a hash literal ({ }), you can
also call Hash.new to create new hashes.
Without any arguments, Hash . new works just
like {}, giving you a hash that returns nil for
unassigned keys.

But when you call Hash.new and pass an object
as an argument, that argument becomes that
hash's default object. Anytime you access a key in
that hash that hasn't been assigned to yet, instead
of nil, you'll get the default object you specified..

Let's use a hash default object to shorten up our
vote counting code...

If we create our hash with Hash.new (0), it will

return the default object (0) when we try to access the
vote tally for any key that hasn't been assigned to yet.

That 0 value gets incremented to 1, then 2, and so

on as the same name is encountered again and again.

lines = []

File.open ("votes.txt")

lines =
end

votes =

lines.each do |line]

name =
We can get rid of the i £

statement entirely! end

And as you can see from the
output, the code still works.

p votes

Hash.new(0)<///

line.chomp

votes(name] += 1€ or the eurvent Lally otherwise.

{"Amber Graham"=>2, "Brian Martin"=>3}

Create a new hash.
\C- When we actess a value
votes = Hash.new that's been assigned to,
votes ["Amber Graham"] = 1 we 53{; that value back.

p votes["Amber Graham"] <//

p votes["Brian Martin"] &——When we attess a value

that HASN'T been '
1 assigned to, we get "nil”.
nil
Create a new hash with
a default object of "0”.
When we attess a value
votes = Hash.new (0) that's been assigvmd to,
votes ["Amber Graham"] 1 we 3&, +hat value back.

p votes["Amber Graham"] <///

p votes["Brian Martin"] &——When we attess a value

that HASN'T been
assigned to, we get the
v dc‘(:auH: ob\')cé‘b

Using anything other than a
number as a hash default
object may cause bugs!

We'll cover ways to safely use other
objects in Chapter 8. Until then, don't
use anything other than a number as a default!

Watch it!

do [file|

file.readlines

Create a new hash wi){h”
a dcﬁh“: ob)ct{ of 70",

[ntrement whatever value is veturned:
70" if the key has never been u\?da{,cd,

you are here » 237

www.it-ebooks.info

http://www.it-ebooks.info/

page goal header

Normalizing hash keys

OK, so you've got counts for each
candidate. But that won't help if the

counts are wrong. We just got the final
votes in, and look what happened!

Amber Graham
Brian Martin
Amber Graham
Brian Martin
Brian Martin

amber graham
—

brian martin 4
amber graham = .
amber graham —— {"name" => "Kevin Wagner",
tes txt "occupation"” => "Election Volunteer"}
voTes.TX

Here's what we get if we run this new file through our existing code:

{"Amber Graham"=>2, "Brian Martin"=>3, "amber graham"=>3, "brian martin"=>1}

t These two shouldn't
Well, this won't do... It looks like the last few votes were be scFa\ra‘l:c i{:cms_/
added with the candidates' names in lower case, and
they were treated as entirely separate candidates!
This highlights a problem when working with hashes:
if you want to access or modify a value, whatever you
provide as a key needs to match the existing key exactly. votes = Hash.new (0) Actesses the
Otherwise, it will be treated as an entirely new key. votes ["Amber Graham"] 1 existing value.

p votes["Amber Graham"]
p votes["amber graham"]

&—This key/value
has never been
assigv\cd ‘{',ol

So, how will we ensure that the new lower-case entries in our
text file get matched with the capitalized entries? We need to
normalize the input: we need one standard way of representing
candidates' names, and we need to use that for our hash keys.

238 Chapter #

www.it-ebooks.info

http://www.it-ebooks.info/

Normalizing hash keys (cont.)

Fortunately, in this case, normalizing the
candidate names is really easy. We'll add
one line of code to ensure the case on each
name matches prior to storing it in the hash.

And in the output we see the updated
contents of our hash: votes from the lower-
case entries have been added to the totals for
the capitalized entries. Our counts are fixed!

chapter here

lines [1]

File.open ("votes.txt") do |file]
lines = file.readlines

end

votes = {}

lines.each do |line]|
name = line.chomp
name . upcase | €——— Change the name to ALL CAPS
if votes[name] bc‘(:orc adding it to the hash (or

votes[name] += 1 searthing for it in the hash).
else

votes [name] = 1
end
end

p votes

{"AMBER GRAHAM"=>5, "BRIAN MARTIN"=>4}

We have our w'mnc\r_’ j

You also need to normalize the keys when
accessing values.

Watch it!

If you normalize the keys when you're adding values to
the hash, you have to normalize the keys when you're
accessing the values as well. Otherwise, it might appear

that your value is missing, when it's really just under a different key!

This key doesn't exist!

..But this one docs’

["Amber Graham"]
["AMBER GRAHAM"]

p votes

\>p votes
—

nil
5

239

www.it-ebooks.info

http://www.it-ebooks.info/

page goal

Hashes and "each"

We've processed the lines in the sample file, and built a hash with the
total number of votes:

p votes {"AMBER GRAHAM"=>5, "BRIAN MARTIN"=>4}

It would be far better, though, if we could print one line for each
candidate name, together with their vote count.

As we saw back in Chapter 5, arrays have an each method that

takes a block with a single parameter. The each method passes each Dum

element of the array to the block for processing, one at a time. Hashes
also have an each method, that works in about the same way. The

qre no

Questions

only difference is that on hashes, each expects a block with two Q: What happens if | call each on
parameters, one for the key, and one for the corresponding value. a hash, but pass it a block with one
parameter?

hash = { "one" => 1, "two" => 2 }
hash.each do |key, value]

puts "#{key}: #{value}" A: The each method for hashes allows

with the key and value from each key/value

end one: 1 that; it will pass the block a 2-element array
two: 2

pair in the hash. It's much more common to
use blocks with two parameters, though.

We can use each to print the name of each
candidate in the votes hash, along with the
corresponding vote count:

lines = []

File.open ("votes.txt") do |file]
lines file.readlines

end

votes = Hash.new (0)

lines.each do |line|
name = line.chomp
name.upcase!

= 1 Key Value

votes [name]

end 9oes 9oes
heve. heve.
Protess eath —— yotes.each do |name, count|
kc\//valuc pair. puts "#{name}: #{count}"
end

AMBER GRAHAM: 5
There are our totals, neatly formatted! L LS

Now you've seen one of the classic uses of hashes - a program where
we need to look up values for a given key repeatedly. Up next, we'll
look at another common way to use hashes: as method arguments.

240

www.it-ebooks.info

Yes! T won! I'd like
to congratulate my
opponent on a hard-
fought campaign...

\V?

http://www.it-ebooks.info/

Fireside Chats

Hash:

Nice to see you again, Array.

There's no need to be like that.

Well, I do have a certain glamor about me... But even I
know there are still times when developers should use an
array instead of a hash.

It's true; it's a lot of work keeping all of my elements
where I can retrieve them quickly! It pays off if
someone wants to retrieve a particular item from the
middle of the collection, though. If they give me the
correct key, I always know right where to find a value.

Yes, but the developer has to know the exact index
where the data is stored, right? All those numbers are a
pain to keep track of! But it's either that, or wait for the
array to search through all its elements, one by one...

Agreed. Developers should know about both arrays and
hashes, and pick the right one for their current task.

chapter here

Tonight's talk: An array and a hash
work out their differences.

Array:

I didn't really want to be here, but whatever, Hash.

Isn't there? I was doing a perfectly fine job storing
everyone's collections, and then you come along,
and developers everywhere are like, "Ooh! Why use
an array when I can use a hash? Hashes are so cool!"

Darn right! Arrays are way more efficient than
hashes! If you're happy retrieving elements in the
same order you added them (say, with each), then
you want an array, because you won't have to wait
while a hash organizes your data for you.

Hey, we arrays can get data back too, you know.

But the point is, we can do it. And if you're just
building a simple queue, we're still the better choice.

Fair enough.

241

www.it-ebooks.info

http://www.it-ebooks.info/

page goal header

A wmess of method arguments

Suppose we're making an app to track basic information regarding candidates so voters
can learn about them. We've created a Candidate class to keep all of a candidate's
info in one convenient place. For convenience, we've set up an initialize method so
that we can set all of an instance's attributes directly from a call to Candidate.new.

Sc{: u\? a{‘,JCﬂbuJCC
class Candidate atLtessors.
attr accessor :name, :age, :occupation, :hobby, :birthplace<///
def Initialize(name, age, occupation, hobby, birthplace) &—Set up Candidate.new to
Use ‘H‘c self.name = name {:akc a\rgumcw{:s-
?aramc{:crs self.age = age
1o set the self.occupation = occupation

objett |self.hobby = hobby

attributes. self.birthplace = birthplace

end
end

Let's add some code following the class definition to create a Candidate instance, and print out its data.

def print summary (candidate)
puts "Candidate: #{candidate.name}"
puts "Age: #{candidate.age}"
puts "Occupation: #{candidate.occupation}"

puts "Hobby: #{candidate.hobby}" We have to ""’f“d‘ en
puts "Birthplace: #{candidate.birthplace}" 3*5“"‘"‘{3 even 1T weve
end not using it

candidate = Candidate.new("Carl Barnes", 49, "Attorney", nil, "Miami")
print summary (candidate)

Candidate: Carl Barnes
Our very first attempt at calling Candidate . new shows that its Age: 49
usage could be a lot smoother. We have to provide all the arguments gcggpatlon: Attorney
obby:

heth ! 1 h
whether we're going to use them or not Blrthplace: Miami

We could just make the hobby parameter optional, 7/t didn't have
the birthplace parameter following it...

class Candidate
attr accessor :name, :age, :occupation, :hobby, :birthplace
def initialize(name, age, occupation, hobby = nil, birthplace)

end Provide a default value to make
end the Fa\ramc{:cr opfional...

Since birthplace is present, though, we get an error if we try to omit hobby...

Candidate.new ("Carl Barnes", 49, "Attorney", , "Miami")
Brvor—— syntax error, unexpected ',', expecting ')'

242 Chapter #

www.it-ebooks.info

http://www.it-ebooks.info/

chapter title here

A wmess of method arguments (cont.)

We encounter another problem if we forget the order that method
arguments should appear in...

candidate = Candidate.new ("Amy Nguyen", 37, "Lacrosse", "Engineer", "Seattle")
print summary (candidate)

Wait, what order do these go in?

It's becoming clear that there are some issues with using a gansiiggte: Amy Nguyen
long.list of parameters for a method. The order is confusing, W\'\OOPS.I We Og?:l.lpa tion: Lacrosse
and it's hard to leave unwanted arguments off. go{: these two

| Hobby: Engineer
ZEREIEEN Birthplace: Seattle

Using hashes as method parameters

Historically, Rubyists have dealt with these issues by using hashes as method parameters. Here's a
simple area method that, instead of separate length and width parameters, accepts a single hash.
[We realize this is a bit ugly. Over the next few pages, we'll show you some shortcuts to make hash
parameters much more readable!]

Take one hash instead of multiple parameters. Ruby tonvention is to
) = cymbols as keys

def area (options)
options([:length] * options[:width]
end
Aceess values £eom the hash
instead of individual pavameters.

puts area({:length => 2, :width => 4}) n

[nstead O‘C ?ass'mg mul‘{‘,i‘?lc a\rgumcn{',s, pass a
single hash with appropriate keys and values.

The convention in Ruby is to use symbols instead of strings for hash parameter keys,
because looking up symbol keys is more efficient than looking up strings.

Using hash parameters offers several benefits over regular method parameters...

With regular parameters: With hash parameters:

* Arguments must appear in exactly the right order * Keys can appear in any order

* Arguments can be hard to tell apart * Keys act as "labels" for each value

* Required parameters have to appear before » Can skip providing a value for any key you want

optional parameters

you are here » 243

www.it-ebooks.info

http://www.it-ebooks.info/

page goal header

Hash parawmeters in our Candidate class

Here's a revision of our Candidate class's initialize method
using a hash parameter.
class Candidate

, attr accessor :name, :age, :occupation, :hobby, :birthplace
We'll keep the name as a def initialize (n¥me, options) &——The hash yaramc‘tcr.

separate string, self.name = name
/self .age = options[:age] éc{: values -(:v-om

Assign the name as normal. self.occupation = options[:occupationle&— X fhe hash instead
self.hobby = options[:hobbyle—n— — [dircC‘U\/ Lreom
self.birthplace = options]| :birthplace]é—-/ yavamc{:crs.

end
end

We can now call Candidate.new by passing the name as a string,
followed by a hash with the values for all the other Candidate attributes:

candidate = Candidate.new("Amy Nguyen", Now it’s elear which attribute is which!
{:age => 37, :occupation => "Engineer", :hobb; => "Lacrosse", :birthplace => "Seattle"})
e e —

p candidate

#<Candidate:0x007fbd7a02e858 @name="Amy Nguyen", QRage=37,

@occupation="Engineer", @hobby="Lacrosse", @birthplace="Seattle">
No move switehed attributes! 7

We can leave one or more of the hash keys off, if we want. The
attribute will just get assigned the hash default object, nil.
We tan leave the hobby off.

candidate = Candidate.new ("Carl Barnes",
{:age => 49, :occupation => "Attorney", :birthplace => "Miami"})

didat
b candicate #<Candidate:0x007f8aaa042a68 @name="Carl Barnes", Qage=49,

@occupation="Attorney", @hobby=nil, @birthplace="Miami">

Omitted attvibutes default +o mil.

We can put the hash keys in any order we want:

candidate = Candidate.new ("Amy Nguyen",
{:birthplace => "Seattle", :hobby => "Lacrosse", :occupation => "Engineer", :age => 37})

didat
b candrdate #<Candidate:0x007£81a890e8c8 @name="Amy Nguyen", @age=37,

@Qoccupation="Engineer", @hobby="Lacrosse", @birthplace="Seattle">

244 Chapter #

www.it-ebooks.info

http://www.it-ebooks.info/

Leave off the braces!

We'll admit that the method calls we've been showing so far are a little
uglier than method calls with regular arguments, what with all those
curly braces:.

candidate = Candidate.new ("Carl Barnes",
{:rage => 49, :occupation => "Attorney"})

...Which is why Ruby lets you leave the curly braces off, as long as the
hash argument is the final argument:

candidate = Candidate.new ("Carl Barnes",
rage => 49, :occupation => "Attorney") Nobrmxg
p candidate

#<Candidate:0x007£fb412802c30
@name="Carl Barnes", @age=49,

@occupation="Attorney",
@hobby=nil, @birthplace=nil>

For this reason, you'll find that most methods that define a hash
parameter define it as the last parameter.

Leave out the arrows!

Ruby offers one more shortcut we can make use of... If a hash uses
symbols as keys, hash literals let you leave the colon (:) off the symbol
and replace the hash rocket (=>) with a colon.

candidate = Candidate.new ("Amy Nguyen", age: 37,
occupation: "Engineer", hobby: "Lacrosse")

p candidate The same symbols, but more veadable!

#<Candidate:0x007£9dc412aa98
@name="Amy Nguyen", QRage=37,

@occupation="Engineer",
@hobby="Lacrosse",
@birthplace=nil>

Those hash arguments started out pretty ugly, we admit. But now that
we know all the tricks to make them more readable, they're looking
rather nice, don't you think? Almost like regular method arguments,
but with handy labels next to them!

Candidate.new ("Carl Barnes", age: 49, occupation: "Attorney")
Candidate.new ("Amy Nguyen", age: 37, occupation: "Engineer")

www.it-ebooks.info

chapter title here

therejareno
Dumb Questions

Q: Is there anything special about
a hash parameter? It looks like just
another method parameter!

A: It is just another method
parameter; there's nothing stopping you
from passing an integer, a string, etc.
when you should be passing a hash.
But you're likely to get errors when your
method code tries to access keys and
values on an integer or string!

: When you're defining a

: method that takes a hash
parameter, ensure the

. hash parameter comes

i last, so that callers to your
method can leave the curly
: braces off their hash. :
: When calling a method :
. with a hash argument, you :
. should leave the curly :
. braces off if possible - it's

. easier to read. And lastly,

. you should use symbols as

i keys whenever you're

: working with a hash

: parameter; it's more

: efficient.

you are here » 245

http://www.it-ebooks.info/

page goal header

Making the entire hash optional

There's one last improvement we can make to our Candidate class's
initialize method. Currently we can include all of our hash keys:

Candidate.new ("Amy Nguyen", age: 37, occupation: "Engineer",
hobby: "Lacrosse", birthplace: "Seattle")

Or we can leave most of them off:

Candidate.new ("Amy Nguyen", age: 37)

But if we try to leave them a/l off, we get an error:

Candidate.new ("Amy Nguyen")))
P v e Ewo‘f"ﬁ in "initialize': wrong number
of arguments (1 for 2)

This happens because if we leave all the keys off, then as far as Ruby is
concerned, we didn't pass a hash argument at all.

We can avoid this inconsistency by setting an empty hash as a default
for the options argument:

class Candidate

attr accessor :name, :age, :occupation, :hobby, :birthplace

def initialize (name, options = {}) &’—l-(: no hash is ?assed, use an em?{:\/ one.
self.name = name
self.age = options|:age]
self.occupation = options|[:occupation]

self.hobby = options|[:hobby]
self.birthplace = options|[:birthplace]
end
end

Now, if no hash argument is passed, the empty hash will be used by
default. All the Candidate attributes will be set to the nil default
value from the empty hash.

p Candidate.new ("Carl Barnes")

#<Candidate:0x007fbe098lecl8 @name="Carl Barnes", @age=nil,

@Qoccupation=nil, @hobby=nil, @birthplace=nil>

If we specify at least one key/value pair, though, the hash argument
will be treated as before:

p Candidate.new ("Carl Barnes", occupation: "Attorney")

#<Candidate:0x007fbe0981e970 @name="Carl Barnes", QRage=nil,

@occupation="Attorney", Q@hobby=nil, @birthplace=nil>

246 Chapter #

www.it-ebooks.info

http://www.it-ebooks.info/

chapter title here

Code Magnets

A Ruby program is all scrambled up on the fridge. Can you reconstruct the code
snippets to make a working Ruby program that will produce the given output?

Ioptions[:depth] ' width: 10,
|
options[:height]
[oetions iaenr} [} [} [sepen: 25
Iputs "Volume is #{result}" '

Output:

File Edit Window Help
Volume is 125.0

you are here » 247

www.it-ebooks.info

http://www.it-ebooks.info/

page goal header

Code =1 :
(] [ootionstneione) [[cpmionst oot)
Magnets

Solution .
result =' |V°1ume 'DI width: 10, 'I height: 5, 'l depth: 2.5 '
puts "Volume is #{result}" ' Output: [Fie Edt Window Felp
Volume is 125.0

Typos in hash arguments are dangerouvs

There's a downside to hash arguments that we haven't discussed yet, and it's
just waiting to cause trouble for us... For example, you might expect this code
to set the occupation attribute of the new Candidate instance, and you
might be surprised when it doesn't:

p Candidate.new ("Amy Nguyen", occupaiton: "Engineer")

#<Candidate:0x007£862a022cb0 @name="Amy Nguyen", @age=nil,

@Qoccupation=nil, @hobby=nil, @birthplace=nil>

1\\ Why is this still wil?

Why didn't it work? Because we misspelled the symbol name in the hash key!

p Candidate.new ("Amy Nguyen", occupaiton: "Engineer")

Whoops!
The code doesn't even raise an error. Our initialize
method just uses the value of the correctly-spelled
options[:occupation] key, which is of course
nil, because it's never been assigned to.

Silent failures now mean
hard-to-diagnose bugs later.
This doesn't make me want

to use hash arguments...

Don't worry. In version 2.0, Ruby added keyword
arguments, which can prevent this sort of issue.

248 Chapter #

www.it-ebooks.info

http://www.it-ebooks.info/

chapter title here

Keyword arguments

Rather than require a single hash parameter in method definitions, we can
specify the individual hash keys we want callers to provide, using this syntax:

Default value Keyword
Keyword Default value

AN

def welcome (greeting:| "Welcome"|, |lname:| nil|

puts "#{greeting}, #{(name)!"

end

Using a parameter Using a parameter

When we define the method this way, we don't have to worry about
providing keys to a hash to access values in the method body. Ruby
stores each value in a separate parameter, which can be accessed
directly by name, just like a regular method parameter.

With the method defined, we can call it by providing keys and values,
just like we have been:

welcome (greeting: "Hello", name: "Amy") Hello, Amy!

In fact, callers are actually just passing a hash, like before:

my arguments = {greeting: "Hello", name: "Amy"}
welcome (my arguments)
Hello, Amy!

The hash gets some special treatment within the method, though. Any
keywords omitted from the call get set to the specified default values:

welcome (name: "Amy") Welcome, Amy!

And if any unknown keywords are provided (or you make a typo in a
key), an error will be raised:

welcome (greting: "Hello", nme: "Amy") i anyd ArgumentError: unknown
keywords: greting, nme

you are here » 249

www.it-ebooks.info

http://www.it-ebooks.info/

page goal header

Using keyword arguments with our Candidate class

Currently, our Candidate class is using a hash parameter in its
initialize method. The code is a bit ugly, and it won't warn a
caller if they make a typo in a hash key.

class Candidate
attr accessor :name, :age, :occupation, :hobby, :birthplace
def initialize (name, options = {}) &——Hash yaramc{:cr.
self.name = name

self.age = options[:age

self.occupation = options[:occupation] Acccssin5 values

self.hobby = options|:hobby] £rom the hash.
self.birthplace = options[:birthplace]
end
end

Let's revise our Candidate class's initialize method to take
keyword arguments.

class Candidate We rc?|atc the hash Pa\r'amc{:ﬂ‘
attr accessor :name, :age, :occupation, :hobby, :birthplace with kc\/wov‘ds and dc&iuH: values.
def initialize(name, ages: nil, occupation: nil, hobby: nil, birthplace: "Sleepy Creek")
self.name = name
self.age = age
sei?icggpatlinb; occupation We use yaramc{:cr names
self.hobby = hobby . h
ash keys.
self.birthplace = birthplace instead °£ T

end
end

We use "Sleepy Creek" asa default value for the birthplace keyword, and nil
as a default for the others. We also replace all those references to the options hash in
the method body with parameter names. The method is a lot easier to read now!

It can still be called the same way as before...

p Candidate.new ("Amy Nguyen", age: 37, occupation: "Engineer")

#<Candidate:0x007fbf5b14e520 @name="Amy Nguyen",

@age=37, Qoccupation="Engineer", @hobby=nil, @birthplace="Sleepy Creek">

Spetified values! 2 '_, Defaults! _,//\

...And it will warn callers if they make a typo in a keyword!

p Candidate.new ("Amy Nguyen", occupaiton: "Engineer")

e amed ArgumentError: unknown keyword: occupaiton

250 Chapter #

www.it-ebooks.info

http://www.it-ebooks.info/

chapter title here

Required keyword arguments

Right now, we can still call Candidate.new even if we fail to provide
the most basic information about a candidate..:

p Candidate.new("Carl Barnes") All attributes ave set to the defaults!

#<Candidate:0x007fe743885d38 @name="Carl Barnes",

@age=nil, @occupation=nil, @hobby=nil, @birthplace="Sleepy Creek">

This isn't ideal. We want to require callers to provide at least an age
and an occupation for a candidate.

Back when the initialize method was using ordinary method
parameters, this wasn't a problem; a// the arguments were required.

class Candidate
attr accessor :name, :age, :occupation, :hobby, :birthplace
def initialize(name, age, occupation, hobby, birthplace)

end
end

The only way to make a method parameter optional is to provide a
default value for it.
class Candidate
attr accessor :name, :age, :occupation, :hobby, :birthplace
def initialize(name, age = nil, occupation = nil, hobby = nil, birthplace = nil)

end
end

But wait, we provide default values for all our keywords now...

class Candidate
attr accessor :name, :age, :occupation, :hobby, :birthplace
def initialize(name, age: nil, occupation: nil, hobby: nil, birthplace: "Sleepy Creek")

end
end

If you take away the default value for an ordinary method parameter,
that parameter is required; you can't call the method without
providing a value. What happens if we take away the default values for
our keyword arguments?

you are here » 251

www.it-ebooks.info

http://www.it-ebooks.info/

page goal header

Required keyword arguments (cont.)

Let's try removing the default values for the
age and occupation keywords, and see if

Required keyword
arguments were only

they'll be required when calling initialize.

added in Ruby 2.1.

If you're running Ruby

2.0, you'll get a syntax
error if you try to use required keyword
arguments. You'll need to either upgrade
to 2.1, or provide default values.

Watch it!

We can't just remove the colon after the keyword,
though. If we did, Ruby wouldn't be able to tell age and
occupation apart from ordinary method parameters.

class Candidate
attr accessor :name, :age, :occupation, :hobby, :birthplace
def initialize(name, age, occupation, hobby: nil, birthplace: "Sleepy Creek")

end
end Ordinary parameters,

not kcywovds!
What if we removed the default value, but left the colon after the keyword?

class Candidate

attr accessor :name, :age, :occupation, :hobby, :birthplace
def initialize (name, age:, occupation:, hobby: nil, birthplace: "Sleepy Creek")
self.name = name
self.age = age Kc\/wo\rds, but
self.occupation = occupation with no dc‘("auH‘,S_’
self.hobby hobby
self.birthplace = birthplace
end

end

We can still call Candidate . new, as long as we provide the required keywords:

p Candidate.new("Carl Barnes", age: 49, occupation: "Attorney")

#<Candidate:0x007fcec28le5a0 @name="Carl Barnes",

@age=49, (@occupation="Attorney", @hobby=nil, @birthplace="Sleepy Creek'">

...And if we leave the required keywords off, Ruby will warn us!

p Candidate.new("Carl Barnes")

I mmyd ArgumentError: missing
keywords: age, occupation
You used to have to provide a long list of unlabelled arguments to Candidate.new, and you
had to get the order exactly right. Now that you've learned to use hashes as arguments, whether
explicitly or behind the scenes with keyword arguments, your code will be a lot cleaner!

252 Chapter #

www.it-ebooks.info

http://www.it-ebooks.info/

chapter title here

Exegcise

Q000000

Here are definitions for two Ruby methods. Match each of the six method calls below to
the output it would produce. (p've filled in the first one for you)

def create(options = {})
puts "Creating #{options|[:database]} for owner #{options[:user]}...
end

def connect (database:, host: "localhost", port: 3306, user: "root")
puts "Connecting to #{database} on #{host} port #{port} as #{user}..."
end

create (database: "catalog", user: "carl")
create (user: "carl")

create

connect (database: "catalog")

connect (database: "catalog", password: "1234")

connect (user: "carl")

Creating for owner carl...

unknown keyword: password

Connecting to catalog on localhost port 3306 as root...

Creating catalog for owner carl...

Creating for owner ...

missing keyword: database

you are here » 253

www.it-ebooks.info

http://www.it-ebooks.info/

page goal header

Exercise
oLutioN

Q000000

Here are definitions for two Ruby methods. Match each of the six method calls below to
the output it would produce.

def create(options = {})
puts "Creating #{options|[:database]} for owner #{options[:user]}...
end

def connect (database:, host: "localhost", port: 3306, user: "root")
puts "Connecting to #{database} on #{host} port #{port} as #{user}..."
end

create (database: "catalog", user: "carl")
create (user: "carl")

create

connect (database: "catalog")

connect (database: "catalog", password: "1234")

connect (user: "carl")

5
e
D
A
<
F

254 Chapter #

www.it-ebooks.info

http://www.it-ebooks.info/

Your Ruby Toolbox

That's it for Chapter 7! You’ve
added hashes to your tool box.

Here are our notes on

arrays (:rom C\'\a?{ZCV %,
\C-\')us{: for tomparison.

A rrg ys

An arirg
objects Y holds 4 collection of

.find heve ave
our hO‘ECS ‘COV‘

this chapter/

chapter here

%BUI.I.ET POINTS

® Ahash literal is surrounded by curly braces. It
needs to include a key for each value, like this:
{"one" => 1, "two" => 2}

® When a hash key is accessed that a value has
never been assigned to, nil is returned by default.

= Any Ruby expression can be used in conditional
statements. Aside from the £alse boolean
value, the only other value Ruby will treat as
falseis nil.

® You can use Hash. new instead of a hash
literal to create a new hash. If you pass an object
as an argument to Hash . new, that object will
be returned by default when any key that hasn't
been assigned to is accessed (instead of nil).

m |fthe key you access isn't exactly equal to the
key in the hash, it will be treated as an entirely
new key.

® Hashes have an each method that works a lot
like the each method on arrays. The difference
is that the block you provide should (normally)
accept two parameters (instead of one): one for
each key, and one for the corresponding value.

® |fyou pass a hash as the last argument to a
method, Ruby lets you leave the braces off.

® |fahash uses symbols as keys, you can leave
the colon off the symbol, and replace => with a
colon, like this:
{name: "Kim", age: 28}

= When defining a function, you can specify that
callers should provide keyword arguments. The
keywords and values are actually just a hash
behind the scenes, but the values are placed into
named parameters within the function.

m Keyword arguments can be required, or they can
be made optional by defining a default value.

255

www.it-ebooks.info

http://www.it-ebooks.info/

8 relerences

Crossed Signals

Mama, the nice man asked if
we were ready for a delivery,
and T said OK. Um, what's an
orangutan?

Ever sent an e-mail to the wrong contact? You probably had a hard
time sorting out the confusion that ensued. Well, Ruby objects are just like those contacts
in your address book, and calling methods on them is like sending messages to them. If
your address book gets mixed up, it's possible to send the wrong message to the wrong
object. And you'll have a hard time sorting out the confusion that ensues.

This chapter will help you recognize the signs that messages are going to the wrong

objects, and help you get your programs running smoothly again.

this is a new chapter 257

www.it-ebooks.info

http://www.it-ebooks.info/

page goal

Sowme confusing bugs

The word continues to spread - if someone has a Ruby
problem, your company can solve it. And so people are
showing up at your door with some unusual problems...

This astronomer thinks he has a clever way
to save some coding... Instead of typing

my star = CelestialBody.new and
my star.type = 'star' forevery star
he wants to create, he wants to just copy the
original star, and set a new name for it.

class CelestialBody
attr accessor :type, :name
end

altair = CelestialBody.new

altair.name = 'Altair' To save time, he wants to
altair.type = 'star' eopy the previous star...
polaris = altair

polaris.name = 'Polaris' &—..And jUS{Z thange

vega = polaris the name.
vega.name = 'Vega' € Same
hevre.
puts altair.name, polaris.name, vega.name Vega
VLRl < But it looks like the
Vega names on all 3 stavs

ave now identical!

But the plan seems to be backfiring. All three of his CelestialBody
instances are reporting that they have the same name!

258

www.it-ebooks.info

http://www.it-ebooks.info/

chapter

The heap

The bug in the star catalog program stems from an underlying problem:
the developer thinks he's working with multiple objects, when actually he's
operating on the same object over and over.

To understand how that can be, we're going to need to learn about where
objects really live, and how your programs communicate with them.

Rubyists often talk about "placing objects in variables", "storing objects
in arrays", "storing an object in a hash value", and so forth. But that's just
a simplification of what actually happens. Because you can't actually put
an object i a variable, array, or hash.

Object Object

Instead, all Ruby objects live on the heap, an area of

your computer's memory allocated for object storage. O O l
When a new object is created, Ruby allocates space on Objccf The Heap
the heap where it can live.

here

New ob\')cd: goes heve.

i
0% 000

Generally, you don't need to concern yourself with the heap - Ruby
manages it for you. The heap grows in size if more space is needed.
Objects that are no longer used get cleared off the heap. It's not
something you usually have to worry about.

But we do need to be able to retrieve items that are stored on the heap. And
we do that with references. Read on to learn more about them.

www.it-ebooks.info

259

http://www.it-ebooks.info/

page goal header

References

When you want to send a letter to a 2104 W 0ak St
particular person, how do you get it Zloo w 0ak st Hca\?, RB 90210 2108 W 0ak St

to them? Each residence in a city has teap, RB 9021 0} Hca? RB 90210

an address that mail can be sent to. You
simply write the address on an envelope.
A postal worker then uses that address to
find the residence and deliver the letter.

2112 W 0ak St
Heap, RB 90210

J/

] R -

When a friend of yours moves into

a new residence, they give you their
address, which you then write down in
an address book or other convenient
place. This allows you to communicate
with them in the future.

Similar to addresses for houses, Ruby uses references to locate
objects on the heap. When a new object is created, it returns a
reference to itself. You store that reference in a variable, array, or other
convenient place. Kind of like a house address, the reference tells
Ruby where the object "lives" on the heap.

Reference stored here——> car = car.new &——Returns a referente to the new Car.

car |
|
—_— Z1ZWO0akSt = 21ZW Oak St E
= e R5 %020 —> % Heap, RB 90210 |

Refevente, =

Cav instan {:cllmg wheve to -

NCW ar instante. ‘CW\d {;hc Ca\" j\
Later, you can use that reference to call methods on the object Variable

(which, you might recall, is similar to sending them a message).

Find the car ob\)cc-{: car

|
”and send iJc"{:hc Get the veferente — § I
sound_horn mcssagc.} from the vaviable... %ﬁ‘g‘a’p"éﬁ’;&% I —_— ! E 3 O

=
car.sound horn é‘é j
; .And use it To Jchc
We want to stress this: variables, arrays, hashes, etc. never hold to send 3 Car ob\)c(:b
objects. They hold references to objects. Objects live on the heap, method eall...

and they are only accessed through the references held in variables.

260 Chapter #

www.it-ebooks.info

http://www.it-ebooks.info/

When references go wrong

Andy met not one, but {wo gorgeous women last week:
Betty and Candace. Better yet, they both live on his street

Andy Adams

2100 W Oak St ——>
Heap, RB 90210

Andy intended to write both their addresses down in his
address book. Unfortunately for him, he accidentally

wrote the same address (Betty's) down for both women.

Bc{:{y Bell
2106 W 0ak St
Heap, RB 90210

Ro

Oak Street in reality

chapter title here

Betty Bell
2106 W 0ak St (3ndace Camden
Heap, RB 10210 3]0 W Oak St

\C_ Hca?; RB ‘702‘,0

A

Candate Camden
210b W 0ak St

1 [Heap, RB 90210

Oak Street according to Andy's address book

Later that week, Betty received
two letters from Andy:

Pear betty.

et you
as great fo weet Y
‘:vxuesdav‘. \ really en19ved
chatting about that thing

Yours,
Andy

Now, Betty is angry at Andy, and Candace (who never received a letter)
thinks Andy is ignoring her.

What does any of this have to do with fixing our Ruby programs?
You're about to find out...

www.it-ebooks.info

Pear Candace,

you like. You like,
say | was wo .
’ dering,
e xlou 90 10 the woyjes 3V_WOuld
. € next week? | thi .
. Let me 71 think
have a good T ave a good time, Lot »vl‘/:a,ed
know! now!

Yours,
Andy

you are here » 261

http://www.it-ebooks.info/

page goal header

Aliasing

Andy's dilemma can be simulated in Ruby with this simple class, called LoveInterest. A
LovelInterest has an instance method, request date, which will print an affirmative response
just once. If the method is called again after that, the LoveInterest will report that it's busy.

class Lovelnterest

def request date
Bbusy is nil (and treated ——> it @busy &—— € this is not the first vequest..
as false) until it gets set puts "Sorry, I'm busy." €——@ive a negative vesponse.

to something else. else . ‘
puts "Sure, let's go!" &’—éivc an aﬁfuma{:wc

@busy = true é\ vesponse.

end Mavk this ob\)cd{: as unable to
end
aceept any future vequests.

end

Normally, when using this class, we would create two separate objects,
and store references to them in two separate variables:

betty = Lovelnterest.new bett | Ob\')ed{‘, l.
candace = Lovelnterest.new . ¥)
|
= 2106 W Oak St
= Heap, RB90ZI0 >
= \
i
= Object 2.

candace ‘l

|
2110 W Oak St >
Heap, RB 90210 |

\

IR EELEELLELLLLELLE

When we use the two separate references to call

request date on the two separate objects, we get two

affirmative answers, as we expect. betty.request_date Sure, let's go!
candace.request_date Sure, let's go!

We can confirm that we're working with two different
objects by using the object id instance method,
which almost all Ruby objects have. It returns a unique

identifier for each object. p betty.object id 70115845133840 |KENNURRTN
p candace.object id 70115845133820)ANdiaabiiitidiad bt

262 Chapter #

www.it-ebooks.info

http://www.it-ebooks.info/

chapter title here

Aliasing (cont.)

But if we copy the reference instead, we betty = LovelInterest.new
wind up with two references to the same candace = betty

object, under two different names (the
p betty.object id

variables betty and candace). %))
] T o betty p candace.object id
This sort of thing is known as aliasing, T |
because you have multiple names for a % 2106 W Oak St : 70115845133560 }Samc obiect!
single thing, This can be dangerous if i HA ‘ 70115845133560 J
you're not expecting it! g
Two ' |
vefeventes... OhC Ob\)CC{'«
§ candace
: |
= 7106 W Oakst |
= Hoap. R 90710 "
In this case, the calls to request date g
=

both go to the same object. The first time,

it responds that it's available, but the

second request is rejected. betty.request date Sure, let's go!
A setond YC‘\MCS{: to —— candace. request date Sorry, I'm busy.
the SAME ochch’

This aliasing behavior seems awfully familiar... Remember the malfunctioning
star catalog program? Let's go back and take another look at that next.

Here is a class Counter And here is some a = Counter.new
Ruby class: . code that uses that ~ © = Counter.new
def initialize class: c=Db
@count = 0 d=c
end
a.increment
def increment b.increment
@count += 1 c.increment
puts @count d.increment
end
end Guess what the code will output, and |

write your answer in the blanks.
(We've Lilled in the first one for \/ou.) -----

you are here » 263

www.it-ebooks.info

http://www.it-ebooks.info/

page goal

Here is a class Counter And here is some a = Counter.new
v ORACA Ruby class: Ruby code that uses P = Counter.new
Exeac‘§e def initialize that class: c=>
DLUt\ON @count = 0 d =c
end
a.increment
def increment b.increment
@count += 1 c.increment
puts @count d.increment
end
end Guess what the code will output, and |
write your answer in the blanks. I
yA
E)

Fixing the astronomer's program

Now that we've learned about aliasing, let's take another look at the astronomer's
malfunctioning star catalog, and see if we can figure out the problem this time...

class CelestialBody
attr accessor :type, :name
end

altair = CelestialBody.new

altair.name = 'Altair' Tbswu'bmc,hcvwnfsfo
altair.type = 'star' coF’{hgyrcwmA stav...
polaris = altair

polaris.name = 'Polaris'<?———_mAhdjVﬁldﬁ“35

vega = polaris the name.
vega.name = 'Vega' € Same
hevre.
puts altair.name, polaris.name, vega.name Vega

AVl < But it looks like the

Vega names on all 3 stavs
are now idcvrl:ical,l
If we try calling object id on the objects in the three variables, we'll see that
all three variables refer to the same object. The same object under three different
names... sounds like another case of aliasing!

puts altair.object id 70189936850940
puts polaris.object id 70189936850940 SamCOhyLU
puts vega.object id 70189936850940

264

www.it-ebooks.info

http://www.it-ebooks.info/

chapter title here

Fixing the astronomer's program (cont.)

By copying the contents of the variables, the astronomer Stoves a vefevente to 3
did not get three CelestialBody instances as he new CelestialBody.
thought. Instead, he's a victim of unintentional aliasing -
he got one CelestialBody with #hree references to it! altair = CelestialBody.new
altair.name = 'Altair'
) altair.type = 'star'
COPICS the SAME \rc‘("crcm‘,c ———>polaris = altair
1o a new Variablc! polaris.name = 'Polaris'
vega = polaris
vega.name = 'Vega'
Co\?ics the same \rc‘("cwrcm‘,e puts altair.name, polaris.name, vega.name
to a THIRD variable! ' ') ' ’
To this poor, .bewﬂdffred object, tbe . % altair |
sequence of instructions looked like this: Three 3]
vefeventes... & 240N vy St |
= Heap, RB 90210 |
. iy .
+ "Set your name attribute to 'Altair"', and % polaris = One object
our type attribute is now 'star’'. &
Y yp =240 Nivy St E >
i
. Now set your name to 'Polaris’'. = e ‘ %
&
. i vega |
* Now your nameis 'Vega'. = ;3)
: : . * !
* Give us your name attribute 3 times. ;5 ﬁgﬂ‘ggﬁgw |
= |
=
=
=
...The CelestialBody dutifully complied, and told —
3 3 \l \l
us three times that its name was now 'Vega'. Vega
Vega .
g Create the first
Fortunately, a fix will be easy. We just need CelestialBody. ¢ .
to skip the shortcuts, and actually create \C- Instead o c,ov\/mz
three CelestialBody instances. altair = CelestialBody.new the veferente, get 3
altair.name = 'Altair' veferente to a setond
altair.type = 'star' Cclcs{ialBod\[
polaris = CelestialBody.new<//
polaris.name = 'Polaris' We need to set the {-,\/?c on
polaris.type = 'star' eath ob\')cc{: sc?a\ra{:cl\[
vega = CelestialBody.new
vega.name = 'Vega'
vega type = ’st(ajr' 6c£ 3 rc«ccrcm‘,c to a
’ third object.
puts altair.name, polaris.name, vega.name Altair

Polaris
Vega

And as we can see from the output, the problem is fixed!

you are here » 265

www.it-ebooks.info

http://www.it-ebooks.info/

page goal header

So, all we have to do is
avoid copying references
from one variable to another,
and we'll never have problems
with aliasing, right?

It's definitely good policy to avoid copying references
from variable to variable. But there are other
circumstances where you need to be aware of how
aliasing works, as we'll see shortly.

Quickly identifying objects with "inspect”

Before we move on, we should mention a shortcut for identifying objects... We've
already shown you how to use the object id instance method. If it outputs the
same value for the object in two variables, you know they both point to the same object.

altair = CelestialBody.new
altair.name = 'Altair' (opies the SAME veferente

altair.type = 'star' to a new variablc!
polaris = altair
polaris.name = 'Polaris'

puts altair.object id, polaris.object id 70350315190400 ol
70350315190400 The SAME °ch££~

The string returned by the inspect instance method also includes

a representation of the object ID, in hexadecimal (consisting of the
numbers "0" through "9" and the letters "a" through "f"). You don't
need to know the details of how hexadecimal works; just know that if
you sce the same value for the object referenced by two variables, you
have two aliases for the same object. A different value means a different object.

puts altair.inspect, polaris.inspect

lestialObj A hexadetimal vepresentation
vega = CelestialObject.new o£ Jd\c ob\')ct,{; |D

puts vega.inspect

The SAME obJet{’{ #<CelestialBody:0x007£f£76b17£100 @name="Polaris", Qtype="star">

) #<CelestialBody:0x007£f£76b17£100 @name="Polaris", @type="star">
A different object. #<CelestialBody:0x007££76bl7edb8>

266 Chapter #

www.it-ebooks.info

http://www.it-ebooks.info/

chapter title here

Problems with a hash default object

The astronomer is back, with more problematic code...

I'm trying to put
stars and planets in a

hash, but everything's
mixed up again!

He needs his hash to be a mix of planets and moons. Since most
of his objects will be planets, he set the hash default object to a
CelestialBody with a type attribute of "planet". (We saw
hash default objects last chapter; they let you set an object the hash
will return any time you access a key that hasn't been assigned to.)

class CelestialBody
attr_accessor :type, :name

end
Set wp a Flancf,{default—bOdy = CelestialBody.new Make the Vla"c{" the
default body.type = 'planet' dC‘("auH: value for all

bodies = Hash.new(default body) </// uv\assigncd hash kc\/s.

He believes that will let him add planets to the hash simply by

assigning names to them. And it seems to work: A CelestialBody with
the corveet type
bodies['Mars'].name = 'Mars' a{;{:vibu{:c,..
p bodies['Mars'] \C

#<CelestialBody:0x007£fc60d13e6£f8 @type="planet", @name="Mars">

When the astronomer needs to add a moon to the hash, he can do that,
too. He just has to set the type attribute in addition to the name.

bodies['Europa'] .name = 'Europa'

bodies['Europa'].type = 'moon' A Cclcs{:'lalBOd with a
200y

{;\/YC of "moon’ ...

p bodies['Europa']

#<CelestialBody:0x007fc60d13e6£f8 QRtype="moon", @name="Europa">

But then, as he continues adding new CelestialBody objects to
the hash, it starts behaving strangely...

you are here » 267

www.it-ebooks.info

http://www.it-ebooks.info/

page goal header

Problems with a hash default object (cont.)

The problems with using a CelestialBody as a hash default object become apparent
as more objects as the astronomer tries to add more objects to the hash... When he adds
another planet after adding a moon, the planet's type attribute is set to "moon" as well!

bodies['Venus'].name = 'Venus' This is su‘?\?oSCd to be a Ylanc{;

\C‘ Why is +his set to " moon” ¢!

p bodies|['Venus']

#<CelestialBody:0x007£fc60d13e6f8 QRtype="moon", @name="Venus">

..If he goes back and gets the value for the keys he added previously,

those objects appear to have been modified as well!) What happened to
p bodies['Mars'] lsn't one of these the names "Mavs”
p bodies['Europa'] oppesed fobes ""\007\"-?'}/ e ”Ew"\’a”?

#<CelestialBody:0x007fc60d13e6f8 @type="moon", @name="Venus">

#<CelestialBody:0x007£fc60d13e6£f8 Qtype="moon", @name="Venus">

But we're not altering multiple
objects... Look at the object

IDs. All these different hash
keys are giving us references
to the same object!

Good observation! Remember we said that the inspect method
string includes a representation of the object ID? And as you know,
the p method calls inspect on each object before printing it. Using
the p method shows us that all the hash keys refer to the same object!

p bodies['Venus'] These are all the
p bodies['Mars'] SAME ob\)cc{:/‘)

p bodies|['Europa']

#<CelestialBody:0x007£fc60d13e6£f8 QRtype="moon", @name="Venus">
#<CelestialBody:0x007fc60d13e6£f8 @type="moon", @name="Venus">

#<CelestialBody:0x007£fc60d13e6£f8 Q@type="moon", @name="Venus">

Looks like we've got a problem with aliasing again! On the next few
pages, we'll see how to fix it.

268 Chapter #

www.it-ebooks.info

http://www.it-ebooks.info/

chapter title here

We're actually modifying the hash default object!

The central problem with this code is that we're not actually modifying hash
values. Instead, we're modifying the hash default object.

We can confirm this using the default instance method, which is available
on all hashes. It lets us look at the default object after we create the hash.

Let's inspect the default object class CelestialBody
both before and after we attempt attr_accessor :type, :name
to add a planet to the hash. end

default body = CelestialBody.new

default body.type = 'planet'

bodies = Hash.new(default body)

p bodies.default &—— Ins?cd{‘, the default objcd‘(:-

bodies['Mars'].name = 'Mars' &’—T\r\/ 40 add a value to the hash.

The hash default object p bodies.default &—— [nspect the default objeet again.
BEFORE attempting to
add a hash value.
\ #<CelestialBody:0x007£868a8274c8 @type="planet">
The hash default #<CelestialBody:0x007£868a8274c8 Qtype="planet", @name="Mars">
ob\')cd: AFTER j
3ttempting to add The name aot added 4o the
a hash value.. default ob\')c(;(; instead!

So why is a name being added to the default object? Shouldn't it be
getting added to the hash value for bodies ['Mars']?

If we look at the object IDs for

both bodies['Mars'] and
the hash default object, we'll b bodies['Mars']

have our answer: p bodies.default

\C- Same ob\')cd: ID’

. #<CelestialBody:0x007£868a8274c8 @type="planet", @name="Mars">
The SAME °ch¢{:~’ #<CelestialBody:0x007£868a8274c8 @type="planet", @name="Mars">

When we access bodies ['Mars'], we're still getting a reference to the hash default object! But why?

you are here » 269

www.it-ebooks.info

http://www.it-ebooks.info/

page goal

A wore detailed look at hash default objects

When we introduced the hash default object in the last chapter, we said thatyou get the default
object anytime you access a key that hasn't been assigned to yet. Let's take a closer look at that last detail.

Let's suppose we've created a hash that will hold student names as the keys, and
their grades as the corresponding values. We want the default to be a grade of "A"'. grades = Hash.new('A')

At first, the hash is completely empty. Any student name that we

request a grade for will come back with the hash default object, "A". Hash Default Object

p grades['Regina'] grades|['Regina’']

n Qot a value for "china"?

When we assign a value to a hash key, we'll get that value back instead

of the hash default the next time we try to access it.

grades['Regina'] = 'B'
p grades['Regina'] Hash Default Object
ﬂ grades|['Regina’'] ({"Regina" => "B"}
Got a value for "Rcaina"? \{cs_’

Even when some keys have had values assigned, we'll still get the .
default object for any key that hasn't been assigned previously. Hash Default Object

p grades['Carl'] grades ['carl’] ({ "Regina" => "R" }
m 60‘(2 a value for "Carl"?v Noyc.w \/CS,’

But accessing a hash value 1s not the same as assigning to it. If you

hash val h i in with ki
access a has va’ue once and.t en access it again without making an Hash Default Object
assignment, you'll still be getting the default object.

p grades['Carl'] grades ['Carl'] @j‘ina" => "R" }

m Qot a value for "Cavl”? Noyc»w Yes!

Only when a value is assigned to the hash (not just retrieved from it) will
anything other than the default object be returned.

grades['Carl'] = 'C'
p grades(['Carl']

Hash Default Object

grades|['Carl'] ({"Regina" => "B", "Carl" => "C"}

Got a value for "Carl”? \ A \/cs,’

270

www.it-ebooks.info

http://www.it-ebooks.info/

chapter here

Back to the hash of planets and moons -~~~ -

end
And that is why, when we try to set the type and name attributes of
objects in the hash of planets and moons, we wind up altering the default body = CelestialBody.new
default object instead. We're not actually assigning any values to the default body.type = 'planet'
) y assigning amy _body. tyr p
hash. In fact, if we inspect the hash itself, we'll see that it's totally empty! bodies = Hash.new (default body)
bodies['Mars'] .name = 'Mars'
bodies['Europa'] .name = 'Europa'
T thought we were assigning bodies['Europa'].type = 'moon'
values to the hash. Aren't those bodies['Venus'].name = 'Venus'
assignment statements right .
there? p bodies I!k—— Em\?{y!
bodies['Mars'].name = 'Mars'
: v v — 1 v
'SY\){: this assigining bod}es ['Europa'] .name 'Euro;'aa
4o the hash? bodies['Europa'].type = 'moon
¢ : bodies['Venus'] .name = 'Venus'

Actually, those are calls to the name= and type= attribute writer methods
on the hash default object. Don't mistake them for assignment to the hash.

When we access a key for which no value has been assigned, we get
the default object back.

default body = CelestialBody.new
default body.type = 'planet'
bodies = Hash.new(default body)

p bodies['Mars'] #<CelestialBody:
0x007£fe0b98a76£8 Hash Default Object

@type="planet">
<CelestialBod
bodies['Mars'] #<CelestialBody

@Qtype="planet">

Got 3 value for "Mars"2 No\’c.w Yes!
es!

The statement below is not an assignment to the hash. It attempts to

access a value for the key '"Mars"' from the hash (which is still empty).

Since there is no value for 'Mars', it gets a reference to the default

object, which it then modifies.

bodies['Mars'])(name = 'Mars') Hash Default Object
Actesses the j t Modifies the .
default object default object. #<CelestialBody
- "
And since there's s#i/l nothing assigned to the hash, the next {} @type="planet",
access gets a reference to the default object as well, and so on. /——-> @name="Mars">
Fortunately, we have a solution for you... Atbribute added 4o default ob\')cc{:,l

271

www.it-ebooks.info

http://www.it-ebooks.info/

page goal

Our wish list for hash defaults

We've determined that this code doesn't assign a value to the default_body = CelestialBody.new
hash, it just accesses a value. It gets a reference to the default default body.type = 'planet’
object, which it then (unintentionally) modifies. bodies = Hash.new(default body)

(bodies['Mars' J(name = 'Mars'))

Gets a vefevente {:oj t Modifies the
the default object. default object!
Right now, when we access a hash key for which no Hash Default Object
value has been assigned, we just get a reference to -
the hash default object. bodies ['Mazs'] 0 #<CelestialBody
¢ L @Qtype="planet">
ot a value for "Mars"?
s ¢ Nope. es!
. . . Value
What we really want is to get an entirely new object .
for each unassigned hash key. Hash Default Object
bodies['Mars'] CelestialBody . new)
Got a value for "Mars"?\—ﬂNO"c. S~ Yes!
Of course, if we did that without assigning to the Val
hash, then later accesses would just keep generating Hash Default alue
new objects over and over... as efault Dbject
bodies['Mars'] CelestialBody . new)
Qot a value for "Mars”_?\—’l kil S~ Um, sure, here’s
don't!. ANOTHER new ochLJc!
So it would also be nice if the new object was '
assigned to the hash for us, so that later accesses
would get the same object again (instead of
generating new objects over and over). We want 4o assign the new
bodies['Mars'] CelestialBody instance to the key- value
Hash \C- Default Object

({"Mars" => #<CelestialBody>})—(CelestialBody . new)
Yes!

Qot a value for "Mavs"?

Hashes have a feature that can do a/l this for us!

272

www.it-ebooks.info

http://www.it-ebooks.info/

chapter title here

Hash default blocks

Instead of passing an argument to Hash . new to be used as a hash default
object, you can pass a block to Hash .new to be used as the hash default block.
When a key is accessed for which no value has been assigned:

. The block is called.

* The block receives references to the hash and the current key as block
parameters. These can be used to assign a value to the hash.

* The block return value is returned as the current value of the hash key.

When the bloek is ¢alled

later, it will veceive a
Creates the hash vefecente to the hash and
the key being attessed.

Those rules are a bit complex, so we'll
go over them in more detail in the
next few pages. But for now, let's take

a look at your first hash default block:
Y bodies = Hash.new do |hash, keyle/

body = CelestialBody.new &—Here we set wp the oli}c6£ whith

body.type = "planet" will become the value Yor this key.
hash[key] = body
bod . .
ond Ti Assign the object to the turrent hash key.
Return the object.
If we access keys on .t/zzs h.ash, we get separate This code is podies['Mars'].name = 'Mars'
objects for each key, just like we always intended. identical o what \ ogies ['Europa'] .name = 'Europa’
we used 3 Louy'c bodies['Europa'].type = 'moon'
pages ago! bodies['Venus'].name = 'Venus'

p bodies['Mars']
p bodies['Europa']
ThV‘CC SCPEY&’EC Ob\)tﬂ{s.’)} p bodies['Venus']

RGN R #<CelestialBody:0x007£e701896580 @type="planet", @name="Mars">
bodncsCEyroya’J] #i<CelestialBody:0x007£fe7018964b8 QRtype="moon", @name="Europa'">
PNPNRVICNEEY 4 CclestialBody:0x007£e7018963a0 @type="planet", @name="Venus">

Better yet, the first time we access any key, a value is automatically
assigned to the hash for us!

Values have been assigned to the hash/

p bodies {"Mars"=>#<CelestialBody: 0x007£e701896580 Qtype="planet", @name="Mars">,

"Europa"=>#<CelestialBody:0x007£fe7018964b8 @type="moon", @name="Europa">,
"Venus"=>#<CelestialBody:0x007£fe7018963a0 @type="planet", @name="Venus'">}

Now that we know it will work, let's take a closer look at the components of that block...

you are here » 273

www.it-ebooks.info

http://www.it-ebooks.info/

page goal header

Hash default blocks: Assigning to the hash

In most cases, you'll want the value created by your hash default block When the block is. called
to be assigned to the hash. A reference to the hash and the current key later, it will veceive a
are passed to the block, in order to allow you to do so. veferente to the hash and

the key being attessed.
bodies = Hash.new do |hash, key\é"’/
body = CelestialBody.new
body.type = "planet"
hash[key] = body
body
end

Assign the objeet to the turvent hash key.

When we assign values to the hash in the block body, things work like we've been expecting
all along. A new object is generated for each new key you access. On subsequent accesses,
we get the same object back again, with any changes we've made intact.

Qenerates a new obieet
Y \> p bodies['Europa']

Gives us the same T .
object as the line above p bodiesl Buropa’]
J ’ bodies|['Europa'].type = 'moon'

p bodies|['Europa']

Al the same ob\')ct{‘,.

Changes we make
will be saved.

#<CelestialBody:0x007fb6389eed00 @type="planet">
) o #<CelestialBody:0x007fb6389eed00 @type="planet">
Type attribute is intact —— #<CelestialBody:0x007fb6389eed00 QRtype="moon">

Don’'t forget to assign a value to the hash!

o w If you forget, the generated value will just be thrown away. The hash key still won't have a
WﬂfCh i t’ value, and the hash will just keep calling the block over and over to generate new defaults.

We SHOULD assign bodies = Hash.new do |hash, key|
4o the hash heve. body = CelestialBody.new
) body.type = "planet"
I£ we don tn"‘%bodi Yp P
We'll get a different end
ob\)c(fc eath time we
access this ke\/! p bodies['Europa']

p bodies['Europa']
Changes we make ——> bodies ['Europa'] .type = 'moon’) biecks!
will be distarded! p bodies['Europa'] All diffevent o jects:

#<CelestialBody:0x007££95507ee90 @type="planet">
o #<CelestialBody:0x007££95507ecd8 @type="planet">
IR R R EWITE #<CelestialBody: 0x007££95507eaf8 @type="planet">

274 Chapter #

www.it-ebooks.info

http://www.it-ebooks.info/

chapter title here

Hash default blocks: Block return value

When you access an unassigned hash key for the first time, the hash
default block's return value is returned as the value for the key.

bodies = Hash.new do |hash, key]|
body = CelestialBody.new
body.type = "planet"
hash[key] = body
body €——This veturn value..

end

p bodies['Mars'] €——Is what we get heve!

#<CelestialBody:0x007fef7a9132c0 @type="planet">

As long as you assign a value to the key within the block body, the hash
default block won't be invoked for subsequent accesses of that key;
instead, you'll get whatever value was assigned.

Make sure the block return value matches
what you're assigning to the hash!

W t 11 . t’ Otherwise, you'll get one value when you first access the key, and a completely different
) areh 1 yae on subsequent accesses.

bodies = Hash.new do |hash, key]|
body = CelestialBody.new
body.type = "planet"
hash[key] = body
"I'm a little teapot"

end
The value veturned
£rom the bloek!
p bodies['Mars'] \> "I'm a little teapot"
p bodies['Mars'] #<CelestialBody:0x007£fc£830£f£000 Q@type="planet">
The value assigned
1o the hash!

Generally speaking, you won't need to work very hard to remember
this rule. As we'll see on the next page, setting up an appropriate
return value for your hash default block happens quite naturally...

you are here » 275

www.it-ebooks.info

http://www.it-ebooks.info/

page goal header

Hash default blocks: A shorteut

Thus far, we've been returning a value from the bodies = Hash.new do |hash, key|

hash default block on a separate line: body = CelestialBody.new
body.type = "planet"

hashlkey] = body
body &—— Sc\?ara‘[:c bloek veturn value.

end

p bodies['Mars']

#<CelestialBody:0x007fef7a9132c0 Qtype="planet">

But Ruby offers a shortcut that can reduce the amount of code in your

default block a bit...

You've already learned that the value of
the last expression in a block is treated

as the block's return value... What we p my_hash __{)

. . . p my_array = []
haven't mentioned is that in Ruby, the o my_intege r = 20 Values of expressions
value of an assignment expression is p my hash['A'] = ['Apple'] ["Apple"] same as values assigned.
the same as the value being assigned.) my:array [0] = 245 245

So, we can use just an assignment statement in a hash default block,
and it will return the assigned value.

greetings = Hash.new do |hash, key]|
hash[key] = "Hi, #{key}"
end

p greetings["Kayla"] "Hi, Kayla"

And, of course, it will add the value to the hash as well.

p greetings {"Kayla"=>"Hi, Kayla"}

So in the astronomer's hash, instead of adding a separate line with a
return value, we can just let the value of the assignment expression
provide the return value for the block.

bodies = Hash.new do |hash, key|
body = CelestialBody.new
body.type = "planet"
hash[key] = body &—— Let this be the block

end veturn value.

p bodies['Mars']

#<CelestialBody:0x007fa769a3£f2d8 QRtype="planet">

276 Chapter #

www.it-ebooks.info

http://www.it-ebooks.info/

chapter title here

Exercise

A

foods =
foods['A'] <<
foods['A'] <<
foods['B'] <<
foods['B'] <<
p foods['A']
p foods['B']
p foods

foods =
foods['A'] <<
foods['A'] <<
foods['B'] <<
foods['B'] <<
p foods['A']

p foods['B']

Hash.new {

The three code snippets below are all supposed to make a hash of arrays
with foods grouped by the first letter of their name, but only one actually
works. Match each snippet with the output it would produce.

(We've Lilled in the fivst one for \/ou.)

Hash.new ([])

"Apple"
"Avocado"
"Bacon"
"Bread"

lhash, keyl| [] }
"Apple"

"Avocado"

"Bacon"

"Bread"

p foods

foods = Hash.new { |hash, key| hashl[key] = []
foods['A'] << "Apple"

foods['A'] << "Avocado"

foods['B'] << "Bacon"

foods['B'] << "Bread"

p foods['A']
p foods['B']
p foods

~~———
—~—t

["Apple" ,
["Apple" ,
{}

[llApplell p
["Bacon",
{ HA"=> ["Apple" ’

"Avocado",
"Avocado",

"Bacon",
"Bacon",

"Bread"]
"Bread"]

"Avocado"]
"Bread"]

"Avocado"],

"BU=> ["Bacon" ,

"Bread"]}

www.it-ebooks.info

you are here » 277

http://www.it-ebooks.info/

page goal header

The three code snippets below are all supposed to make a hash of arrays
with foods grouped by the first letter of their name, but only one actually

p foods['A']
p foods['B']
p foods

foods =
foods['A'] <<
foods['A'] <<
foods['B'] <<
foods['B'] <<
p foods['A']
p foods['B']
p foods

(5]

Each string is
added to a new
array. The array
is then distarded!

foods =
foods['A'] <<
foods['A'] <<
foods['B'] <<
foods['B'] <<
p foods['A']

p foods['B']

o

p foods
A [
[1
{1
A ["Apple",
{1
C

["Apple",
["Bacon",

Hash.new {

"Avocado",

L L 4 .
EIQRC|§Q works. Match each snippet with the output it would produce.
OLution This ONE arvay will be used as’ the
default value £or all hash kc\/s.
@ :ooss - Hashunew (€
All of these will (focds['a'] << "Apple™
c_{: added ‘Eo “\ foods['A'] << "Avocado"
3 ¢ 7 foods['B'] << "Bacon"
SAME awaY- foods['B'] << "Bread"

Returns a new, empty array
each time the blotk is called,
but doesnt add it to the hash!

Hash.new { |hash, key| [] }<?”~’/

"Apple"
"Avocado"
"Bacon"
"Bread"

Assigns a new arvay +o the hash,
under the turvent kcy-

|hash, key| hashl[key] = [] }
"Apple" &——Added to a new arvay.
"Avocado" &——Addcd 4o same away as "AWIC”-
"Bacon" €——#dded to a new arvay.

"Bread" 6\

Added to same array as "Bacon”.

"Bacon", "Bread"]

["Apple", "Avocado", "Bacon", "Bread"]

"Avocado"]
"Bread"]
{ HA"=> [HApple" ’

"Avocado"], "B"=>["Bacon", "Bread"]}

278 Chapter #

www.it-ebooks.info

http://www.it-ebooks.info/

chapter title here

The astronower's hash: our final code

The hash is working perfectly.
Hash default blocks are just

Here's our final code for the hash default block:

(Output aligned for easier veading)

These lines all
work as expected,
now!

what I needed! ~
b !/
class CelestialBody
attr accessor :type, :name Reteives a rc«cerev\u
end 4o the hash and the

turrent key:
bodies = Hash.new do |hash, key|<//

body = CelestialBody.new &—C Create a new ob\')c(.{:

body.type = "planet" ")us{: ‘COY‘ the turvent kc\/.

hash[key] = body
end .

Assigns to the hash AND veturns the new value.
bodies['Mars'].name = 'Mars'
bodies|['Europa'].name = 'Europa'
bodies|['Europa'].type = 'moon'
bodies['Venus'] .name = 'Venus'
p bodies
Type defaults to
"ylanc{:", but ean be

Each hash value is a overvidden. Names ave

separate ob\)ccf.') J/ \f‘ all intact.

{"Mars" =>§i<CelestialBody:0x007fcde388aaal @type="planet", @name="Mars" >,

"Europa"=>#<CelestialBody: 0x007fcde388a9d8 @type="moon", @name="Europa">,
"Venus" =>#<CelestialBody:0x007fcde388a8c0 Qtype="planet", @name="Venus" >}

Here's what we did to get this program working:

We use a hash default block to create a unigue object for each hash key. (This is unlike a
hash default object, which gives references to one object as the default for al/ keys.)

Within the block, we assign the new object to the current hash key.

The new object becomes the value of the assignment expression, which also becomes
the block's return value. So the first time a given hash key is accessed, they get the new
object as the corresponding value.

you are here »

www.it-ebooks.info

279

http://www.it-ebooks.info/

page goal

Using hash default objects safely

I have one more question.
Why would anyone use a hash
default object when you can use
a hash default block instead?

Hash default objects work very well
if you use a number as the default.

T should only use
numbers? Then why did Ruby
let ususe a CelestialBody as
a default object earlier, without
even a warning?

Okay, it's a little more complicated than that. Hash
default objects work very well if you don't change the
default, and if you assign values back to the hash. It's
just that numbers make it easy to follow these rules.

Take this example, which counts the number of times letters occur in
an array. (It works just like the vote counting code from last chapter.)

letters = ['a', 'c', 'a', 'b', 'c', 'a']
counts = Hash.new (0)

letters.each do |letter]|
H: this value is unassigncd, —> counts[letter] += 1 &’—Assigns the intremented
gets the hash default but end value back to the hash.
does NOT modi‘("\/ it.
p counts {"a"=>3, "c"=>2, "b"=>1}

Using a hash default object here works because we follow the above
two rules...

280

www.it-ebooks.info

http://www.it-ebooks.info/

chapter

Hash default object rule #1: Pon't modify the default object

If you're going to use a hash default object, it's important

not to modify that object. Otherwise, you'll get unexpected

results the next time you access the default. We saw this

happen when we used a default object (instead of a default gefauit pody = celestialBody.new

here

block) for the astronomer's hash, and it caused havoc: default body.type = 'planet'
bodies = Hash.new(default body) &——Sc{is the
hash’s
(bodies['Mars' J(name = 'Mars') dc‘(:auH:
Gets a veferente {wj /L Modifies the object.
the default objc&- default ocht{/
Okay, but then why does it work with a
number as the default object? We modify
the default when we add to it, don't we?
letters = ['a', '¢', 'a', 'b', 'c', 'a']
counts = Hash.new (0)
[sn't this modi‘(:\/ing
letters.each do |letter| the default objcé{?
counts[letter] += 1
end
In Ruby, doing math operations on a numeric object doesn't modify
that object; it returns an entirely new object. We can see this if we look
at object IDs before and after an operation.
number = 0
puts number.object id .
number = number + 1 sl Two different ob\')ccjcs,’ (Objeet [Ds for integers are much)lowcr than for
puts number.object id KB) other ob\')c{,{:s, buk that’s an implementation detail, so don't worey about
it. The key point is, they've di ferent)
In fact, numeric objects are immutable: they don't have any
methods that modify the object's state. Any operation that
might change the number gives you back an entirely new object.
shenans svey e on Numbers make gooJ hash
That's what makes numbers safe to use as hash default objects; .
you can be certain that the default number won't be changed c[e‘[aUlt OLJECtS l)ecause
accidentally. .
tlley are immutable,
281

www.it-ebooks.info

http://www.it-ebooks.info/

page goal header

Hash default object rule #2: Assign values to the hash

If you're going to use a hash default object, it's also important
to ensure you're actually assigning values to the hash. As we
saw with the astronomer's hash, sometimes it can look like
you're assigning to the hash when you're not...

default body = CelestialBody.new

default body.type = 'planet' A eall o an attribute
bodies = Hash.new(default body) writer method. This does

bodies['Mars'].name = 'Mars' <//

p bodies W——Thc hash is still
empty, actually!

When we use a number as a default object, though, it's much more
natural to actually assign values to the hash. (Because numbers are

immutable, we can't store the incremented values unless we assign them
to the hash!)

hash = Hash.new(0)
The hash default ob:)cCJC

C is unchanged-

p hash.default
p hash We assigned the

values to the hash/

hash[' +

a'l 1
hash['c'] += 1

282 Chapter #

www.it-ebooks.info

NOT assign to the hash/

http://www.it-ebooks.info/

chapter here

The rule of thumb for hash defaults

All of this seems like a lot to
remember, just to be able to
use hash defaults.

That's true. So we have a rule of thumb that will keep
you out of trouble...

I your default is a numloer, you can use a

hash default o_]l)'e_ct.

I your default is anytlting else, you should use a
hash default l)chk

As you gain more experience with references, all of this will become
second nature, and you can break this rule of thumb when the time is
right. Until then, this should prevent most problems you'll encounter.

Understanding Ruby references and the issue of aliasing won't help
you write more powerful Ruby programs. It wi/l help you quickly find
and fix problems when they arise, however. Hopefully this chapter has
helped you form a basic understanding of how references work, and
will let you avoid trouble in the first place.

283

www.it-ebooks.info

http://www.it-ebooks.info/

page goal

Your Ruby Toolbox

You’ve added references
to your tool box.

| That's it for Chapter 8! % BULLET POINTS

= [fyou need to store more objects, Ruby will
increase the size of the heap for you. If you're no
longer using objects, Ruby will delete them from
the heap for you.

® Aliasing is the copying of a reference to an
object, and it can cause bugs if you do it
unintentionally.

= Most Ruby objects have an object_id instance
method, which returns a unique identifier for the
object. It can be used to determine whether you
have multiple references to a single object.

® The string returned by the inspect method also
includes a representation of the object ID.

= |fyou set a default object for a hash, all
unassigned hash keys will return references to
that single default object.

® For this reason, it's best to only use immutable
objects (objects that can't be modified), such as
numbers, as hash default objects.

= |fyou need any other kind of object as a hash
default, it's better to use a hash default block, so
that a unique object is created for each key.

= Hash default blocks receive a reference to the
hash and the current key as block parameters. In
most cases, you'll want to use these parameters
to assign a new object as a value for the given
hash key.

m The hash default block's return value is treated
as the initial default value for the given key.

® The value of a Ruby assignment expression is
the same as the value being assigned. So if an
assignment expression is the last expression in
a block, the value assigned becomes the block's
return value.

284

www.it-ebooks.info

http://www.it-ebooks.info/

	Cover
	Copyright
	1 more with less
	2 methods and classes
	3 inheritance
	4 initializing instances
	5 arrays and blocks
	6 block return values
	7 hashes
	8 references

